Remarks on Margaux-Soulé's theorem

P. Gille, May 2009

1 Introduction

Let k be a field and let **G** be a semisimple simply connected absolutely almost simple k-group. The Margaux-Soulé's theorem provides a presentation of the group $\Gamma = \mathbf{G}(k[t])$ by studying its action on the Bruhat-Tits building of $\mathbf{G}_{k((\frac{1}{2}))}$.

For **G** split, this is Soulé's original paper [6] which was generalized by Margaux [5]. Our main remark is to show that Soulé's original theorem has a good behaviour under Galois descent yielding then its generalization.

2 Action of the group G(k[t]) on the Bruhat-Tits building, the statement

Throughout k and **G** will be as above. We adopt the same notations as Margaux paper.

2.1 Notations

Let **S** be a maximal k-split torus of **G**, and **T** be a maximal torus of **G** containing **S**. Recall that \mathbf{S}_K is a maximal K-split torus of \mathbf{G}_K . Let \tilde{k}/k a finite Galois extension which splits **T** (hence also **G**). Set $\mathcal{G} = \operatorname{Gal}(\tilde{k}/k)$ and $\tilde{\mathbf{T}} = \mathbf{T} \times \tilde{k}$.

Let $\widetilde{\mathbf{G}} = \mathbf{G} \underset{k}{\times} \widetilde{k}$ and $\widetilde{\mathbf{S}} = \mathbf{S} \underset{k}{\times} \widetilde{k}$. We choose compatible orderings on the root systems $\Phi = \Phi(\mathbf{G}, \mathbf{S})$ and $\widetilde{\Phi} = \Phi(\widetilde{\mathbf{G}}, \widetilde{\mathbf{T}})$ (see [1]). We then have a set Δ of relative simple roots and a set $\widetilde{\Delta}$ of absolute simple roots.

•
$$A = k[t], K = k((\frac{1}{t}));$$

• ω the valuation defined on K the valuation on K at ∞ , that is, the valuation on K having $\mathcal{O} = k[[\frac{1}{t}]]$ as its ring of integers.

We also have the analogous to the above objects for \tilde{k} , namely

• $\widetilde{A} = \widetilde{k}[t], \ \widetilde{K} = \widetilde{k}((\frac{1}{t})), \ \widetilde{\Gamma} = \mathbf{G}(\widetilde{A}), \ \text{and} \ \widetilde{\mathcal{O}} = \widetilde{k}[[\frac{1}{t}]].$

At the level of buildings :

• \mathcal{T} the (affine) Bruhat-Tits building of the K-group $\mathbf{G}_K := \mathbf{G} \times_k K$ and $\widetilde{\mathcal{T}}$ the Bruhat-Tits building of the \widetilde{K} -group $\mathbf{G}_{\widetilde{K}} := \mathbf{G} \times_k \widetilde{K}$ [3, §4.2].

The building \mathcal{T} is equipped with an action of $\mathbf{G}(K)$ and that $\widetilde{\mathcal{T}}$ is equipped with an action of $\mathbf{G}(\widetilde{K}) \rtimes \mathcal{G}$. There is an isometric embedding $j : \mathcal{T} \to \widetilde{\mathcal{T}}$ which identifies \mathcal{T} with $\widetilde{\mathcal{T}}^{\mathcal{G}}$. The hyperspecial group $\mathbf{G}(\widetilde{O})$ of $\mathbf{G}(\widetilde{K})$ fixes a unique point ϕ of $\widetilde{\mathcal{T}}$ [2, §9.1.9.c]. This point descends to a point ϕ of \mathcal{T} .

We denote by \mathcal{A} the standard apartment of \mathcal{T} associated to \mathbf{S} (this is a real affine space) and similarly by $\widetilde{\mathcal{A}}$ the standard apartment associated to $\widetilde{\mathbf{T}}$. The point $\widetilde{\phi}$ belongs to $\widetilde{\mathcal{A}}$ (*ibid.*). Since $\operatorname{Hom}_{k-gr}(\mathbf{G}_m, \mathbf{S}) \otimes_{\mathbb{Z}} \mathbb{R} \cong \operatorname{Hom}_{k-gr}(\mathbf{G}_m, \mathbf{T}) \otimes_{\mathbb{Z}} \mathbb{R} \cong \left(\operatorname{Hom}_{\widetilde{k}-gr}(\mathbf{G}_{m,\widetilde{k}}, \widetilde{\mathbf{T}}) \otimes_{\mathbb{Z}} \mathbb{R}\right)^{\mathcal{G}}$ [3, §4.2], we have $j(\mathcal{A}) = \widetilde{\mathcal{A}}^{\mathcal{G}}$ so ϕ belongs to \mathcal{A} and

$$\mathcal{A} = \phi + \operatorname{Hom}_{k-gr}(\mathbf{G}_m, \mathbf{S}) \otimes_{\mathbb{Z}} \mathbb{R}$$

