ERRATA: TORSEURS SUR LA DROITE AFFINE

P. GILLE

Mathématique, UMR 8628 du C.N.R.S, Université Paris-Sud F-91405 Orsay Cedex, France gille@math.u-psud.fr

Abstract. We clarify two points of our proof of Raghunathan–Ramanathan's theorem [G].

La borne dans la proposition suivante était inexacte dans le cas d'une forme extérieure. La preuve était "canulée" pour la raison suivante: cela n'a aucun sens d'additionner des points d'un appartement d'un immeuble affine, c'est un espace affine. Cette légère modification n'affecte pas le reste de l'article.

Proposition 2.3. Soit \mathfrak{G}/O un schéma en groupes semisimples, simplement connexe, tel que \mathfrak{G}_K soit un groupe absolument presque K-simple de type Δ . Notons $\rho_d: H^1(\mathcal{G},\mathfrak{G}(\widetilde{K})) \to H^1(\mathcal{G},\mathfrak{G}(\widetilde{K}_d))$ la restriction induite par l'extension K_d/K . Si $d_1(\Delta).d_2(\Delta).\sharp \operatorname{Aut}(\Delta)$ divise d, alors

$$\rho_d\big(H^1(\mathcal{G},\mathfrak{G}(\widetilde{K}))\big)\subset \mathrm{Im}\big(H^1(\mathcal{G},\mathfrak{G}(\widetilde{O}_d))\to H^1(\mathcal{G},\mathfrak{G}(\widetilde{K}_d))\big).$$

Il est commode d'isoler le fait suivant.

Lemme 2.3'. Les notations sont celles de la proposition. Soit \widetilde{A} un appartement de l'immeuble $\widetilde{I} = \mathcal{I}(\mathfrak{G}_{\widetilde{K}})$. Soient x_1, \ldots, x_n des points de \widetilde{A} de type 0. Alors le point

$$\rho_n(\text{Barycentre}(x_1,\ldots,x_n))$$

est un point de type 0 de l'immeuble $\widetilde{\mathcal{I}}_n = \mathcal{I}(\mathfrak{G}_{\widetilde{K}_n})$.

 $D\acute{e}monstration$. Soit T/\widetilde{O} le \widetilde{O} -tore déployé maximal de \mathfrak{G} défini par l'appartement \widetilde{A} . On dispose du diagramme commutatif (*) page 231 de la Section 2.2,

$$\begin{array}{cccc} \widetilde{\mathcal{A}} & \longrightarrow & \widetilde{\mathcal{A}}_n \\ & & & & & \uparrow : \\ \widehat{T}^0 \otimes_{\mathbb{Z}} \mathbb{R} & \xrightarrow{\times n} & \widehat{T}^0 \otimes_{\mathbb{Z}} \mathbb{R}, \end{array}$$

DOI: 10.1007/s00031-005-1010-z Received April 23, 2005. 268 P. GILLE

où $\widetilde{\mathcal{A}}_n$ désigne l'appartement de $\widetilde{\mathcal{I}}_n$ associé au tore $T \times_{\widetilde{O}} \widetilde{O}_n$. Les points de $\widetilde{\mathcal{A}}$ de type 0 forment le réseau \widehat{T}^0 de $\widetilde{\mathcal{A}}$. Pour des sommets $x_1, \ldots, x_n \in \widehat{T}^0$, on a donc

$$\rho_n(\text{Barycentre}(x_1,\ldots,x_n)) = x_1 + \ldots + x_n \in \widehat{T}^0 \subset \widetilde{A}_n.$$

