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1 Introduction

Serre’s original conjecture II (1962) states that the Galois cohomology set H1(k,G)
vanishes for a semisimple simply connected algebraic group G defined over a perfect
field of cohomological dimension ≤ 2 [53, §4.1] [54, II.3.1]. This means that G-
torsors (or principal homogeneous spaces) over Spec(k) are trivial.

For example, if A is a central simple algebra defined over a field k and c ∈ k×,
the subvariety

Xc := {nrd(y) = c} ⊂GL1(A)

of elements of reduced norm c is a torsor under the special linear group G = SL1(A)
which is semisimple and simply connected. If cd(k) ≤ 2, we thus expect that this
G-torsor is trivial, i.e., Xc(k) �= /0. Applying this to all c ∈ k×, we thus expect that
the reduced norm map A× → k× is surjective.

For imaginary number fields, the surjectivity of reduced norms goes back to Eich-
ler in 1938 (see [40, §5.4]). For function fields of complex surfaces, this follows
from the Tsen-Lang theorem because the reduced norm is a homogeneous form of
degree deg(A) in deg(A)2-indeterminates [54, II.4.5]. In the general case, the surjec-
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tivity of reduced norms is due to Merkurjev-Suslin in 1981 [60, Th. 24.8], and this
fact essentially characterizes fields of cohomological dimension ≤ 2 (see below).

One can discuss the conjecture with respect to the group classification or with
respect to fields. With respect to groups, the main evidence for the conjecture is
provided by classical groups, for which the result was established by Bayer-Parimala
(1995, [4]). With respect to fields, evidence for the conjecture was provided by
imaginary number fields (Kneser [40], Harder [36], Chernousov [9], see [51, §6])
and more recently by function fields of complex surfaces. Over the latter fields, the
result for exceptional groups with no factors of type E8 was pointed out in 2002 in
the paper [15] by Colliot-Thélène-Gille-Parimala. It was completed in 2008 for all
types by He-de Jong-Starr [38], who used deformation methods. This result has a
clear geometric meaning: If G/C is a semisimple simply connected group and X
a smooth complex surface, then a G-torsor over X (or a G-bundle) is locally trivial
with respect to the Zariski topology (see §6.6).

There are previous surveys on Galois cohomology discussing this topic. Tits’
lectures at Collège de France in 1990-91 discuss the Hasse principle and group
classification [64]. Serre’s Bourbaki seminar [55] deals among other things with
progress on the conjecture up to 1994, see also Bayer’s survey on classical groups
[2]. For function fields of surfaces, see the surveys by Starr [59] and by Lieblich
[42].

For exceptional groups (trialitarian, type E6, E7 and E8), the general conjecture
is still open despite some progress [11][15][17][29].

We take this opportunity to point out that Serre’s conjecture has some analogy
with topology. Indeed, if G is a semisimple simply connected complex group,
we know that π1(G) = π2(G) = 0, hence G is 2-connected. Then for every CW -
complex of dimension ≤ 2, the G-bundles over X are trivial (cf. [61, Th. 11.34]).

2 Fields of cohomological dimension ≤ 2

Let k be a field and l be a prime. Recall that k is of l-cohomological dimension
cdl(k) ≤ d if Hi(k,A) = 0 for every finite l-primary Galois module A and for all
i ≥ d + 1. We know that it is equivalent to the vanishing of Hd+1(L,Z/lZ) for any
finite separable extension L/k.

Examples 2.1. Recall the following examples of fields of cohomological dimension
2.

(1) Imaginary number fields;
(2) Function fields of complex surfaces;
(3) Merkurjev’s tower of fields F∞, namely an extension of C(X1, ...,X2n) such that

the u-invariant is u(F∞) = 2n. Every (2n + 1)-dimensional quadratic form over
F∞ is isotropic, but the form �X1,X2, · · ·X2n� remains anisotropic over F∞. Fur-
thermore the tensor product of the quaternion algebras (X2i−1,X2i) for i = 1, ...,n
is a division algebra over F∞ [45], [46, Th. 3].
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The third example shows that central simple algebras and quadratic forms are not
in general low dimensional objects. We already mentioned the following character-
ization which uses Merkurjev-Suslin’s theorem [48].

