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Forms of Lie algebras over Laurent polynomial rings
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(joint work with Arturo Pianzola)

1. Introduction

Let S be a scheme. In algebraic geometry, the term “form” or S-form of an object
over S is used to describe another object over S that “locally look the same” to
the given one, in the sense that the two objects become isomorphic after applying
a suitable change to the base S.

This leads to Galois cohomology and more generally to étale cohomology. In
this talk we shall discuss mainly the so-called isotrivial situation, namely that of
objects V over an affine scheme S = Spec(R) such that there exists a finite étale
covering S′ = Spec(R′) which makes the objects isomorphic after base change
S′/S.

A perfect example for us is that of the punctured affine line Gm = Spec(C[t±1])
which affords standard Kummer coverings of degree d, namely Gm → Gm, t = td.
We deal also with the analogous n-variables version of this example, namely Rn =

C[t±1
1 , .., t±1

n ] and its covering Rn,m = C[t
±1

m

1 , .., t
±1

m
n ].

We are interested in classifying semisimple and reductive group schemes over
Spec(Rn) and also their Lie algebras. There is a strong motivation for doing
this coming from the theory of extended affine Lie algebras (EALAs for short.
See [AABFP]). These are infinite dimensional complex Lie algebras defined by a
set of axioms. In nullity one (i.e. when n = 1) EALAs are nothing but the affine
Kac-Moody Lie algebras. Neher has shown how to construct EALAs out of the
centreless cores. The most interesting class of EALAs has the remarkable property
their centreless cores are known to be (multi)loop Lie algebras over Rn.

2. Loop algebras

2.1. Definition. Let g be a semisimple complex Lie algebra. If σ = (σ1, ..., σn)
is a family of finite order commuting automorphisms of g whose orders divide an
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integer m, then we can define the Lie algebra

L(g, σ) =
⊕

(i1,...,in)∈Zn

t
i1
m

1 · · · t
in
m
n gi1,...,in ⊂ g⊗Rn,m

where

gi1,...,in =
{

X ∈ g | σj(X) = ζijmX ∀j = 1, ..., n
}

stands for the eigenspace attached to the common diagonalization of the σj , where

ζm = e
2iπ
m .

Since the eigenspaces arem-periodic in each coordinate, L(g, σ) is a Rn-module.
The relations [gi1,...,in , gi′1,...,i′n ] ⊂ gi1+i′

1
,...,in+i′n

provides L(g, σ) with an Rn-Lie
algebra structure. This Lie algebra is called the (multi)loop algebra of the pair
(g, σ). Note that it is independent of the choice of It is easy to see that

L(σ, g)⊗Rn
Rn,m

∼
−→ g⊗Rn

Rn,m,

as Rn,m-Lie algebras. Thus L(σ, g) is an Rn-form of g ⊗ Rn (or simply of g, for
simplicity of terminology).

A natural question is to classify all R− n-forms of g, and in particular classify
and characterize multiloop algebras, among all forms. We should note that Lie
theorists are interested in classifying these objects over C. However there is a
“rigidity” result (called the centroid trick) which shows that two Rn-forms L and
L′ of g are C-isomorphic if and only if there exists f ∈ GLn(Z) = AutC(Rn)
such that f∗L is Rn-isomorphic to L′ [GP1]. We should concentrate then on the
classification/characterization question over Rn.

In nullity one this program was carried out in [P]. The cohomological approach
yields a new proof of the classification of the affine Kac-Moody algebras. In this
case, all forms are loop algebras.

In higher nullity n ≥ 2 the authors tried hard to show that it is also the case,
but it is not (see the Margaux algebra [GP1]) ! A possible way to construct exotic
objects over Rn would be by relaxing the splitting condition, namely to look at Rn-
forms L of g which are trivialized by a general faithfully flat base change R′/Rn.
But we have shown (Isotriviality Theorem, [GP2]) that this approach is futile: all
relevant objects are trivialized by some generalized Kummer covering Rn,m/Rn.

In practice the construction of counterexamples lead to technical complications
because one needs to isolate the class of loop algebras. In the two dimensional
case, we have conjectured that the only counterexamples are Margaux-like, so that
they are can be described by an invertible module over a 2-loop Azumaya algebra
which is rationally a division algebra.

