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(joint work with Mathieu Florence)

The compact Lie groups play an essential role in the theory of Lie groups and
it makes sense to generalize the notion of compacity for a smooth affine group G
over a base field k, that is a closed k-subgroup of some GLn (e.g. the orthogonal
group of a quadratic form). We consider the fourth following candidates.

(I) (rank one subgroups) G does not carry any k–subgroup isomorphic to the
additive group Ga nor the multiplicative group Gm;

(II) (Boundedness property) G
(

k((t))
)

is bounded for the valuation topology.

(III) G
(

k[[t]]
)

= G
(

k((t))
)

;

(IV) (No point at infinity) There exists a (projective) compactification X of
G such that G(k) = X(k).

We have the easy implications (IV) =⇒ (III) =⇒ (II) =⇒ (I). If k is a perfect
field and G is smooth, Borel and Tits have shown in 1965 the implication (I) =⇒
(IV) so that all conditions agree [1, th. 8.2]. Furthermore in the case of the real
numbers (and for p-adic fields), this is equivalent to say that the group G(k) of
points is compact (ibid, 9.3). For unipotent subgroups over imperfect fields, the
equivalence (I) ⇐⇒ (III) is due to J. Tits, see [3, Appendice B.2].

For k imperfect and G reductive, we have that (I) =⇒ (II) according to a result
of Bruhat-Tits-Rousseau, we refer to Prasad’s elementary proof [7]; actually (IV)
holds as well by using nice compactifications of G starting with the wonderful
compactification in the adjoint case.

The next step is Gabber’s talk [6] in Oberwolfach in 2012. Using the theory
of pseudo-reductive groups, Gabber proved (among other things) that the four
conditions are equivalent in the general case. The main result of today generalizes
(partly) Gabber’s statement over rings in a quite elementary manner.

Theorem 1 [5]. Let A be a ring (commutative, unital) and let G be a closed
A–subgroup scheme of SLN,A for some N . Then the following are equivalent:

(I) HomA−gp(Ga, G) = 1 and HomA−gp(Gm, G) = 1;

(III) G
(

A[[t]]
)

= G
(

A((t))
)

where A((t)) = A[[t]][ 1
t
].

We call that property wound (ployé in French). The proof goes by associating
to an element g ∈ G

(

A((t))
)

\ G
(

A[[t]]
)

its residue res(g) : Ga → G or Gm → G
which is a non-trivial group homomorphism. The techniques involved apply also
to G-torsors. The second main result is the following.

Theorem 2 [5]. Let G be an affine algebraic k–group over a field k. Let X be a
G–torsor. If X

(

k((t))
)

6= ∅, then X(k) 6= ∅.
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For reductive groups, this statement is due to Bruhat-Tits. The generalization
of that statement over a ring is known for GLn and for tori according to recent
results by Bouthier-Česnavičius [2, 2.1.17, 3.1.7]; we generalize it as well for wound
closed subgroup schemes of SLN and for G commutative under further assumptions
[5, 4.2,4.3]. It is an open question beyond those cases.

Already over a field it is an open question whether the statement does generalize
to homogeneous spaces; this is the case in characteristic 0 according to results by
M. Florence [4].

Finally, if G is split reductive, the coset G(k((t)))/G(k[[t]]) is described by the
k–points of the affine grassmannian QG [8]. This permits to show that an element
g ∈ G(k((t))) \ G(k[[t]]) is of rank zero iff g is of the shape g = g1µ(t)g2 for
g1, g2 ∈ G(k[[t]]) and µ : Gm → G a homomorphism.
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