Theorem 2.2. [60, Th. 24.8] Let l be an invertible prime in k. The following are
equivalent:

1. cdl(k)≤ 2.
2. For any finite separable extension L/k and any l-primary central simple L-

algebra A/L, the reduced norm nrd : A× → L× is surjective.
3. For any finite extension L/k and any l-primary central simple L-algebra A/L, the

reduced norm nrd : A× → L× is surjective.

We added here the easy implication 2) =⇒ 3) which follows from the usual
transfer argument. We say that k is of cohomological dimension ≤ d if k is of l-
cohomological dimension cdl(k)≤ d for all primes l.

If k is of positive characteristic p, we always have cdp(k) ≤ 1; this explains the
necessary change in the following analogous statement.

Theorem 2.3. [28, Th. 7] Assume that char(k) = p > 0. The following are equiva-
lent:

1. H3
p(L) = 0 for any finite separable extension L/k;

2. For any finite separable extension L/k and any l-primary central simple L-
algebra A/L, the reduced norm nrd : A× → L× is surjective.

Here H3
p(k) is Kato’s cohomology group, defined by means of logarithmic dif-

ferential forms [39], see [33, §9]. We shall say that k is of separable p-dimension
≤ d if Hd+1

p (L) = 0 for all finite separable extension L/k, this defines the separa-
ble dimension sdp(k) of k. For l �= p, we let1 sdl(k) = cdl(k). If k is perfect, then
Hi

p(L) = 0 for every finite extension L/k and for every i ≥ 2. Hence if k is perfect
and of cohomological dimension ≤ 2, k is of separable dimension ≤ 2.

Examples 2.4.

(1) The function field of a curve over a finite field is of separable dimension 2.
(2) The function field k0(S) of a surface over an algebraically closed field k0 of char-

acteristic p≥ 0 is of separable dimension 2.
(3) Given an arbitrary field F , Theorems 2.2 and 2.3 provide a way to construct a

“generic” field extension E/F of separable dimension 2, see Ducros [19].

We can now state the strong form of Serre’s conjecture II. For each simply con-
nected group G, Serre defined the set S(G) of primes in terms of the Cartan-Killing
type of G, cf. [55, §2.2]. For absolutely almost simple groups, the primes are listed
in Table 1.

1 Kato defined the p-dimension dimp(k) as follows [39]. If [k : kp] = ∞, define dimp(k) = ∞. If
[k : kp] = pr < ∞, dimp(k) = r if Hr+1

p (L) = 0 for any finite extension L/k, and dimp(k) = r + 1
otherwise.
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type S(G)
An (n≥ 1) 2 and the prime divisors of n+1

Bn (n≥ 3), Cn (n≥ 2), Dn (non-trialitarian for n = 4) 2
G2 2

trialitarian D4,F4,E6,E7 2, 3
E8 2, 3, 5

Table 1 S(G) for absolutely almost simple groups

Conjecture 2.5. Let G be a semisimple and simply connected algebraic group. If
sdl(k)≤ 2 for every prime l ∈ S(G), then H1(k,G) = 0.

In the original conjecture, k was assumed perfect and of cohomological dimen-
sion ≤ 2. In characteristic p > 0, Serre’s strengthened question furthermore as-
sumed that [k : kp]≤ p2 if p belongs to S(G) [55, §5.5]. Known results do not seem
to indicate that this restriction is necessary.

So Conjecture 2.5 is indeed stronger than the original one. Theorems 2.2 and 2.3
show that the conjecture holds for groups of inner type A and that the hypothesis on
k is sharp.

3 Link between the conjecture and the classification of groups

The classification of semisimple groups essentially reduces to that of semisimple
simply connected groups G which are absolutely almost simple [41, §31.5][62].
This means that G×k ks is isomorphic to SLn,ks , Spin2n+1,ks , Sp2n,ks , Spin2n,ks ,...

Let G/k be such a k-group and let G→Gad be the adjoint quotient of G. Denote
by Gq its quasi-split form and by Gq

ad its adjoint quotient. Then G is an inner twist
of Gq, i.e., there exists a cocycle z ∈ Z1(ks/k,Gq

ad(ks)) such that G∼= zGq. We then
identify G and zGq.

The other way around, we know that there exists a unique class νG = [a] ∈
H1(k,Gad) such that Gq ∼= aG [41, 31.6]. We denote by zop ∈ Z1(k, zG

q
ad) the oppo-

site cocycle of z, it is defined by σ �→ z−1
σ ∈ zG(ks).