Ce point est donc un sommet de type 0 de $\widetilde{\mathcal{I}}_n$. \square

Démonstration de la proposition. On pose $d_1=d_1(\Delta),\ d_2=d_2(\Delta),\ d_3=\sharp \operatorname{Aut}(\Delta).$ On peut supposer que $d=d_1d_2d_3$. Rappelons tout d'abord que le schéma en groupes $\mathfrak{G}\times_O\widetilde{O}$ est déployé, et ainsi le groupe $\mathfrak{G}_{\widetilde{K}}$ est déployé. Soit $\gamma=[z]\in H^1(\mathcal{G},\mathfrak{G}(\widetilde{K})).$ On considère l'immeuble de Bruhat-Tits $\widetilde{\mathcal{I}}$ (resp. $\widetilde{\mathcal{I}}_d$) du groupe $\mathfrak{G}_{\widetilde{K}}$ (resp. $\widetilde{\mathcal{I}}_d$) et la restriction naturelle $\rho_d:\widetilde{\mathcal{I}}\to\widetilde{\mathcal{I}}_d$. Ces deux immeubles sont munis de l'action de \mathcal{G} , notée $x\mapsto {}^sx$ $(s\in\mathcal{G})$. Le cocycle z induit sur $\widetilde{\mathcal{I}}$ et $\widetilde{\mathcal{I}}_d$ une action tordue définie par

$$x \to z_s$$
. $^s x (s \in \mathcal{G}),$

compatible au morphisme ρ_d . D'après le théorème de point fixe de Bruhat-Tits ([BrT1, §3.2]), il existe un point x de $\widetilde{\mathcal{I}}$ fixe par \mathcal{G} pour l'action tordue. Le groupe \mathcal{G} stabilise la facette F_x de $\widetilde{\mathcal{I}}$. Si \mathfrak{G}/O est une forme intérieure, tous les sommets de F_x sont fixes sous \mathcal{G} et la preuve originale fonctionne avec la borne d_1d_2 . Dans le cas général, on doit tenir compte de la *-action de \mathcal{G} sur Δ . On note x_1, x_2, \ldots, x_n les sommets de F_x , ils sont permutés par \mathcal{G} (pour l'action tordue) et appartiennent à un même appartement $\widetilde{\mathcal{A}}$ de \widetilde{I} . Quitte à considèrer une sous-facette de F_x , il est loisible de supposer que \mathcal{G} agit transitivement sur les x_i . On a $n = \operatorname{Aut}(\Delta)/\operatorname{Aut}(\Delta)_{x_1}$, donc n divise d_3 . L'appartement $\widetilde{\mathcal{A}}$ est un espace affine, on peut former le barycentre $x := \operatorname{Barycentre}(x_1, \ldots, x_n)$. Alors x est un point fixe pour l'action tordue de \mathcal{G} . Le lemme 2.2 montre que les sommets $\rho_{d_1d_2}(x_i)$ sont des sommets de type 0 de $\widetilde{\mathcal{I}}_{d_1d_2}$ appartenant à l'appartement $\rho_{d_1d_2}(\widetilde{\mathcal{A}})$. Le Lemme 2.3' appliqué à $\mathfrak{G}_{O_{d_1d_2}}$ montre que $\rho_d(x) = \rho_{d_3}(\rho_{d_1d_2}(x))$ est un sommet de type 0. En d'autres mots, le point $y := \rho_d(x)$ est un sommet de type 0 de $\widetilde{\mathcal{I}}_d$ invariant par \mathcal{G} . Le reste de la preuve est inchangé. Il existe $g \in \mathfrak{G}(K_d)$ tel que $y = g.c_{\widetilde{\mathcal{I}}_d}$. On a $z_s.^s y = y$ pour tout $s \in \mathcal{G}$, donc si $z_s' = g^{-1}z_s{}^s g$, vu que ${}^s c_{\widetilde{\mathcal{I}}_d} = c_{\widetilde{\mathcal{I}}_d}$, on obtient

$$z'_s.c_{\widetilde{\mathcal{I}}_d} = c_{\widetilde{\mathcal{I}}_d} \ (s \in \mathcal{G}).$$

Par suite $z'_s \in \operatorname{Stab}_{\mathfrak{G}(\widetilde{K}_d)}(c_{\widetilde{\mathcal{I}}_d}) = \mathfrak{G}(\widetilde{O}_d)$ pour tout $s \in \mathcal{G}$. Il résulte que $\rho_d([z]) = [z'] \in \operatorname{Im}(H^1(\mathcal{G},\mathfrak{G}(\widetilde{O}_d)) \to H^1(\mathcal{G},\mathfrak{G}(\widetilde{K}_d)))$. \square

L'occasion nous est donnée de justifier aussi un point de la démonstration du lemme suivant.

