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Abstract

Let G be an affine algebraic k-group defined over a local field of charac-
teristic zero. Borel and Serre [BS] have shown in 1964 that there are finitely
many isomorphism classes of G-torsors. Also if f : X → Y is a G-torsor,
then the image of the map X(k) → Y (k) is locally closed. The starting
point of the lecture is the investigation of the same issue for local fields of
positive characteristic. It turns out that the two preceding results are false.
The main result (obtained with O. Gabber and L. Moret-Bailly in 2014)
will be that the image of the map X(k)→ Y (k) is locally closed [G-G-MB].
It has consequences of the topology of the set of isomorphism classes of G-
torsors. Our setting is actually wider, it involves Henselian valued fields and
algebraic spaces.

The goal of the lecture is to cover the proof of the above statement. On
the way, we shall revisit actions of algebraic groups on homogeneous spaces,
Galois cohomology, topological properties for algebraic varieties defined over
a local field, and Gabber’s compactifications of algebraic groups.
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1. Lecture 1: overview

Our purpose is to discuss topological properties of group actions arising
from algebraic shape. We start with topological groups.

1.1. Topological groups. Let f : G→ H be a continuous homomorphism
between two Hausdorff topological groups. The kernel N = Ker(f) is a
closed subgroup of G and we get a continuous homomorphism f : G/N → H
where G/N is equipped with the quotient topology. On the other hand, the
image I = Im(f) is a subgroup of the topological group H. We get then

a continuous group isomorphism f [ : G/N → I between two Hausdorff

topological groups. The natural question to address is the following : is f [

a homeomorphism?

When it is the case, we say that f is strict [B:TG1, §III.8]. We have to pay
attention that this notion does not behave well by composition. In presence
of compactness assumptions, we can conclude easily. More precisely, when
G/N is compact (e.g. if G is compact), then f is strict1.

1.1.1. Example. Let a ∈ R× and consider the homomorphism

fa : R→ (R/Z)2, t 7→
(
[t], [at]

)
.

We consider its kernel Na = Z ∩ a−1Z. If a = p/q ∈ Q (p, q coprime), we
have Na = pZ ⊂ R (with the discrete topology) so that f

a
: R/Z ∼= R/pZ →

(R/Z)2, t′ 7→ (pt′, qt′). By using a Bezout relation αp+βq = 1 with α, β ∈ Z,

we see that f [a is essentially the identity of R/Z, so is strict.

If a 6∈ Q, we have Na = 0 and we claim that fa is not strict. We know
that Z + a−1Z is dense in R, so that a−1Z is dense in R/Z. If follows that
Im(fa) is dense in (R/Z)2. There exists then a sequence rn of real numbers
going to ∞ such that fa(rn) converges to [(0, 0)]. Thus fa is not strict.

There is an important case when we can conclude that f is strict.

1.1.2. Lemma. Assume that I is closed in G, that G is σ-locally compact
and that H is locally compact. Then f is open on its image and is strict.

This is a corollary of a slightly general statement, see [B:TG2, §IX.3,
prop. 6]. Note that the conditions on G, H are satisfied for example for Lie
groups.

Proof. Our assumption means that G is locally compact and that G =⋃
n≥0 Un where Un is a sequence of open relatively compact subsets of G

such that Un ⊂ Un+1.
Let us prove the openess fact. Without loss of generality, we can assume

that I = H and we shall use that H is a Baire space. It is enough to show
that f(V ) is open in H for all neighborhoods V of 1. Let W be a symmetric
compact neighborhood of 1 ∈ G such that W.W ⊂ V .

1Observe that the map G/N
∼−→ I is closed hence open.
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Since each Un is covered by finitely many translates of
◦
W , it follows

that G =
⋃
n≥0 gn

◦
W =

⋃
n≥0 gnW for a sequence (gn) of G. We have

H = f(G) =
⋃
n≥0 f(gn)f(W ). Since W is compact, f(W ) is compact as

well and a fortiori closed in H. Baire’s property for H shows that
◦

f(W ) 6= ∅.

We pick a point f(w) ∈
◦

f(W ). Thus f(w−1W ) is a neighborhood of 1 in H
and a fortiori, f(V ) is a neighborhood of 1 in H.

We come back to the general setting. Since f is open on its image, so is
f : G/N → H. The induced continuous bijection G/N

∼−→ I is then open.
Thus G/N → I is a homeomorphism and f is strict. �

1.1.3. Remarks. (a) The last step is independent of compactness assump-
tions.

(b) A stronger property than open on the image is that f : G → I has
locally continuous sections. This is the viewpoint of principal fibrations.

1.2. Real Algebraic Groups. We come to the following statement due to
Borel and Harish-Chandra [B-HC, prop. 2.3].

1.2.1. Proposition. Let G, H be real affine algebraic groups. Let f : G→ H
be a homomorphism of real algebraic groups. Then f(G(R)Top) is a closed
subgroup of H(R)Top and fTop : G(R)Top → H(R)Top is strict.

It means that G is given as a subgroup of some GLN by algebraic equa-
tions; basic examples are orthogonal groups, groups of triangular matrices,...
The notation G(R)Top stands for the underlying topological space2 seen as
subspace of MN (R).

There is no contradiction between this statement and Example 1.1.1
above. We have R/Z ∼= S1 =

{
x2 + y2 = 1

}
so the groups are of al-

gebraic shape but not the morphism fa. More precisely the exponential
R → R/Z ∼= S1 has kernel Z which cannot be defined in R by algebraic
equations.

Sketch of proof. Up to replace H by the Zariski closure of f(G(C)) we can
assume that f : G → H is dominant as morphism of algebraic varieties.
Since algebraic groups in characteristic zero are smooth, Chevalley’s generic
flatness theorem [DG, I.3.3.7] provides a dense open subset V of H such that
f|f−1(V ) : f−1(V ) → V is faithfully flat. On the other hand, the geometric

fibers are smooth of f are smooth so that f|f−1(V ) : f−1(V )→ V is smooth
by using the fiberwise smoothness criterion [EGA4, 17.8.2]. Then the map(
f−1(V )

)
(R)Top → V (R)Top is smooth in the differential geometry sense

and is open. Thus fTop is open and is strict. Since an open subgroup of a
topological group is clopen, we conclude f(G(R))Top is closed in H(R)Top.

The original proof goes by the analytic viewpoint; for an extended version,
see [Se2, Part II, ch. IV].

2We should check later that this topology is intrinsecal.



4 P. GILLE

1.3. The local non-archimedean field case. Such a field is a finite ex-
tension k of a p-adic field Qp or is isomorphic to F ((t)) where F is a finite
field and the topology is induced by the t-adic valuation. The topology of
the field induces a locally compact topology on G(k) for G an affine algebraic
k-group.

The characteristic zero case is quite similar with the real case so that an
algebraic morphism f : G→ H induces a strict morphism fTop : G(k)Top →
H(k)Top having closed image.

In the positive characteristic case, it is much more complicated to prove
that f(G(k)) is closed in H(k)Top, so that fTop is strict. This has been

established by Bernstein-Zelevinskǐi [B-Z] and we provided an extension of
that result.

1.3.1. Theorem. [G-G-MB, 1.2, 1.4] Let K be a henselian valued field such

that its completion K̂ is separable over K. Let f : G→ H be a morphism of
algebraic K-groups. Then f(G(K)) is closed in H(K)Top and fTop is strict.

It applies to a much wider class of fields than local fields; it holds in
particular for fields like E((t)) where E is an arbitrary field and also the
separable closure of E(t) in E((t)). We cannot use compactness techniques
beyond the locally compact case, so other techniques are used and will be
presented in this lecture.

1.4. Group actions. Group homomorphisms are a special case of group
actions. Let G be an affine k-group acting on an affine k-variety X. Let
x ∈ X(k) and consider the orbit map f : G → X, g 7→ g.x. If the orbit of
x is closed, Bremigan [Bn, prop. 5.3] has shown that the topological orbit(
G(k).x

)
Top

is closed for k local field of characteristic zero (so that fTop is

strict).
This is not true in the positive characteristic case. We take k = Fp((t))

and consider the action of the group of “affine transformations”G = Ga ok Gm

on the affine line A1
k by

(a, b).x = ap + bp x.

We consider the orbit map ft : G→ A1
k for the point t ∈ k. We have

I = G(k).t =
{
ap + bp t | a ∈ k, b ∈ k×

}
.