We have Gq ∼= zop
�

zGq�. Hence the image of νG under H1(k,Gad)
∼−→H1(k, zGq

ad)
is nothing but [zop]. We have an exact sequence

1→ Z(G)→ G→ Gad → 1

of k-algebraic groups with respect to the f pp f -topology (faithfully flat of finite
presentation, see [18, III] or [57]). This gives rise to an exact sequence of pointed
sets [5, app. B]

1→ Z(G)(k)→ G(k)→ Gad(k)
ϕG−→H1

f pp f (k,Z(G))→

→ H1
f pp f (k,G)→ H1

f pp f (k,Gad)
δG−→ H2

f pp f (k,Z(G)). (3.1)
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The homomorphism ϕG is called the characteristic map and the mapping δG is
the boundary. Since G (resp. Gad) is smooth, the f pp f -cohomology of G (resp.
Gad) coincides with Galois cohomology [56, XXIV.8], i.e., we have a bijection
H1(k,G) ∼−→H1

f pp f (k,G). Following [41, 31.6], one defines the Tits class of G by
the following formula

tG = −δG
�
νG

�
∈ H2

f pp f (k,Z(G)).

By the compatibility property2 under the torsion bijection τz [34, IV.4.2]

H1(k,Gad)
δG−−−−→ H2

f pp f (k,Z(G))

τz

�� ?+δGq ([z])
��

H1(k,Gq
ad)

δGad−−−−→ H2
f pp f (k,Z(Gq)),

we see that tG = δGq([z]) which is indeed Tits’ definition [64, §1].

Proposition 3.2. Assume that H1(k,G) = 1.

(1) The boundary map H1(k,Gad)→ H2
f pp f (k,Z(G)) has trivial kernel.

(2) Let G� be an inner k-form of Gq. Then G and G� are isomorphic if and only if
tG = tG� .

Proof. (1) follows from the exact sequence (3.1). For (2), let z� ∈ Z1(k,Gq
ad) be a

cocycle such that G� ∼= z�G. We assume that tG = tG� . Hence δGq([z]) = δGq([z�]) ∈
H2

f pp f (k,Z(Gq)). The compatibility above shows that

τ−1
z ([z�]) ∈ ker

�
H1(k,Gad)

�
→ H2

f pp f (k,Z(G))
�
.

By 1), we have τ−1
z ([z�]) = [1] ∈ H1(k,Gad), hence [z] = [z�] ∈ H1(k,Gad). Thus G

and G� are k-isomorphic. ��

In conclusion, Serre’s conjecture II implies that semisimple k-groups are classi-
fied by their quasi-split forms and their Tits classes. For more precise results for
classical groups, see Tignol-Lewis [43]. The classification is of special importance
in view of the rationality question for groups (Chernousov-Platonov [13], see also
Merkurjev [47]) and then also for the Kneser-Tits problem (Gille [32]).

4 Approaches to the conjecture

We would like to describe a few ways to attack the conjecture, and their limitations.
This is somehow artificial because in practice we work with all tools.

2 Note that Z(G) = Z(Gq) since Gq
ad acts trivially on Z(Gq).
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4.1 Subgroup trick

Let us explain it within the following example due to Tits [65]. Let G/k be the split
semisimple simply connected group of type

E6 � � � � �
�

α1 α3 α4 α5 α6

α2

Assume that k is infinite. Let z ∈ Z1(ks/k,G) and consider the twisted group G� =
zG. Since tG� = 0, the 27-dimensional standard representation of G of highest weight
ω6 descends to G� by [63]. We then have a representation ρ � : G� → GL(V ). The
point is that G� has a dense orbit in the projective space X = P(V ), so there exists a
k-rational point [x] in that orbit. The connected stabilizer (G�

x)0 is then semisimple
of type F4 [22, 9.12]. Assuming that Conjecture 2.5 holds for groups of type F4,
it follows that (G�

x)0 is split. Hence G� has relative rank ≥ 4 and a glance at Tits’
tables [62] tells us that G� is split. It is then easy to conclude that [z] = 1∈H1(k,G).

The subgroup trick (and variants) was fully investigated by Garibaldi in his Lens
lectures [22]. The underlying topic is that of prehomogeneous spaces, namely pro-
jective G-varieties with a dense orbit.

Unfortunately, this trick works only in few cases. Tits has shown that the gen-
eral form of type E8 is “almost abelian” namely has no non trivial other reductive
subgroups than maximal tori [65]. Together with Garibaldi, we have shown that the
general trialitarian group is almost abelian [23].