 $\textbf{Lemme 3.12. } Soit \ \gamma \in H^1(\mathbb{P}^1_k,G) \ tel \ que \ ev_{\infty}(\gamma)=1. \ Alors \ \gamma_{/\mathbb{A}^1_k}=1 \ et \ \gamma_{/\mathbb{P}^1_k\setminus\{0\}}=1.$

Démonstration. Soit E/\mathbb{P}^1_k un G-torseur représentant la classe γ . On considère la fibre générique $\gamma_{\eta} = \in H^1(k(t), G)$. Si γ_{η} est anisotrope, le Théorème 3.7 montre que $\gamma = 1$ et on a fini. On peut donc supposer la classe γ_{η} isotrope. Soit I le type d'un sous-groupe parabolique minimal de $E(G)_{k(t)}$. Nous affirmons que G admet un sous-groupe parabolique de type I. En effet, soit X_I/k la variété des k-sous-groupes paraboliques de type I ([SGA3, XXVI.3]). Alors $E(X_I)/\mathbf{P}^1_k$ est le schéma des \mathbf{P}^1_k -sous-schémas en

groupes paraboliques de type I du groupe E(G). Celui-ci admet un k(t)-point est le critère valuatif de propreté montre que $E(X_I)(\mathbf{P}_k^1) \neq \emptyset$. Mais la fibre de E à l'infini est triviale, donc $X_I(k) \neq \emptyset$ par spécialisation. Le reste de la preuve est inchangé. Il existe donc un k-sous-groupe parabolique $j: Q/k = Z_G(S_0).R_uQ \subset G/k$ (avec $S_0 \subset S$) tel que $\gamma_{\eta} = j_*(\beta) \in \text{Im}(H^1(k(t),Q)_{an} \to H^1(k(t),G))$. Alors E admet une réduction à Q, i.e., il existe un torseur F sous Q tel que $j_*F \xrightarrow{\sim} E$ et dont la classe de la fibre est β . Or l'application $G(k) \to (G/Q)(k)$ est surjective ([BoT, Th. 4.13.a]), d'où l'application $H^1(k,Q) \to H^1(k,G)$ un noyau trivial et on a donc $ev_{\infty}(\beta) = 1$.

On considère les projections $\pi:Q\to Q_{red}\approx Z_G(S_0)$ et $p:Z_G(S_0)\to Z_G(S_0)/S_0$. Alors $p_*\pi_*F$ est un \mathbb{P}^1_k -torseur sous le groupe semisimple $Z_G(S_0)/S_0$, dont la fibre à l'infini triviale et dont la fibre générique est anisotrope. Le Théorème 3.6 montre donc que $p_*\pi_*F$ est isomorphe au torseur trivial. Il résulte que $[\pi_*F]$ provient de $H^1(\mathbb{P}^1,S)$. Ceci montre que $\pi_*F_{/\mathbb{A}^1_k}$ est trivial. Comme $H^1(\mathbb{A}^1_k,R_uQ)=1$, le torseur $F_{/\mathbb{A}^1_k}$ (et a fortiori $E_{/\mathbb{A}^1_k}$) est trivial. De même, on voit que $E_{/\mathbb{P}^1_k\setminus\{0\}}=1$. \square

Remerciements. Je remercie vivement Vladimir Chernousov de m'avoir signalé ces précisions sur l'article.

Références

- [BoT] A. Borel, J. Tits, Groupes réductifs, Pub. Math. IHES 27 (1965), 55–152.
- [BrT1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local I, Publ. Math. IHES 41 (1972), 13–234.
- [G] P. Gille, Torseurs sur la droite affine, Transform. Groups 7 (2002), 231–245.
- [SGA3] Séminaire de Géométrie algébrique de l'I.H.E.S., 1963–1964, Schémas en groupes, dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math. **151–153**, Springer-Verlag, Berlin, New York (1970).