Since t ∈ k\kp, 0 does not belong to G(k).t. On the other hand the sequence

t−pn.t converges to zero so that 0 ∈ G(k).t. Thus ft(G(k)) is not closed in
k. More precisely we have I = kp ⊕ kpt so that I is open in its closure. In
other words, I is locally closed.

The map (ft)Top is injective and induces a homeomorphism G(k)Top
∼−→

(G(k).t)Top. Thus ft is strict. This example is significant for one of our
main result.
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1.4.1. Theorem. [G-G-MB, 1.5] Let K be a henselian valued field such that

its completion K̂ is separable over K. Let G be an affine algebraic K–group
acting on an affine K-variety X. Let x ∈ X(K) be a rational point. Then
the topological orbit G(K).x is locally closed in X(K) and the morphism
fx : G(K)Top → X(K)Top is strict.

Note that we do not require the orbit G.x to be closed.
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2. Lecture 2: Affine group schemes

We are interested mainly in affine algebraic groups over a field k. It is
convenient to work in a wider setting of affine group schemes defined over a
ring. Basic references are the books of Demazure-Gabriel [DG], Milne [Mi2]
and Waterhouse [Wa1].

Convention. If k is a field, a k-variety means a separated k–scheme of
finite type. If f : X → Y is a morphism of affine algebraic k-varieties,
the schematic image Y0 of f is the closed k-subvariety of Y defined by

k[Y0] = k[Y ]/ ker
(
k[Y ]

f]−→ k[X]
)
.

2.1. Definition. Let R be a ring (commutative, unital). An affine R–group
scheme G is a group object in the category of affine R-schemes. It means
that G/R is an affine scheme equipped with a section ε : Spec(R) → G, an
inverse σ : G→ G and a multiplication m : G×G→ G such that the three
following diagrams commute:

Associativity:

(G×R G)×R G
m×id−−−−→ G×R G

m−−−−→ G

can

y∼= ↗ m

G×R (G×R G)
id×m−−−−→ G×R G

Unit:

G×R Spec(R)
id×ε−−−−→ G×R G

ε×id←−−−− Spec(R)×G

p2 ↘ m

y ↙p1

G

Symetry:

G
id×σ−−−−→ G×R G.

sG

y m

y
Spec(R)

ε−−−−→ G

We say that G is commutative if furthermore the following diagram com-
mutes

G×R Spec(R)
switch−−−−→ G×R G

m

y m

y
G = G.

Let R[G] be the coordinate ring of G. We call ε∗ : R[G] → G the counit
(augmentation), σ∗ : R[G]→ R[G] the coinverse (antipode), and denote by
∆ = m∗ : R[G] → R[G] ⊗R R[G] the comultiplication. They satisfies the
following rules:



TORSORS OVER LOCAL FIELDS (September 3, 2021) 7

Co-associativity:

R[G]
m∗−−−−→ R[G]⊗R R[G]

m∗⊗id−−−−→ (R[G]⊗R R[G])⊗R R[G]

m∗ ↘ can

x∼=
R[G]⊗R R[G]

id⊗m∗−−−−→ R[G]⊗R (R[G]⊗R R[G]).

Counit:

R[G]
id⊗ε∗−−−−→ R[G]⊗R R[G]

ε∗×id←−−−− R[G]

id ↖ m∗
x ↗id

R[G]

Cosymmetry:

R[G]⊗R[G]
σ∗⊗id−−−−→ R[G].

m∗
x s∗G

x
R[G]

ε∗−−−−→ R.

In other words, (R[G],m∗, σ∗, ε∗) is a commutative Hopf R–algebra3. Given
an affine R–scheme X, there is then a one to one correspondence between
group structures on X and Hopf R–algebra structures on R[X].

The notion of homomorphisms of group schemes is clear.

2.2. Examples.

2.2.1. Additive and multiplicative groups. The additive R–group scheme is
Ga = A1

R with the group law ∆ : R[X] → R[Y ] ⊗R R[Z] defined by X →
Y ⊗ 1 + 1⊗ Z.

The multiplicativeR-group scheme is Gm,R = Spec
(
R[T, T−1]

)
with group

law ∆ : R[T, T−1]→ R[U,U−1]⊗R R[V, V −1] defined by T → U ⊗ V .

2.2.2. Constant group schemes. Let Γ be an abstract group. We consider
the R–scheme G =

⊔
γ∈Γ Spec(R). Then the group structure on Γ induces

a group scheme structure on G with multiplication

G×R G =
⊔

(γ,γ′)∈Γ2

Spec(R)→ G =
⊔
γ∈Γ

Spec(R)

applying the component (γ, γ′) to γγ′; This group scheme is affine iff Γ is
finite.

There usual notation for such an object is ΓR. This group scheme occurs
as solution of the following universal problem.

3This is Waterhouse definition [Wa1, §I.4], other people talk about cocommutative
coassociative Hopf algebra.
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2.2.3. Vector groups. Let N be an R–module. We consider the commutative
group functors

VN : AffR → Ab, S 7→ HomS(N ⊗R S, S) = (N ⊗R S)∨,

WN : AffR → Ab, S 7→ N ⊗R S.

2.2.4. Lemma. The R–group functor VN is representable by the affine R–
scheme V(N) = Spec(S∗(N)) which is then a commutative R–group scheme.
Furthermore N is of finite presentation if and only if V(N) is of finite
presentation.

Proof. It follows readily of the universal property of the symmetric algebra

HomR′−mod(N ⊗R R′, R′)
∼←− HomR−mod(N,R

′)
∼−→ HomR−alg(S

∗(N), R′)

for each R-algebra R′. �

The commutative group scheme V(N) is called the vector group-scheme
associated to N . We note that N = V(N)(R).

Its group law on the R–group scheme V(N) is given by m∗ : S∗(N) →
S∗(N) ⊗R S∗(N), applying each X ∈ N to X ⊗ 1 + 1 ⊗ X. The counit is
σ∗ : S∗(N)→ S∗(N), X 7→ −X.

2.2.5. Remarks. (1) If N = R, we get the affine line over R. Given a map
f : N → N ′ of R–modules, there is a natural map f∗ : V(N ′)→ V(N).

(2) If N is projective and finitely generated, we have W (N) = V (N∨) so
that W(N) is representable by an affine group scheme.

(3) If R is noetherian, Nitsure showed the converse holds [Ni04]. If N is
finitely generated projective, then W(N) is representable iff N is locally
free.

2.2.6. Lemma. The construction of (1) provides an antiequivalence of cate-
gories between the category of R-modules and that of vector group R-schemes.

2.2.7. Group of invertible elements, linear groups. Let A/R be an algebra
(unital, associative). We consider the R-functor

S 7→ GL1(A)(S) = (A⊗R S)×.

2.2.8. Lemma. If A/R is finitely generated projective, then GL1(A) is rep-
resentable by an affine group scheme. Furthermore, GL1(A) is of finite
presentation.

Proof. We shall use the norm map N : A → R defined by a 7→ det(La)
constructed by glueing. We have A× = N−1(R×) since the inverse of La
can be written Lb by using the characteristic polynomial of La. The same
is true after tensoring by S, so that

GL1(A)(S) =
{
a ∈ (A⊗R S) = W(A)(S) | N(a) ∈ R×

}
.
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We conclude that GL1(A) is representable by the fibered product

G −−−−→ W(A)y N

y
Gm,R −−−−→ W(R).

�

Given an R–module N , we consider the R–group functor

S 7→ GL1(N)(S) = AutS−mod(N ⊗R S).

So if N is finitely generated projective. then GL1(N) is representable by an
affine R–group scheme. Furthermore GL1(N) is of finite presentation.

2.2.9. Remark. If R is noetherian, Nitsure has proven that GL1(N) is rep-
resentable if and only if N is projective [Ni04].

2.2.10. Diagonalizable group schemes. Let A be a commutative abelian (ab-
stract) group. We denote by R[A] the group R–algebra of A. As R-module,
we have

R[A] =
⊕
a∈A

Rea

and the multiplication is given by ea eb = ea+b for all a, b ∈ A.
For A = Z, R[Z] = R[T, T−1] is the Laurent polynomial ring over R. We

have an isomorphism R[A] ⊗R R[B]
∼−→ R[A × B]. The R-algebra R[A]

carries the following Hopf algebra structure:

Comultiplication: ∆ : R[A]→ R[A]⊗R[A], ∆(ea) = ea ⊗ ea,
Antipode: σ∗ : R[A]→ R[A], σ∗(ea) = e−a;

Augmentation: ε∗ : R[A]→ R, ε(ea) = 1.