4.2 Rost invariant

In this case, the idea is to derive Serre’s conjecture II from a more general set-
ting. The Rost invariant [25] generalizes the Arason invariant for 3-fold Pfister form
which (in characteristic �= 2) attaches to a Pfister form φ = ��a,b,c�� the cup-product
e3(φ) = (a)∪ (b)∪ (c) ∈ H3(k,Z/2Z). We now see it as the cohomological invari-
ant H1(k,Spin8) → H3(k,Z/2Z(2)). More generally, for G/k simply connected
and absolutely almost simple, there is a cohomological invariant

rk : H1(k,G)→ H3(k,Q/ZZ(2))

where the p-primary part has to be understood in Kato’s setting [25]. If this invariant
has trivial kernel, then H1(k,G) = 1 for G/k satisfying the hypothesis of Conjecture
2.5. This is the case for Spin8 by Arason’s theorem, namely the invariant e3(φ)
determines φ .
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4.3 Serre’s injectivity question

A special case of a question raised by Serre in 1962 ([53], see also [55, §2.4]), is the
following.

Question 4.1. Let G/k be a connected linear algebraic group. Let (ki)i=1,..,r be a
family of finite field extensions of k such that g.c.d.([ki : k]) = 1. Is the kernel of the
map

H1(k,G)→ ∏
i=1,..,r

H1(ki,G)

trivial ?

Remarks.

(1) The hypothesis of connectedness is necessary since there are counterexamples
with finite constant groups [35][50].

(2) The question was generalized by Totaro [66, question 0.2], see also [24].
(3) If k is of positive characteristic p, there exists a complete DVR R with residue

field k and field of fractions K = Frac(R) of characteristic zero, and an R-group
scheme G with special fiber G. An answer for GK to Serre’s question yields an
answer for G. A fortiori and without lost of generality we can assume that the
extensions ki/k are separable.

We shall rephrase the question in terms of “special fields”.

Definition 4.2. Let l be a prime. We say that a field k is l-special if every finite
separable extension of k is of degree a power of l.

The subfield kl of k consisting of elements fixed by a p-Sylow subgroup of
G al(ks/k) is l-special. We call kl a co-l-closure of k. If we restrict Serre’s ques-
tion to finite separable extensions ki/k and consider all cases, it can be rephrased by
asking whether the map

H1(k,G)→∏
l

H1(kl ,G)

has trivial kernel for l running over all primes. If the answer to this question is yes,
then Conjecture II becomes a question for l-special fields for primes l in S(G).

Here are the few cases where a positive answer to Serre’s question is known:
unitary groups (Bayer-Lenstra [3]), groups of type G2, quasi-split groups of type
D4, F4, E6, E7 [27] [11] [21].

If we know that the Rost invariant has zero kernel, then we easily deduce that the
answer to Question 4.1 is yes. Thus we can answer Serre’s question for groups of
type G2, and quasi-split semisimple simply connected groups of type D4, F4, E6 and
E7.
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5 Known cases in terms of groups

5.1 Classical groups

Recall that a semisimple simply connected group is called classical if its factors are
of type A, B, C or D, and there is no triality involved.

Theorem 5.1. Let G be an absolutely almost simple and simply connected classical
group over a field k as in Conjecture 2.5. Then H1(k,G) = 1.

If k is perfect or char(k) �= 2, this is the original Serre’s conjecture II proven
by Bayer-Parimala [4]. The general case is a recent work by Berhuy-Frings-Tignol
[5]. Its proof is based on Weil’s presentation of classical groups in terms of uni-
tary groups of algebras with involutions [67]. This proof is characteristic free; in
particular, it provides a quite different proof of Bayer-Parimala’s theorem.

Possibly the trickiest case is that of outer groups of type A, namely unitary groups
of central simple algebras equipped with an involution of the second kind. The proof
in the number field case (which uses Landherr’s Theorem) is already difficult, see
[40, §5.5].

5.2 Quasi-split exceptional groups

For such groups, the best approach is by investigating the Rost invariant.

Theorem 5.2. Let G/k be a quasi-split semisimple simply connected group of
Cartan-Killing type G2, F4, D4, E6 or E7. Then the Rost invariant H1(k,G) →
H3(k,Q/Z(2)) has trivial kernel.