For classical types A, B, C and D, Alexander Steinmetz has shown that the
conjecture is true with the possible exception of small dimension cases [SZ]. This
uses work of Parimala and also cancellation theorems (Bass, Suslin, Knus, Bertuc-
cioni,... ).
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2.2. Internal characterization of loop algebras. The first characterization is
given by grading considerations. We have proven in [GP2] that an Rn-form L of
g is a loop algebra if and only we there exists a Zn-grading on L together with a
trivialization L ⊗Rn

Rn,m
∼= g⊗Rn,m. which is a graded isomorphism.

This explains somehow why exotic algebras were not considered (gradings are an
essential ingredient of EALAs, and the Margaux example is constructed in such a
way as to “break” the grading). The previous criterion is of external nature (since
it appeals to gradings that are put on the Lie algebras under consideration). We
have another internal characterization of loop algebras which is much more useful
in practice.

Theorem 2.1. [GP3] Let L be a Rn-form of g. The following are equivalent:
(i) L is a loop algebra.
(ii) L carries a maximal Cartan algebra, that is a subalgebra C which is locally

(for the Zariski topology) a direct summand of L and whose geometric fibers are
Cartan algebras in the usual sense.

According to [SGA3, XIV.4], (ii) is equivalent to the fact that the semisimple
adjoint Rn-group scheme Aut(L)0 is “toral’, i.e. it admits a maximal Rn-torus.
The hard implication is (ii) =⇒ (i). That (i) =⇒ (ii) is a consequence of Borel-
Mostow’s theorem [BM]. If L = L(g, σ), then since the σi generate an abelian
subgroup of Aut(g), we know that there exists a Cartan subalgebra h of g which
is stable under the σi. Then L(h, σ) is a Cartan subalbebra of L.

3. The main results

We denote by Fn = C((t1))...((tn)) the iterated Laurent series field in n-

variables. An important fact is that π1(Rn, . ) ∼= Gal(Fn)
∼
−→ (Ẑ)n. This implies

that Rn and Fn have the “same” finite étale coverings.

Theorem 3.1. The tensor product ⊗Rn
Fn induces a one to one correspondence:

between isomorphisms of loop Rn-forms of g and Fn-forms of g.

As in Tits classification ( [T] over Fn), the problem reduces to that of “anisotropic
objects”. The proof of the main theorem proceeds by several delicate steps, and
by looking closely at the abelian subgroups of Aut(g)(C). A crucial fact, based
on Bruhat-Tits theory, is the following:

Theorem 3.2. Let σ be an anisotropic n-tuple of commuting automorphims of
Aut(g) of finite order (which amounts to the common centralizer of all the σi in
Aut(g) being finite). Let σ′ be another n-uple. Then the following are equivalent :

(1) σ and σ′ are conjugated under Aut(g)(C);

(2) L(g, σ) ∼= L(g, σ′) as Rn-Lie algebras.
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Essentially, the classification of finite abelian subgroups of Aut(g)(C) provides
the classification of loop algebras. But it is not easy to classify these subgroups!
The only general result is about p-elementary abelian subgroups due to Griess.
This is sufficient to provide many interesting loop algebras, specially for the ex-
ceptional groups G2, F4, E8. The remarkable fact is that we can go the other way
around; indeed one knows quite well semisimple Fn-Lie algebras and groups.
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Irreducible representations of Lie algebra of vector fields on a torus

and chiral de Rham complex
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(joint work with Vyacheslav Futorny)

In this talk we discuss representation theory of a classical infinite-dimensional Lie
algebra – the Lie algebra Vect(TN ) of vector fields on a torus,

(1.1) Vect(TN ) = DerC[t±1
1 , . . . , t±1

N ] =
N
⊕
p=1

C[t±1
1 , . . . , t±1

N ]
∂

∂tp
.

This algebra has a class of representations of a geometric nature – tensor modules,
since vector fields act on tensor fields of any given type via Lie derivative. Tensor
modules are parametrized by finite-dimensional representations of glN , with the
fiber of a tensor bundle being a glN -module W :

(1.2) T = C[q±1
1 , . . . , q±1

N ]⊗W