2.2.11. Definition. We denote by D(A)/R (or Â) the affine commutative
group scheme Spec(R[A]). It is called the diagonalizable R–group scheme
of base A. An affine R–group scheme is diagonalizable if it is isomorphic to
some D(B).

We denote by Gm = D(Z) = Spec(R[T, T−1]), it is called the multi-
plicative group scheme. We note also that there is a natural group scheme
isomorphism D(A⊕B)

∼−→ D(A)×RD(B). We let in exercise the following
fact.

2.2.12. Lemma. The following are equivalent:

(i) A is finitely generated;

(ii) D(A)/R is of finite presentation;

(iii) D(A)/R is of finite type.
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If f : B → A is a morphism of abelian groups, it induces a group homo-
morphism f∗ : D(A) → D(B). In particular, when taking B = Z, we have
a natural mapping

ηA : A→ HomR−gp(D(A),Gm).

2.2.13. Lemma. If R is connected, ηA is bijective.

Proof. Let f : D(A) → Gm be a group R–morphisms. Equivalently it is
given by the map f∗ : R[T, T−1]→ R[A] of Hopf algebra. In other words, it
is determined by the function X = f(T ) ∈ R[A]× satisfying ∆(X) = X⊗X.
Writing X =

∑
a∈A raea, the relation reads as follows rarb = 0 if a 6= b and

ra ra = ra. Since the ring is connected, 0 and 1 are the only idempotents so
that ra = 0 or ra = 1. Then there exists a unique a such that ra = 1 and
rb = 0 for b 6= a. This shows that the map ηA is surjective. It is obviously
injective so we conclude that ηA is bijective. �

2.2.14. Proposition. Assume that R is connected. The above construc-
tion induces an anti-equivalence of categories between the category of abelian
groups and that of diagonalizable R–group schemes.

Proof. It is enough to contruct the inverse map HomR−gp(D(A),D(B)) →
Hom(A,B) for abelian groups A,B. We are given a group homomorphism
f : D(A)→ D(B). It induces a map

f∗ : HomR−gp(D(B),Gm)→ HomR−gp(D(A),Gm),

hence a map B → A. �

If G/R is an affine R–group scheme, then for each R–algebra S the abtract
group G(S) is equipped with a natural group structure. The multiplication
is m(S) : G(S) × G(S) → G(S), the unit element is 1S = (ε ×R S) ∈ G(S)
and the inverse is σ(S) : G(S)→ G(S).

2.3. Largest smooth subgroup. An affine k-variety X is absolutely re-
duced if the ring k[X] ⊗k K is reduced for all field extensions K/k; it is
enough to check it on the algebraic closure k of k [GW, prop. 5.49]. An-
other terminology is to say that X is separable; the geometric meaning of
this notion is that X is generically smooth over k (loc. cit., 6.20.(ii)).

2.3.1. Lemma. [CGP, C.11] There is a unique geometrically reduced closed
subscheme X† ⊆ X such that X†(F ) = X(F ) for all separable extension
fields F/k. The formation of X† is functorial in X and commutes with the
formation of products over k and separable extensions of the ground field.

2.3.2. Remarks. (a) In particular we have X†(k) = X(k). It means we can
often replace X by X] when we study rational points.

(b) If k is separably closed, then X† is the Zariski closure of X(k) in X.
What is not obvious is that the construction behave well under separable
extensions.



TORSORS OVER LOCAL FIELDS (September 3, 2021) 11

(c) If k is algebraically closed, then X† is Xred, that is the reduced k–
subscheme of X.

(d) We have to pay attention that the functorial behaviour fails for insep-
arable extensions. If k is imperfect of characteristic p > 0, we consider the
variety xp − ayp = 0 for a ∈ k \ kp. Then X(ks) = ∅ so that X† = ∅. Since

X
(
k( p
√
a)
)
6= ∅, we have

(
Xk( p

√
a)

)† 6= ∅.
If G is an affine algebraic k-group, then G† is a smooth affine algebraic

k-subgroup which is generically smooth. In other words there exists a dense
k–subscheme U ⊂ G which is smooth. SinceGk =

⋃
g∈G(k) gU , G† is smooth.

We name it the largest smooth k–subgroup of G.

2.3.3. Remark. There is no reason for G† to be normal in G. The simplest
counterexample is G = µp o Z/2Z in characteristic p > 0. We have G] =
Z/2Z.

2.4. Proper morphisms. Let f : G→ H be a homomorphism of affine k–
group schemes. The schematic image of f is the spectrum of the k–algebra

k[H]/Ker
(
k[H]

f]−→ k[G]
)
. We bear in mind that its formation is compatible

with field extensions. It is a Hopf subalgebra of k[G] and is of finite type
over k. It is then the coordinate algebra of an affine k–group scheme H ′

which is a closed k-subgroup scheme of H. We called it the schematic image
of f ; the morphism f factorizes through f ′ : G→ H ′.

2.4.1. Proposition. Let f : G→ H be a homomorphism of affine algebraic
k–groups. The following are equivalent:

(i) f is proper;

(ii) ker(f) is proper.

Proof. Obviously we have (i) =⇒ (ii). We assume (ii). Without loss
of generality we can replace H by H ′ and also we can assume that k is
algebraically closed.

First case: H is integral. Since the schematic image of f : G→ H is H, f(G)
is dense in H [GW, prop. 10.30], that is, f is dominant. It follows that the
generic point of H belongs to f(G) [Stacks, Tag 01RL]. We denote by X the
generic fiber of f , this is a non-empty k(H)–scheme. Let K be a (finite) field
extension of k(H) such that X(K) 6= ∅. The choice of an element x ∈ X(K)

provides an isomorphism ker(f)K
∼−→ XK so that XK is a proper K-scheme.

It follows that X is a proper k(H)–scheme. It follows that H admits a
non-empty open subset V ⊂ H such that f|f−1(V ) : f−1(V ) → V is proper
[EGA4, 8.1.3]. Since f(G(k)) is dense in H(k), we have H =

⋃
g∈G(k) f(g)V .

We conclude that f is proper.

Second case. G and H are smooth. Similarly f(G(k)) is dense in H(k) and
f : f−1(H0) → H0 is proper by the first case. The above argument shows
that f is proper.
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General case. We consider the morphism h = (f)† : G† → H†; its kernel is a
closed subgroup of ker(f) so is proper as well. According to [GW, 12.58.5],
f is proper as well4. �

2.4.2. Remark. The statement holds for arbitrary algebraic groups. In the
affine setting, proper is furthermore equivalent to finite.

A more advanced result is the following.

2.4.3. Theorem. [Pe, corollaire 4.2.5] Let f : G → H be a homomorphism
between quasi-compact k–group schemes. Then f is faithfully flat (i.e. flat
and surjective) if and only if f is schematically dominant.

In the affine case, see [DG, III.3.7.2] or [Mi2, th. 7.4].

2.5. Monomorphisms of affine group schemes. Let f : G→ H a mor-
phism of R-group schemes. Its kernel ker(f) is the R–group scheme f−1(1)
which is closed in G.

We say that f is a monomorphism if G(S) → H(S) is injective for each
R-algebra S/R. This is equivalent to say that ker(f) = 1. If the map
f ] : R[H]→ R[G] is surjective, then f is a monomorphism. We are interested
in a suitable converse statement.

2.5.1. Proposition. Let f : G → H be a monomorphism of affine k-
algebraic groups. Then f is a closed immersion.

Proof. We have ker(f) = 1 so that Proposition 2.4.1 shows that f is proper.
But a proper monomorphism is a closed immersion [GW, 12.92]. �

2.5.2. Remarks. (a) In the proof, f is proper and affine so finite. We need
then the following special case of the general theory: a finite monomorphism
is a closed immersion. This case is slightly easier and the main input is
Nakayama lemma.

(b) This statement is not true over a DVR where there are monomorphisms
which are not immersions [SGA3, XVI.1.1]. However for nice enough group
schemes G, monomorphisms are closed immersions (ibid, Cor. 1.5).

2.6. Flat sheaves. We do a long interlude for developping descent and
sheafifications techniques. We use mainly the references [DG, Ro, Wa1].
Our presentation involves only rings.

2.6.1. Covers. A fppf (flat for short) cover of the ring R is a ring S/R which
is faithfully flat and of finite presentation5 “fppf” stands for “fidèlement plat
de présentation finie”.