Here the field k is arbitrary, but proving the theorem boils down to the charac-
teristic zero case by a lifting argument [28]. For the cases G2, F4, see [4] or [55].
As pointed out by Garibaldi, the D4 case is done in The Book of Involutions but not
stated in that shape. We need to know that a trialitarian algebra whose underlying
algebra is split arises as the endomorphism of a twisted composition [41, 44.16] and
to use results on degree 3 invariants of twisted compositions (ibid., 40.16). For type
E6 and E7, this is due independently to Chernousov [11] and Garibaldi [21].

Thus Conjecture 2.5 holds for quasi-split groups of all types except E8; we have
an independent proof which is quite different since it is based on Bruhat-Tits theory
[29]. For the split group of type E8 denoted by E8, the Rost invariant in general has
a nontrivial kernel [31, appendix]. In characteristic 0, Semenov recently constructed
a higher invariant

ker
�
H1(k,E8)→ H3(k,Q/Z(2))

�
→ H5(k,Z/2Z)

which is nontrivial since it is so already over the reals [58, §8]. Semenov’s invariant
has trivial kernel for 2-special fields.
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By means of norm group of varieties of Borel subgroups, the case of quasi-split
groups is the input for proving the following.

Theorem 5.3. [29, Th. 6] Let G/k be a semisimple simply connected group which
satisfies the hypothesis of Conjecture 2.5. Let µ ⊂ G be a finite central subgroup of
G. Then the characteristic map

(G/µ)(k)→ H1
f pp f (k,µ)

is surjective.

Flat cohomology (see [57], [5, app. B] or [34]) is the right object if the order of µ
is not invertible in k, it coincides with Galois cohomology if this order is invertible.
By continuing the exact sequence of pointed sets

1→ µ(k)→ G(k)→ (G/µ)(k)→ H1
f pp f (k,µ)→ H1

f pp f (k,G),

we see that H1
f pp f (k,µ)→H1

f pp f (k,G) is the trivial map. In other words, the center
of G does not contribute to H1(k,G). [The reason why we can avoid the type E8 is
that such groups have trivial center.]

5.3 Other exceptional groups

Theorem 5.4. [11] [29] Let G/k be a semisimple group satisfying the hypothesis of
Conjecture 2.5. Then H1(k,G) = 1 in the following cases:

1. G is trialitarian and its Allen algebra is of index ≤ 2.
2. G is of quasi-split type 1E6 or 2E6 and its Tits algebra is of index ≤ 3.
3. G is of type E7 and its Tits algebra is of index ≤ 4.

Furthermore those groups are quasi-split or isotropic respectively of Tits indexes

✓
✒� ���✐ ✞✝✐ ✐ ����� �α2 α4 α3

α1

α6α5

a) � � � � � �
�

✐ ✐ ✐ ✐
α7 α6 α5 α4 α3 α1

α2

b) � � � � � �
�

✐
α7 α6 α5 α4 α3 α1

α2

where case a) (resp. b)) is that of Tits algebra of index 2 (resp. 4). One more
reason why other exceptional groups are not easy to work with is because they are
anisotropic.
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Corollary 5.5. [15] Let G/k as in Theorem 5.4. For every separable finite field
extension L/k, assume that every central simple L-algebras of period 2 (resp. 3) is
of index≤ 2 (resp. 3). If G is trialitarian or of type E7 (resp. E6), then H1(k,G) = 1.

This is the case for function fields of surfaces as pointed out by Artin [1], thus
Corollary 5.5 holds for these fields. In the paper [15] with Colliot-Thélène and
Parimala, we exploited Serre’s conjecture II for the study of arithmetic properties
in this framework by proceeding with analogies with Sansuc’s paper [52] in the
number field case. On this topic, see also the paper by Borovoi and Kunyavskiı̌ [7].

6 Known cases in terms of fields

6.1 l-special fields

(a) If l = 2,3,5 and k is an l-special field of separable dimension ≤ 2, Conjecture
2.5 holds for the split group of type E8, see [10] for l = 5 and [29, §III.2].

(b) If l = 3 and k is an l-special field of characteristic �= 2 and separable dimension
≤ 2, then Conjecture 2.5 holds for trialitarian groups. For l = 3, this follows
from Theorem 5.2.

In both cases, a positive answer to Serre’s injectivity question would provide
Conjecture 2.5 for those groups.