By means of the canonical pairing $\langle , \rangle : \operatorname{Hom}_{k-gr}(\mathbf{S}, \mathbf{G}_m) \times \operatorname{Hom}_{k-gr}(\mathbf{S}, \mathbf{G}_m) \to \mathbb{Z}$ we can then define the *sector* (quartier)

$$\mathcal{Q} := \phi + D \text{ where } D := \{ v \in \operatorname{Hom}_{k-gr}(\mathbf{S}, \mathbf{G}_m) \otimes_{\mathbb{Z}} \mathbb{R} \mid \langle b, \lambda \rangle \ge 0 \ \forall \ b \in \Delta \}.$$

We discuss then the

Theorem 2.1. The set Q is a simplicial fundamental domain for the action of $\mathbf{G}(k[t])$ on \mathcal{T} . In other words, any simplex of \mathcal{T} is equivalent under the action of $\mathbf{G}(k[t])$ to a unique simplex of Q.

3 Descent argument

We shall explain why Soulé's theorem (i.e. the split case) implies the general one. The only thing to show is that $\Gamma. \mathcal{Q} = \mathcal{T}$. Let $y \in \mathcal{T}$. By Soulé's theorem applied to $\mathbf{G} \times_k \tilde{k}$, there exist $x \in \tilde{\mathcal{Q}}$ and $h \in \tilde{\Gamma}$ such that

$$y = h.x$$
.

Since such a x is unique, it is invariant under the Galois group \mathcal{G} , hence $x \in \mathcal{Q} = \tilde{\mathcal{Q}}^{\mathcal{G}}$. Denote by $\tilde{\Gamma}_x \subset \tilde{\Gamma}$ the isotropy group of x. The function $\mathcal{G} \to \tilde{\Gamma}_x$, $s \to z_s = h^{-1} s(h)$ is a 1–cocycle. The Galois cohomology class

$$[z_s] \in H^1(\mathcal{G}, \widetilde{\Gamma}_x)$$

is the obstruction to the existence of $h_0 \in \Gamma$ such that $y = h_0.x$. Furthermore, since y and x have same type, they are conjugate under $\mathbf{G}(K)$ and $[z_s]$ maps to the trivial class in $H^1(\mathcal{G}, \mathbf{G}(\widetilde{K}))$. Therefore, it is enough to prove the following

Lemma 3.1. The map

$$H^1(\mathcal{G}, \widetilde{\Gamma}_x) \to H^1(\mathcal{G}, \mathbf{G}(\widetilde{K}))$$

is injective.

Proof. We need here the precise shape¹ of the isotropy group $\tilde{\Gamma}_x$. Define the subset of roots

$$I_x = \left\{ b \in \Delta \mid b(x - \phi) = 0 \right\}.$$

and by $\mathbf{P}_I = \mathbf{U}_I \rtimes \mathbf{L}_I$ the standard *k*-parabolic subgroup of **G**. By [5, prop. 2.5], we have

$$\widetilde{\Gamma}_x = V \rtimes \mathbf{L}_I(\widetilde{k})$$

where V is a certain subgroup of $\mathbf{U}_I(\widetilde{k}[t])$. Since V admits a composition sequence whose quotients are \widetilde{k} -vector spaces, we have an isomorphism

$$H^1(\mathcal{G}, \widetilde{\Gamma}_x) \xrightarrow{\sim} H^1(\mathcal{G}, \mathbf{L}_I(\widetilde{k})).$$

But the map $H^1(\mathcal{G}, \mathbf{L}_I(\widetilde{k})) \to H^1(\mathcal{G}, \mathbf{G}(\widetilde{K}))$ decomposes as

$$H^1(\mathcal{G}, \mathbf{L}_I(\widetilde{k})) \to H^1(\mathcal{G}, \mathbf{L}_I(\widetilde{K})) \cong H^1(\mathcal{G}, \mathbf{P}_I(\widetilde{K})) \to H^1(\mathcal{G}, \mathbf{G}(\widetilde{K})).$$

The last map is injective by Borel-Tits [1, th. 4.13], the first one is injective by Bruhat-Tits [4, cor. 3.15]. Thus $H^1(\mathcal{G}, \mathbf{L}_I(\widetilde{k}))$ injects in $H^1(\mathcal{G}, \mathbf{G}(\widetilde{K}))$ as desired. \Box

Acknowledgements: We thank Gopal Prasad for useful discussions.

¹We could appeal also to [6].

References

- A. Borel and J. Tits, *Groupes réductifs*, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150.
- [2] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. I, Inst. Hautes Etudes Sci. Publ. Math. 41 (1972), 5–251.
- [3] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Inst. Hautes Etudes Sci. Publ. Math. 60 (1984), 197–376.
- [4] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo 34 (1987, 671-698.
- [5] B. Margaux, The structure of the group $\mathbf{G}(k[t])$: Variations on a theme of Soulé, to appear in Algebra and Number Theory.
- [6] C. Soulé, Chevalley groups over polynomial rings, Homological group theory (Proc. Sympos., Durham, 1977), 359–367, London Math. Soc. Lecture Note Ser. 36 (1979), Cambridge Univ. Press.