4It is a consequence of the valuative criterion of properness since h = fred.
5One may consider also not finitely presented covers, it is called fpqc, see [SGA3, IV]

and [Vi].
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2.6.2. Remarks. (1) If 1 = f1+· · ·+fs is a partition of 1R with f1, ...fr ∈ R,
the ring Rf1 × · · · ×Rfr is a Zariski cover of R and a fortiori a flat cover.

(2) If S1/R and S2/R are flat covers of R, then S1 ⊗R S2 is a flat cover
of R.

(3) If S/R is a flat cover of S and S′/S is a flat cover of S, then S′/R is
a flat cover of R.

(4) Finite locally free extensions S/R are flat covers, in particular finite
étale surjective maps are flat covers. An example is S = R[X]/P (X) where
P is a monic R–polynomial.

2.6.3. Definition. We consider an R-functor F : {R − Alg} → Sets. It is
called additive if the natural map F (S1 × S2)→ F (S1)× F (S2) is bijective
for all R–rings S1, S2.

For each R–ring morphism S → S′, we can consider the sequence

F (S) // F (S′)
d1,∗ //

d2,∗
// F (S′ ⊗S S′) .

A functor of F : {R − Alg} → Sets is a fppf sheaf (or flat sheaf) for short
if it satifies the following requirements:

(i) F (0) =
{
•
}

;

(ii) F is additive;

(iii) For each R–ring S and each flat cover S′/S, and the sequence

F (S) // F (S′)
d1,∗ //

d2,∗
// F (S′ ⊗S S′)

is exact.

Requirement (iii) means that the restriction map F (S) → F (S′) is in-
jective and its image consists in the sections α ∈ F (S′) satisfying d1,∗(α) =
d2,∗(α) ∈ F (S′ ⊗S S′).

2.6.4. Remark. The two first conditions can be shortened in one single
condition, see [DG, III.1.1] and [Stacks, Tag 006U].

Given an R–module M and S′/S as above, the theorem of faithfully flat
descent states that we have an exact sequence of S–modules

0→M ⊗R S → (M ⊗R S)⊗S S′
d1,∗−d2,∗−→ (M ⊗R S)⊗S S′ ⊗S S′ .

This rephases by saying that the vector group functor V (M)/R (which is
additive) is a flat sheaf over Spec(R). A special case is the exactness of the
sequence

0→ S → S′
d1,∗−d2,∗−→ S′ ⊗S S′.
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If N is an R-module, it follows that the sequence of R–modules

0→ HomR(N,S)→ HomR(N,S′)
d1,∗−d2,∗−→ HomR(N,S′ ⊗S S′)

is exact. This shows that the vector R–group scheme W(N) is a flat sheaf.
More generally we have

2.6.5. Proposition. Let X/R be an affine scheme. Then the R–functor of
points hX is a flat sheaf.

Proof. The functor hX is additive. We are given a R–ring S and a flat cover
S′/S. We write the sequence above with the R-module R[X]. It reads

0→ HomR−mod(R[X], S)→ HomR−mod(R[X], S′)
d1,∗−d2,∗−−−−−−→ HomR−mod(R[X], S′⊗SS′).

It follows that X(S) injects in X(S′) and identifies with
HomR−rings(R[X], S′) ∩ HomR−mod(R[X], S). Hence the exact sequence

X(S) // X(S′)
d1,∗ //

d2,∗
// X(S′ ⊗S S′) .

�

2.6.6. Remark. More generally, the proposition holds with a scheme X/R,
see [Ro, 2.4.7] or [Vi, 2.5.4].

2.6.7. Examples. If E,F are flat sheaves over R, the R–functor Hom(E,F )
of morphisms from E to F is a flat sheaf. Also the R–functor Isom(E,F ) is
a flat sheaf and as special case, the R–functor Aut(F ) is a flat sheaf.

2.7. Monomorphisms and epimorphisms. A morphism u : F → E of
flat sheaves over R is a monomorphism if F (S)→ E(S) is injective for each
S/R. It is an epimorphism if for each S/R and each element e ∈ E(S), there
exists a flat cover S′/S and an element f ′ ∈ F (S′) such that e|S′ = u(f ′).

A morphism of flat sheaves which is a monomorphism and and an epi-
morphism is an isomorphism (exercise, solution [SGA3, IV.4.4]).

We say that a sequence of flat sheaves in groups over R
1 → F1 → F2 → F3 → 1 is exact if the map of sheaves F2 → F3 is
an epimorphism and if for each S/R the sequence of abstract groups 1 →
F1(S)→ F2(S)→ F3(S) is exact.

2.7.1. Examples. (1) For each n ≥ 1, the Kummer sequence 1 → µn,R →
Gm,R

fn→ Gm,R → 1 is an exact sequence of flat sheaves where fn is the
n–power map. The only thing to check is the epimorphism property. Let
S/R be a ring and a ∈ Gm(S) = S×. We put S′ = S[X]/(Xn−a), it is finite
free over S, hence is faithfully flat of finite presentation. Then fn(X) = a|S′
and we conclude that fn is an epimorphism of flat sheaves.
(2) More generally, let 0→ A1 → A2 → A3 → 0 be an exact sequence of f.g.
abelian groups. Then the sequence of R–group schemes

1→ D(A3)→ D(A2)→ D(A1)→ 0
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is exact.

2.8. Sheafification. Given an R-functor F , there is natural way to sheafify

it in a flat sheaf F̃ . The first thing is to make the functor additive. For each
decomposition S =

∏
j∈J Sj (J finite, possibly empty), we have a map

F (S) →
∏
j∈J

F (Sj)

with the convention
∏
j∈∅

= {•}. We define

Fadd(S) = lim−→
∏
j∈J

F (Sj)

where the limit is taken on finite decompositions of S. By construction, Fadd
is an additive functor which satisfies F (0) = {•} and there is a natural map
F → Fadd.

Now, for each S/R, we consider the “set” Cov(S) of flat covers6. Also if
f : S1 → S2 is an arbitrary R-ring map, the tensor product defines a natural
map f∗ : Cov(S1)→ Cov(S2). We define then

F̃ (S) = lim−→
I⊂Cov(S)

ker
( ∏

i∈I Fadd(Si)
d1,∗ //

d2,∗
// Fadd(Si ⊗S Sj)

)
where the limit is taken on finite subsets I of Cov(S). It is an R-functor

since each map f : S1 → S2 defines f∗ : F̃ (S1) → F̃ (S2). We have also a

natural mapping uF : F → Fadd → F̃ .

2.8.1. Proposition. (1) For each R–functor F , the R–functor F̃ is a flat
sheaf.

(2) The functor F → F̃ is left adjoint to the forgetful functor applying a flat
sheaf to its underlying R–functor. For each R–functor F and each flat sheaf
E, the natural map

Homflat sheaves(F̃ , E)
∼−→ HomR−functor(F,E)

(applying a morphism u : F̃ → E to the composite F → F̃ → E) is bijective.

(1) follows essentially by construction [DG, III.1.8]. Note that in this
reference, the two steps are gathered in one. For (2) one needs to define the
inverse mapping. Observe that the sheafification of E is itself, so that the

sheafification of F → E yields a natural morphism F̃ → E.

Given a morphism of flat R-sheaves f : E → F , we can sheafify the
functors

S 7→ E(S)/Rf (S), S 7→ Im
(
E(S)→ F (S)

)
,

6We do not enter in set-theoric considerations but the reader can check there is no
problem there.
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where Rf (S) is the equivalence relation defined by f(S). We denote by
Coim(f) and Im(f) their respective sheafifications. We have an induced
mapping

f∗ : Coim(f)→ Im(f)

between the coimage sheaf and the image sheaf. We say that f is strict
when f∗ is an isomorphism of flat sheaves.

2.8.2. Lemma. If f is a monomorphism (resp. an epimorphism), then f is
strict.

In the first case, we have E
∼−→ Coim(f)

∼−→ Im(f); in the second case,

we have coker(f)
∼−→ Im(f)

∼−→ F , see [DG, III.1.2].

2.9. Group actions, quotients sheaves. Let G be a flat sheaf in groups
and let F be a flat sheaf equipped with a right action of G. We consider the
quotient functor S 7→ F(S)/G(S) and its fppf sheafification which is denoted
by F/G. It is called the quotient sheaf7.

When G and F are representable, the natural question is to investigate
whether the quotient sheaf G/F is representable. It is quite rarely the case.
A first evidence to that is the following fact.

2.9.1. Proposition. We are given an affine R–group scheme G and a monomor-
phism G→ H into an affine group scheme. Assume that the quotient sheaf
H/G is representable by an R–scheme X. We denote by p : H → X the
quotient map and by εX = p(1G) ∈ X(R).