6.2 Complete valued fields

Let K be a henselian valued field for a discrete valuation with perfect residue field
κ . A consequence of the Bruhat-Tits decomposition for Galois cohomology over
complete fields is the following.

Theorem 6.1. (Bruhat-Tits [8, cor. 3.15]) Assume that κ is of cohomological dimen-
sion ≤ 1. Let G/K be a simply connected semisimple group. Then H1(K,G) = 1.

Note that the hypotheses imply that K is of separable dimension≤ 2. Serre asked
whether it can be generalized when assuming [κ : κ p]≤ p [55, 5.1]. The hypothesis
[κ : κ p] ≤ p alone is not enough here because K = Fp((x))((y)) is of separable
dimension 3 and is complete with residue field Fp((x)).

But if κ is separably closed and [κ : κ p]≤ p, then K is of separable dimension 1
and enough cases of the vanishing of H1(κ((x)),G) have been established in view
of the proof of Tits conjectures on unipotent subgroups [30]. The general case is
still open.
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Note also that the conjecture is proven for fraction fields of henselian two dimen-
sional local rings (e.g. C[[x,y]]) with algebraically closed residue field of character-
istic zero [15]. For the E8 case, a key point is that the derived group of the absolute
Galois group is of cohomological dimension 1 [17, Th. 2.2].

6.3 Global fields

The number field case is due to Kneser for classical groups [40], Harder for excep-
tional groups except the type E8 [36, I, II], and Chernousov for the type E8 [9], see
[51]. The function field case is due to Harder [36, III].

6.4 Function fields

He, de Jong and Starr have proven Conjecture 2.5 for split groups over function
fields in a uniform way and in arbitrary characteristic.

Theorem 6.2. [38, cor. 1.5] Let k be an algebraically closed field and let K be the
function field of a quasi-projective smooth surface S. Let G be a split semisimple
simply connected group over k. Then H1(K,G) = 1.

For cases other than E8, the conjecture had been establised by case by case con-
siderations [15]. Hence Conjecture 2.5 is fully proven for function fields of surfaces.
The proof of Theorem 6.2 is based on the existence of sections for fibrations in ra-
tionally simply connected varieties.

Theorem 6.3. [38, Th. 1.4] Let S/k as in Theorem 6.2. Let X/S be a projective
morphism whose geometric generic fiber is a twisted flag variety. Assume that
Pic(X)→ Pic(X ×K K) is surjective. Then X → S has a rational section.

The assumption on the Picard group means that there is no “Brauer obstruction”.
By application to higher Severi-Brauer schemes, this statement yields as corollary
de Jong’s theorem “period=index” [37] for central simple algebras over such fields;
see also [14].

It is the first classification-free item in this survey.

6.5 Why Theorem 6.3 implies Theorem 6.2

We take the opportunity to reproduce here our argument.

Lemma 6.4. Let G/F be a semisimple simply connected group over a field F. Let
E/F be a G-torsor.
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(1) Pic(E) = 0 and we have an exact sequence

0→ Br(F)→ Br(E)→ Br(E×F Fs).

(2) Let P be an F-parabolic subgroup of G and let E/P be the variety of parabolic
subgroups of the twisted F-group E(G) of the same type as P. Then we have an
exact sequence

0→ Br(F)→ Br(E/P)→ Br(E/P×F Fs)

and an isomorphism Pic(E/P) ∼−→Pic(E/P×F Fs)G al(Fs/F).

Proof. (1): We have H1(F,(Fs)×) = 0 and Pic(E×F Fs)∼= Pic(G×F Fs) = 0 since G
is simply connected [20]. The first terms of the Hochschild-Serre spectral sequence
H p(G al(Fs/F),Hq(E×F Fs,Gm)) =⇒H p+q(E,Gm) show that Pic(E) = 0 and that
the sequence 0→ Br(F)→ Br(E)→ Br(E×F Fs) is exact.

(2): The morphism E → E/P (i.e., the twist of G → G/P by the torsor E) gives
rise to a map Br(E/P) → Br(E). We claim that this map is injective. Since the
generic fiber of E → E/P is isomorphic to P×F F(E/P), the map Br(F(E/P))→
Br(F(E)) is an injection by the specialization trick [33, lem. 5.4.6]. But Br(E/P)
injects in Br(F(E/P)), hence the claim. We look at the commutative diagram

0
�

0 −−−−→ Br(F) −−−−→ Br(E/P) −−−−→ Br(E/P×F Fs)

||
�

�

0 −−−−→ Br(F) −−−−→ Br(E) −−−−→ Br(E×F Fs).