(1) The R–map H×R G→ H×X H, (h, g)→ (h, hg), is an isomorphism.

(2) The diagram

G
i−−−−→ Hy y

Spec(R)
εX−−−−→ X

is carthesian.

(3) The map i is an immersion. It is a closed immersion iff X/R is sepa-
rated.

(4) G/R is flat iff p is flat.

(5) G/R is smooth iff p is smooth.

The general statement is [SGA3, VIB.9.2].

Proof. (1) The map H×RG→ H×XH is a monomorphism. Let us show that
it is an epimorphism of flat sheaves. We are given S/R and (h1, h2) ∈ H(S)2

such that p(h1) = p(h2). There exists a flat cover S′/S and g ∈ G(S′) such
that h1|S′ = h2|S′ g. Hence g ∈ G(S′) ∩ H(S). Since i is a monomorphism,
we conclude by descent that g ∈ G(S) whence (h1, h2) comes from (h1, g).

7One can work in a larger setting, that of equivalence relations and groupoids, see [DG,
§III.2].
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(2) It follows that the diagram

G
1H×id−−−−→ H×R G ∼= H×X H −−−−→ Hy yp1 yp

Spec(R)
1H−−−−→ H

p−−−−→ X

is carthesian as desired.

(3) If X is separated, εX is a closed immersion and so is i.

(4) and (5) If p is flat (resp. smooth), so is i by base change. The converse
is a consequence of “permanences properties” of failthfully flat descent. �

2.10. Quotients.

2.10.1. Proposition. Let G be an affine algebraic k–group acting on a quasi-
projective k–variety X. Let x ∈ X(k) and consider the orbit map fx : G→
X, g 7→ g.x and the stabilizer Gx. Then the fppf sheaf G/Gx is representable
by a k-variety. Furthermore the induced map G/Gx → X is an immersion.

The k-subscheme G/Gx is called the G-orbit of x.

2.10.2. Remark. There is a suitable extension of this statement over rings,
see [SGA3, XVI.2.2].

2.10.3. Theorem. (Chevalley) Let G be an affine algebraic k–group and let
H ⊆ G be a closed subgroup.

(1) There exists a linear representation ρ : G→ GL(V ) and a line ` ⊂ V
such that H is the stabilizer of l.

(2) The fppf quotient G/H is representable by a quasi-projective k–variety.

(3) If H is normal in G, then G/H is affine and carries a unique k-group
structure such that G→ G/H is a group homomorphism.

2.10.4. Remark. If R is a DVR and H ⊂ G a closed R–group scheme
which is flat, then G/H is representable by an R-scheme [A, IV, th. 4.C]. In
higher dimensions, there are counterexamples to representability of quotient
of affine flat group schemes [R2, X.14].
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3. Lecture 3: Homogeneous spaces, Weil restriction, punctual
Hilbert schemes

3.1. Formal definition of orbits and of homogeneous spaces over
fields.

3.1.1. Definition. [B-L-R, 10.2] Let G be an affine algebraic k-group which
acts on a k-variety X. A subscheme Z of X is called a k-orbit under the
action of G if there exist a finite field extension k′ of k and a point x′ ∈ Z(k′)
such that Z ×k k′ is the orbit of x′ under G×k k′.

This definition is taylor made to be insensible to finite field extensions.

3.1.2. Remark. A k–orbit is quasi-projective, since it descends by locally
free morphisms [SGA1, VIII, 7.6].

3.1.3. Definition. Let G be an affine algebraic k-group which acts on a
K-variety X. Then X is homogeneous under G if X is a k-orbit.

Equivalently, it means that there exists a finite field extension k′/k and
a closed k′-subgroup H ′ of Gk′ such that Xk′ is Gk′-isomorphic to Gk′/H

′.
Note that we do not require X to have a rational k–point. An example

is X = Spec(C) seen as a R-variety with the conjugacy action of Z/2Z.

3.1.4. Examples of orbits and of homogeneous spaces. (a) The Chevalley
quotient X = H/G is a homogeneous space under the action of H. For
each x ∈ X(k), the preimage q−1(x) is a k–orbit for the G action on H.
We claim that all k–orbits under G are of this shape. Let Z ⊂ H a k-orbit
under the action of G. Theres exists a finite field extension k′ of k and a
point h′ ∈ H(k′) such that Z ×k k′ is the orbit of x′ under G×k k′. We put
x′ = q(h′) ∈ X(k′), it does not depend of the choice of h′. It follow that
d1(x′) = d2(x′) ∈ X(k′ ⊗k k′) so that x′ descends to point x ∈ X(k). Since
Zk′ = q−1(x′) = (q−1(x))k′ , we conclude that Z = q−1(x).

(b) The pointed affine space An
k \ {0} is homogeneous for the action of GLn

(n ≥ 1). This is the case also of Pn−1
k , of grassmannians,...

3.2. Contracted products. We are given two flat R–sheaves in sets F1,
F2 and and a flat sheaf G in groups. If F1 (resp. F2) is equipped with a
right (resp. left) action of G, we have a natural right action of G on the
product F1×F2 by (f1, f2).g = (f1g, g

−1f2). The sheaf quotient of F1×F2

under this action by G is denoted by F1 ∧G F2 and is called the contracted
product of F1 and F2 with respect to G.

3.2.1. Remark. This construction occurs for group extensions. Let 1 →
A → E → G → 1 be an exact sequence of flat sheaves in groups with
A abelian. Given a map A → B of abelian flat sheaves equipped with
compatible G–actions, the contracted product B ∧A E is a sheaf in groups
and is an extension of G by B.
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3.3. Sheaf torsors. Let G be a flat sheaf in groups.

3.3.1. Definition. A sheaf G–torsor over R is a flat sheaf E/R equipped
with a right action of G submitted to the following requirements:

(T1) The R-map E ×R G → E ×R E , (e, g) 7→ (e, e.g) is an isomorphism of
flat sheaves over R.

(T2) There exists a flat cover S/R such that E(S) 6= ∅.

The basic example of such an object is the trivial G-torsor sheaf G equipped
with the right action. For avoiding confusions, we denote it sometimes E tr.

3.3.2. Remark. The condition (T1) is called pseudo-torsor. We can replace
condition (T2) by the condition (T3) E → {•} is an epimorphism of flat

sheaves. We get then the definition which is in Giraud’s book [Gir, III.1.3.7].

There is also one way to rephrase everything which is to require the existence
of a flat cover S/R such that ES ∼= E tr,S .

Now if F is a flat sheaf over R equipped with a right G-action and E/R
is a G-torsor, we call the contracted product E ∧G F the twist of F by E . It
is denoted sometimes EF or EF . We record the two special cases:

(1) The action of G on E tr by left translations, we get then E = EE tr.
(2) The action of G on itself by inner automorphisms, the twist EG is

called the inner twisted form of G associated to E .

(3) We can twist the left action (by translation) G × E tr → E tr, where G
acts on itself by inner automorphisms. It provides a left action EG×RE → E .

If G is an affine R-group scheme, descent theory shows that sheaf G-
torsors are representable as well; we say that the relevant schemes are G–
torsors. Furthermore if G/R is flat (resp. smooth), so are the G–torsors.
We give some examples of torsors.

3.3.3. Examples. (1) Galois covers Y→ X under a finite group Γ, see below
3.4.1.

(2) The Kummer cover ×n : Gm → Gm.

(3) The Chevalley quotient gives rise to the H–torsor G→ G/H.

(4) (Swan-Serre’s correspondence) If P is a R-module locally free of rank
n ≥ 1, we define the fppf sheaf GLn-torsor EP by EP (S) = IsomS−mod(S

n, P ⊗R S).
All GLn–torsors arise in this way.

(5) (Étale algebras) If A is an étale R-algebra of rank n ≥ 1, we define the
fppf sheaf Sn-torsor EA by EA(S) = IsomS−alg(S

n,A⊗R S). All Sn–torsors
arise in this way.
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3.4. Quotient by a finite constant group. An important case of torsor
and quotients is the following

3.4.1. Theorem. [DG, §III.6] Let Γ be a finite abtract group. We assume
that ΓR acts freely on the right on an affine R-scheme X. It means that
the graph map X ×R ΓR → X ×R X is a monomorphism. We put Y =
Spec(R[X]Γ).

(1) The map X→ Y is a ΓR–torsor, i.e. a Galois cover of group Γ;

(2) The scheme Y/R represents the fppf quotient sheaf X/G.

See also [R1, X, p. 108] for another proof.

3.5. Weil restriction. We are given the following equation z2 = 1 + 2i in
C. A standard way to solve it is to write z = x + iy with x, y ∈ R. It
provides then two real equations x2 − y2 = 1 and xy = 1. We can abstract
this method for affine schemes and for functors.

We are given a ring extension S/R or j : R → S. Since a S-algebra is a
R–algebra, a R-functor F defines a S-functor denoted by FS and called the
scalar extension of F to S. For each S–algebra S′, we have FS(S′) = F (S′).
If X is a R-scheme, we have (hX)S = hX×RS .

Now we consider a S–functor E and define its Weil restriction to S/R
denoted by

∏
S/RE by (∏

S/R

E
)

(R′) = E(R′ ⊗R S)

for each R–algebra R′. We note the two following functorial facts.

(I) For a R-map or rings u : S → T , we have a natural map

u∗ :
∏
S/R

E →
∏
T/R

ET .

(II) For each R′/R, there is natural isomorphism of R′–functors(∏
S/R

E
)
R′

∼−→
∏

S⊗RR′/R′
ES⊗RR′ .

For other functorial properties, see appendix A.5 of [CGP].

At this stage, it is of interest to discuss the example of vector group
functors. Let N be a S–module. We denote by j∗N the scalar restriction
of N from S to R [B:A1, §II.1.13]. The module j∗N is N equipped with
the R–module structure induced by the map j : R → S. It satisfies the
adjunction property HomR(M, j∗N)

∼−→ HomS(M ⊗R S,N) (ibid, §III.5.2)
for each R-module M .

3.5.1. Lemma. (1)
∏
S/RW (N)

∼−→W (j∗N).

(2) If N is f.g. projective and S/R is finite and locally free, then
∏
S/RW (N)

is representable by the vector group scheme W(j∗N).
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For a more general statement, see [SGA3, I.6.6].

Proof. (1) For each R-algebra R′, we have(∏
S/R

W (N)
)

(R′) = W (N)(R′⊗RS) = N⊗S(R′⊗RS) = (j∗N)⊗RR′ = W (j∗N)(R′).

(2) The assumptions implies that j∗N is f.g. over R, hence W (j∗N) is
representable by the vector R–group scheme W(j∗N). �

If F is a R-functor, we have for each R′/R a natural map

ηF (R′) : F (R′)→ F (R′ ⊗R S) = FS(R′ ⊗R S) =
(∏
S/R

FS

)
(R′);

it defines a natural mapping of R–functor ηF : F →
∏
S/R

FS . For each

S–functor E, it permits to defines a map

φ : HomS−functor(FS , E)→ HomR−functor
(
F,
∏
S/R

E
)

by applying a S–functor map g : FS → E to the composition

F
ηF→

∏
S/R

FS

∏
S/R

g

−→
∏
S/R

E.

3.5.2. Lemma. The map φ is bijective.

Proof. We apply the compatibility with R′ = S2 = S. The map S → S⊗RS2

is split by the codiagonal map ∇ : S ⊗R S2 → S, s1 ⊗ s2 → s1s2. Then we
can consider the map

θE :
( ∏
S/R

E
)
S2

∼−→
∏

S⊗RS2/S2

ES⊗RS2

∇∗→
∏
S/S

E = E.

This map permits to construct the inverse map ψ of φ as follows

ψ(h) : FS
lS→

(∏
S/R

E
)
S2

θE→ E

for each l ∈ HomR−functor
(
F,
∏
S/RE

)
. By construction, the maps φ and ψ

are inverse of each other. �

In conclusion, the Weil restriction from S to R is then right adjoint to
the functor of scalar extension from R to S.

3.5.3. Proposition. Let Y/S be an affine scheme of finite type (resp. of
finite presentation). Then the R-functor

∏
S/R hY is representable by an

affine scheme of finite type (resp. finite representation).

Again, it is a special case of a much more general statement, see [B-L-R,
§7.6].



22 P. GILLE

Proof. Up to localize for the Zariski topology, we can assume that S is
free over R, namely S = ⊕i=1,...,dRωi. We see Y as a closed subscheme
of some affine space AnS , that is given by a system of equations (Pα)α∈I
with Pα ∈ S[t1, . . . , tn]. Then

∏
S/R hY is a subfunctor of

∏
S/R

W (Sn)
∼−→

W (j∗(S
n))

∼−→W (Rnd) by Lemma 3.5.1. For each I, we write

Pα

( ∑
i=1,..,d

y1,iωi,
∑

i=1,..,d

y2,iωi, . . . ,
∑

i=1,..,d

yn,i

)
= Qα,1 ω1 + · · ·+Qα,r ωr

withQα,i ∈ R
[
yk,i; i = 1, .., d; k = 1, ..., n

]
. Then for eachR′/R,

( ∏
S/R

hY

)
(R′)

inside R′nd is the locus of the zeros of the polynomials Qα,j . Hence this func-
tor is representable by an affine R-scheme X of finite type. Furthermore, if Y
is of finite presentation, we can take I finite so that X is of finite presentation
too. �

In conclusion, if H/S is an affine group scheme of finite type, then the R–
group functor

∏
S/R

hH is representable by an R-affine group scheme of finite

type. There are two basic examples of Weil restrictions.

(a) The case of a finite separable field extension k′/k (or more generally an
étale k-algebra). Given an affine algebraic k′-group G′/k′, we associate the
affine algebraic k–group G =

∏
k′/kG

′ which is often denoted by Rk′/k(G),

see [Vo, §3. 12]. In that case,
∏
k′/k(G)×k ks

∼−→ (G′ks)
d. In particular, the

dimension of G is [k′ : k] dimk′(G
′); the Weil restriction of a finite algebraic

group is a finite group.

(b) The case where S = k[ε] is the ring of dual numbers which is of very

different nature. For example the quotient k-group
(∏

k[ε]/k(Gm)
)
/Gm is

the additive k–group. Also if p = char(k) > 0,
∏
k[ε]/k µp,k[ε] is of dimension

1.

Let us give an application of Weil restriction.

3.5.4. Proposition. Let G/R be an affine group scheme. Assume that there
exists a finite locally free extension S/R such that G×R S admits a faithful
representation N f.g. locally free as S–module. Then G admits a faithful
representation M which is f.g. locally free as R–module.

Proof. Let ρ : G×R S → GL(N) be a faithful S–representation and denote
by M/R the restriction of N from S to R. We consider then the R–map

G→
∏
S/R

G×R S

∏
S/R

ρ

→
∏
S/R

GL(N)→ GL(M)

It is a composite of monomorphisms, hence a monomorphism. �
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3.5.5. Remark. It is natural to ask whether the functor of scalar extension
from R to S admits a left adjoint. It is the case and we denote by

∏
S/RE

this left adjoint functor, see [DG, §I.1.6]. It is called the Grothendieck
restriction.

If ρ : S → R is a R–ring section of j, it defines a structure Rρ of S–ring.
We have

⊔
S/R

E =
⊔

ρ:S→R
E(Rρ). If E = hY for a S–scheme Y,

⊔
S/R

Y is

representable by the R–scheme Y. This is simply the following R-scheme

Y→ Spec(S)
j∗→ Spec(R).
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4. Lecture 4: Gabber’s compactifications

4.1. Hilbert schemes. Let k′ be a finite k-algebra, of dimension d ≥ 1.
Let Q be a quasi-projective k′-variety. We denote by σ : Q′ → Spec(k′) the
structural morphism and consider:

• V the induced k-variety Q′ → Spec(k′)→ Spec(k) (its Grothendieck
restriction);
• W =

∏
k′/k

Q′ the Weil restriction8 of Q′ from k′ to k.

For each k-scheme S, we have

W (S) = Q′(k′ ×k S).

We consider the Hilbert k–functor V [d] = HilbdV/k of closed subschemes of

length d of V . Explicitely, for each k-scheme S, we have

V [d](S) =
{

subschemes Z ⊂ V ×k S,

finite locally free of rank d over S
}
.

Such a Z gives rise to the S-morphism

(4.1.1) ϕZ : Z ↪→ V ×k S
σ×kidS−−−−−→ k′ ×k S

between finite S-schemes locally free of same rank d.

4.1.1. Remark. We deal here with W and V [d] in the frameword of sheaves
over Spec(k); we shall note use deep representability results, i.e. the repre-
sentability of W by a quasi-projective k–variety ([Gro1, § 4], [B, § 2], or [Ni,
§ 5.5]). The only relevant case for this lecture is the case where Q′ is finite

over k′. In that case, the representability and the projectivity of V [d] are
easy according to the further Lemma 4.1.4.