Since the bottom sequence is exact, we get by diagram chasing that the up-
per horizontal sequence is exact as well. The second isomorphism Pic(E/P) ∼−→
Pic(E/P×F Fs)G al(Fs/F) comes from the Hochschild-Serre spectral sequence. ��

For complete results on Picard and Brauer groups of twisted flag varieties, see
Merkurjev-Tignol [49, §2].

Proposition 6.5. [38, Th. 1.4] Let S/k be as in Theorem 6.2. Let G/K be a semisim-
ple simply connected K-group which is an inner form and let P be a K-parabolic
subgroup of G. Then the map H1(K,P)→ H1(K,G) is bijective.

Proposition 6.5 implies Theorem 6.2 by taking a Borel subgroup of G because
H1(K,B) = 1.

Proof. Injectivity is a general fact due to Borel-Tits ([6], théorème 4.13.a). Let E/K
be a G-torsor of class [E] ∈ H1(K,G). After shrinking S, we can assume that G/K
extends to a semisimple group scheme G/S, P/K extends to an S-parabolic sub-
group scheme P/S and that E/K extends to a G-torsor E/S [44]. By étale descent,
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we can twist the S-group scheme G/S by inner automorphisms, namely define the
S-group scheme E(G)/S. We then define V/S := E/P, i.e., the scheme of parabolic
subgroup schemes of E(G)/S ([56], exp. XXVI) of the same type as P. The mor-
phism π : V → X is projective, smooth and has geometrically integral fibers. Set
V = V×S K; this is a generalized twisted flag variety. Since G is assumed to be an
inner form, Pic(V ×K Ks) is a trivial G al(Ks/K)-module. By Lemma 6.4.2, the map

Pic(V )→ Pic(V ×K Ks)

is onto. Thus the composite map Pic(V)→ Pic(V )→ Pic(V ×K Ks) is onto. Theo-
rem 6.2 applies and shows that V (K) �= /0. Thus the torsor E admits a reduction to P
([54], §I.5, proposition 37), that is [E] ∈ im

�
H1(K,P)→ H1(K,G)

�
. We conclude

that the mapping H1(K,P)→ H1(K,G) is surjective. ��

The Grothendieck-Serre conjecture on rationally trivial torsors was proven by
Colliot-Thélène and Ojanguren for torsors over a semisimple group defined over
an algebraic closed field [16]. Thus He-de Jong-Starr’s theorem has the following
geometric application.

Corollary 6.6. Let S/k be a smooth quasi-projective surface. Let G/k be a (split)
semisimple simply connected group. Let E/S be a G-torsor. Then E is locally trivial
for the Zariski topology.

7 Remaining cases and open questions

Here are some of the remaining cases and open questions.
• Provide a classification free proof for the case of totally imaginary number

fields, at least in the quasi-split case.
• The first remaining cases of Conjecture 2.5 are those of trialitarian groups,

groups of type E6 over a 3-special field, groups of type E7 over a 2-special field and
groups of type E8.

• What about higher mod 3 cohomological invariants of E8?
• Let K be the function field of a surface over an algebraically closed field. Are

K-division algebras cyclic? Is it true that cd(Kab) = 1 where Kab stands for the
abelian closure of K?

In the global field case, class field theory answers both questions positively. This
question on Kab is due to Bogomolov and makes sense for arbitrary fields. As no-
ticed by Chernousov, Reichstein and the reviewer, a positive answer would provide
a positive answer to Serre’s conjecture II for groups of type E8 [12].

• For the Kneser-Tits conjecture for perfect fields of cohomological dimension
≤ 2, there remains only the case of a group with the following Tits index, see [32,
§8.2]:
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cohomologique ≤ 2, Compositio Math. 125 (2001), 283–325.

30. , Unipotent subgroups of reductive groups in characteristic p > 0, Duke Math. J. 114
(2002), 307–328.

31. , An invariant of elements of finite order in semisimple simply connected algebraic
groups, Journal of Group Theory 5 (2002), 177-197.
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34. J. Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften
179 (1971), Springer-Verlag.

35. D. Goldstein, R.M. Guralnick, E. W. Howe, M.E. Zieve, Nonisomorphic curves that become
isomorphic over extensions of coprime degrees, J. Algebra 320 (2008), 2526–2558.
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