We remind to the reader that we have a morphism of k–functors

u = uQ′/k′/k : W → V [d]

defined as follows: if S is a k-scheme, we associate to a point w ∈W (S) the
k′-morphism w′ : S ×k k′ → Q′. Its graph

Γw′ ⊂ Q′ ×k′ (S ×k k′) = V ×k S
is a closed S-subscheme of V ×k S, isomorphic to S×k k′ hence finite locally
free of rank d over S: this is the wished point uQ′/k′/k(S)(w) ∈ V [d](S).

4.1.2. Lemma. (1) For each k-scheme S, the map uQ′/k′/k(S) above in-
duces a bijection of W (S) on the set of Z ⊂ Q′ ×k S such that the
S-morphism ϕZ defined in (4.1.1) is an isomorphism.

(2) The morphism of k–functors u : W → V [d] is representable by an
open immersion.

8It is representable [B-L-R, §7.6, th. 4]; however we will apply it only in the affine case.
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(3) If k′ is a field, u induces a bijection of W (k) on V [d](k).

Proof. (1) Let Z ⊂ Q′×kS be a subscheme such that ϕZ is an isomorphism.
It defines then a section of Q′ ×k S = V ×k S → k′ ×k S, i.e. a point of
W (S). The statement follows.

(2) Let us show that the monomorphism u is an open immersion. Since a
smooth monomorphism is an open immersion [EGA4, 17.9.1], it is enough to
check the smoothness by the lifting criterion. Let S be a k–algebra equipped
with an ideal I satisfying I2 = 0. We consider the commutative diagram

W (S)
u //

��

V [d](S)

��
W (S/I)

u // V [d](S/I).

and we are given w ∈W (S/I) and [Z] ∈ V [d](S) such that [Z]S/I = u(w) ∈
V [d](S/I). The S-morphism ϕZ : Z → k′ ×k S is such that ϕZ ×S S/I is an
isomorphism. Nakayama lemma shows that ϕZ is an isomorphism so defines
a point w̃ ∈ W (S) such that u(w̃) = [Z]. Since u is a monomorphism, w̃
maps to w. Thus u is smooth.

(3) We assume that k′ is a field. Let [Z] ∈ V [d](k). The morphism ϕZ :
Z → Spec(k′) is a k-morphism so is not trivial. Then k[Z] is a k′-algebra of
dimension 1, whece k′ = k[Z]. The morphism ϕZ is an isomorphism so that
[Z] = u(w) for w ∈W (k). �

We assume furthermore that an affine algebraic k-group acts (leftly) on V
by k′-automorphisms, it means that σ : V → Spec(k′) is G-invariant. [This
is the same data that an action of the k′-group Gk′ over Q′].

One deduces formally actions of G on the whole picture. The following
statement permits to control orbits at infinity.

4.1.3. Theorem. Under the preceding assumptions, let K be an extension

of k and let J ⊂ V
[d]
K a K-orbit for the action of GK . If K ⊗k k′ is a field,

we have J ⊂WK .

Proof. Up to replace k′ by K ⊗k k′, Q′ by Q′K , etc., we can assume that

K = k and that k′ is a field. The map y : J → V [d] defines a closed k–
subscheme Z of Q′ ×k J , finite, locally free of rank d over J , and G-stable.
According to Lemma 4.1.2.(1), we have to establish that the J-morphism

ϕZ : Z −→ k′ ×k J
defined in (4.1.1) is an isomorphism. It arises with the G-equivariant mor-
phism

ψZ : k′ ⊗k OJ −→ A := pr2∗(OZ)

of finite OJ -algebras which are locallly free of rank d, and which are lin-
earized for the G-action of G on J . In particular, the cokernel C of ψZ is a
coherent OJ -module which is G-linearized. For each s ∈ N, we appeal to the
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Fitting stratum Fs(C) ⊂ J : it is a locally closed k–subscheme of J , such that
the restriction of C to Fs(C) is locally free of rank s [GW, §11.8]. Since C is
G-linearized, each Fs(C) is stable under G. But G acts transitively on J , it
follows that there exists r such that Fs(C) = ∅ for all s 6= r and Fr(C) = J .
We conclude that C is locally free of rank r.

It remains to see that r = 0. Since C is locally free of rank r, the image
of ψZ is a quotient algebra of k′ ⊗k OJ , locally free of rank d− r, so defines
a k–subscheme T ⊂ k′ ×k J , which is finite locally free on J of rank d − r
and G-invariant. Since G acts transitively on J and trivially on Spec(k′), T
comes of a k-subscheme T0 of rank d − r of Spec(k′). But k′ is a field, so
that T0 = ∅ and r = d, either T0 = Spec(k′) and r = 0. The first case is
excluded since ψZ is a morphism of non-trivial algebras. Thus r = 0. �

4.1.4. Lemma. [G-G-MB, 2.5.5] Let Y be a finite k-scheme and d ∈ N.

Then the functor Y [d] := HilbdY/k is representable by a projective k-scheme

equipped with an ample Autk(Y )-linearized line bundle.

4.2. A useful fact.

4.2.1. Lemma. [G-G-MB, 5.1.1] Let G be an affine algebraic k–group acting
on an k-variety X. Let Y ⊆ X be a k–subscheme of X stable under the
action of G. Then the schematic adherence Y of Y in X is stable under G.

Proof. We consider the following commutative diagram

G×k Y

β

��

⊂ G×k Y

α

��
Y ⊂ X

where the maps α and β arise from the action of G on X. We want to show
that α factorizes by Y The preimage α−1(Y ) is a closed subscheme of G×Y
which contains G×k Y . On the other hand, G×k Y is schematically dense
in G×k Y . Thus α−1(Y ) = G×k Y . �

4.3. Good compactifications of homogeneous spaces.

4.3.1. Definition. Let X be a k-variety equipped with a left action of an
affine algebraic k–group G. A G-equivariant compactification of X is an
open immersion j : X → Xc which is G-equivariant where Xc is a proper
k–variety equipped with a left action of G.

The points and subschemes of Xc \X are called “at infinity”; note that
we do not require X to be dense in Xc.

4.3.2. Definition. Let G be an affine algebraic k–group and let H be a
closed k–subgroup of G. Let J be an affine algebraic k–group acting on G
which normalizes H. An equivariant G ok J-compactification j : X → Xc

of X = G/H is good if it satisfies the following requirements:

(i) Xc admits an ample Gok J-linearized line bundle;
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(ii) G(ks) acts transitively on Xc(ks).

It is very good if there is no ks-orbit at infinity.

4.3.3. Theorem. (Gabber, see [G-G-MB, th. 1.2]) Let G be an affine alge-
braic k-group equipped with an action of a smooth affine algebraic k–group
J . Let X = G/G† be the quotient of G by its largest smooth k–subgroup.

(1) X admits a good Go J-equivariant compactification.

(2) We assume furthermore the following condition:

(**) for each G† ⊂ H ⊂ G, any H-immersion H/G† ↪→ Y in an affine
H–variety Y is a closed embedding.

Then X admits a very good compactification.

We shall discuss later that closedness condition (**); it is related to con-
dition (*) of Gabber.

4.3.4. Example. Assume that k is imperfect of characteristic p > 0 and pick
a ∈ k\kp. We consider the commutative unipotent k-group G ⊂ G2

a,k defined

by the equation xp−ayp = 0. Since G†(ks) = 0, we have G† = 0. The result
provides then a good compactification of G itself. There is another nice way
(involving weighted projective spaces) to construct a good compactification
of that unipotent k–group, see [B-L-R, §10, prop. 11].

The proof of the Theorem is based on an induction process and we shall
start by the terminal step.

We put H = G†. Let k′ be the field of definition of the smooth k–group
(Gk)red and put d = [k′ : k]. We consider the closed immersion

j : G ↪→
∏
k′/k

Gk′

and define H̃ = G ∩
∏
k′/k(Gk′)red. We have H ⊆ H̃ ⊂ G so that H(ks) =

H̃(ks). We observe that J acts on H̃.

4.3.5. Lemma. We have H = H̃ if and only if G is smooth.

Proof. If G is smooth, then H = G, so that H̃ = G. Conversely, we assume

that H̃ = G, so that we have a commutative diagram∏
k′/kGk′,red
_�

��
G

::

� � //
∏
k′/kGk′ .
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We base change by k′/k and get the commutative diagram(∏
k′/kGk′,red

)
k′_�

��

q1 // Gk′,red
_�

��
Gk′

99

� � //
(∏

k′/kGk′
)
k′

q // Gk′

where q and q1 are the adjunction morphisms [CGP, A.5.7]. We observe that
the composition of the bottom maps are the identity of Gk′ it follows that
idGk′ factorizes through the inclusion of Gk′,red in Gk′ . Thus Gk′,red = Gk′
and G is smooth. �

We shall compactify G/H̃ which is a closed k-subscheme of the Weil
restriction W :=

∏
k′/k

(
Gk′/(Gk′)red

)
. This is an affine k-scheme since the

k′-scheme Q′ = Gk′/(Gk′)red is affine. Actually Q′ is the spectrum of a
local k′–algebra A′ of residual field k′ [DG, III.3.6.4]. We denote by V the
underlying k-scheme, that is Q′ seen as a k-scheme.

We denote by V [d] = HilbdV/k the Hilbert scheme of finite subschemes of V

of length d = [k′ : k]. Since V is finite over k, V [d] is projective and admits
an ample Go J–linearized line bundle. We have an open immersion

u : W → V [d]

which is G ok J-equivariant. It maps the point s ∈ W (k) = Q(k′) to the
reduced closed k-subscheme of V which is of degree d = [k′ : k].

The k-group G acts on u and the stabilizer of the point s ∈ W (k) is H̃.
According to Proposition 2.10.1, we have an immersion

i : X = G/H̃ ↪→ V [d]

Now let Xc be the schematic closure of X, it is an equivariant G o J-
compactification of X. The pull-back of the ample linearized bundle of V [d]

defines an ample G ok J-linearized bundle. Lemma 4.1.4.(3) implies that
X(ks) = Xc(ks) = {s}. Thus Xc is a good Gok J–compactification of X.

If H̃ = G or H̃ = H, we have then proven Theorem 4.3.3. Else we can

assume by induction that we can compactify H̃/H. There is a natural way
to construct a good (resp. very good) compactification of G/H from good

(resp. very good) compactifications of G/H and H̃/H, see [B-L-R, §10.2]
(or [G-G-MB, 5.3.3]).

The proof of (2) is based on Theorem 4.1.3. Our assumption implies
that X = G/G† is closed in the affine G-variety W so that X = Xc ∩W .
We are given a k-orbit I ⊂ Xc and the quoted statement implies that
Z ⊂ Xc ∩W = X.

This statement is a special case of a much general result on compactifi-
cations announced by Gabber [Ga].
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5. Lecture 5: Topological henselian fields

5.1. Topological rings. Let R be a topological Hausdorff ring (unital com-
mutative). Basic examples are local fields, rings of p–adic integers, rings of
continuous functions of manifolds.

5.1.1. Proposition. [Co, prop. 2.1] (1) There is a unique way to topologize
X(R) for affine finite type R-schemes X in a manner that is functorial in X,
compatible with the formation of fiber products, carries closed immersions
to closed embeddings, and for X = Spec(R[t]) gives X(R) = R its usual
topology. Explicitly, if A is the coordinate ring of X then X(R) has the
weakest topology relative to which all maps X(R)→ R induced by elements
of A are continuous.

(2) If R is locally compact, then X(R)Top is locally compact.

Proof. (1) To see uniqueness, we pick a closed immersion i : X → Spec(R[t1, . . . , tn]).
By forming the induced map on R-points and using compatibility with prod-
ucts (view affine n-space as product of n copies of the affine line), as well as
the assumption on closed immersions, the induced set map X(R)Top → Rn

is a topological embedding into Rn endowed with its usual topology. This
proves the uniqueness. For the existence, we pick an R-algebra isomorphism
A = Γ(X,OX) = R[t1, . . . , tn]/I for an ideal I, and identify X(R) with the
subset of Rn on which the elements of I (viewed as functions Rn → R) all
vanish. We wish to endow X(R) with the subspace topology, and the main
issue is to check that this construction is independent of the choice of the
presentation of I and enjoys all of the desired properties. We claim that
the topology defined is the same as the subspace topology defined by the
canonical injection X(R) ↪→ RA. Let a1, . . . , an ∈ A the respective images
of t1, . . . , tn. The injection X(R) ↪→ Rn is the composition of the natural
injection X(R) ↪→ RA and the map RA → Rn defined by (a1, . . . , an) ∈ An.
Hence, every open set in X(R) is induced by an open set in RA because
RA → Rn is continuous. Since every element of A is an R-polynomial in
a1, . . . , an and R is a topological ring (so polynomial functions Rn → R over
R are continuous), it follows that the map X(R) → RA is also continuous.
Thus, indeed X(R) has been given the subspace topology from RA, so the
topology on X(R) is clearly well-defined and functorial in X.

Consider a closed immersion Y ⊂ X. Since Y (R)Top is closed in Rn, it is
closed in X(R)Top.

Finally, we are given maps X → Y and Z → Y between affine R-schemes
of finite type. It gives rise to a continuous bijection

X(R)Top ×Y (R)Top
Z(R)Top

∼−→
(
X ×Y Z

)
(R)Top.

The left handside embeds topologically in X(R)Top×Z(R)Top when the right
handside embeds topologically

(
X×RZ

)
(R)Top. But the compatibility holds

for absolute products so that the continuous bijection above is a topological
embedding whence is a homeomorphism.
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(2) is clear. �

5.1.2. Remark. (a) The Hausdorff property is necessary to require if we
want closed immersions to go over to closed embeddings. Indeed, by con-
sidering the origin in the affine line we see that such a topological property
forces the identity point in R to be closed.

(b) For establishing uniqueness, we can also add two closed embeddings of
X in an affine space. The advantage of Conrad’s proof is to provide in the
same time the functoriality.

5.1.3. Example. Consider the open R-subscheme Gm ⊂ A1
R. It is the

closed R–subscheme of A2
R defined by xy = 1. In other words, R× acquires

the topology of the hyperbola xy = 1 inside R2. In particular the map
(R×)Top → (R×)Top, x 7→ x−1 is continuous.

On the other hand, we can consider the topology Top′ induced by the
embedding R× ⊂ R. Then the map (R×)Top → (R×)Top′ is continuous and
is an homeomorphism if and only if the inversion is continuous.

This is not the case in general. Counter-examples are rings of adeles and
certain rings from analysis.

5.1.4. Proposition. [Co, prop. 3.1] We assume that R is local, that R× is
open in R and has continuous inversion.

(1) Let i : U → X be an open immersion between affine R–schemes of finite
type. Then U(R)Top → X(R)Top is an open embedding.

(2) There is a unique way to topologize X(R) for separated R-schemes X of
finite type in a manner that is functorial in X, compatible with the formation
of fiber products, carries closed immersions to closed embeddings, and for
X = Spec(R[t]) gives X(R) = R its usual topology. Furthermore if X is
separated, then X(R)Top is Hausdorff.

(3) If i : U → X be an open immersion between affine R–schemes of finite
type, then U(R)Top → X(R)Top is an open embedding.

Proof. (1) We start with the case of a basic open subset U = Xf for f ∈
A = Γ(X,OX). We consider the cartesian diagram

U
f //

��

Gm,R

��
X

u // A1
R.

The compatibility with fiber products reduces the problem to the special
case Gm,R ⊂ A1

R. In this case the topology on R× acquires the topology of
the hyperbola xy = 1 inside R2 and this is homeomorphic to the induced
topology on R× under our assumptions.

In the general case, U = U1 ∪ . . . Ut where Ui is a basic affine subset of
X. Since R is local we have U(R) = U1(R)∪ · · · ∪Ut(R) so that U(R)Top is
open in X(R)Top.
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(2) Let X be R–scheme of finite type and let X = U1 ∪ · · · ∪Ur be a Zariski
cover by affine R-schemes. Since X(R) = U1(R)∪ · · · ∪Ur(R), the topology
on each Ui(R) defines a topology on X(R). By taking two covers and their
refinement, (1) yields that the topology on X(R) does not depend of the
cover. The functorial properties are left to check to the reader.

We assume that X is separated, that is ∆ : X → X ×R X is a closed im-
mersion. It follows that ∆Top : X(R)Top → X(R)Top is a closed topological
embedding. Thus X(R)Top is a separated topological space.

(3) The Ui ∩ U form an open cover of U . Since Ui is affine, (1) shows that
(Ui ∩ U)(R)Top is open in Ui(R)Top so is open in X(F ). Since U(R) =⋃

(Ui ∩ U)(R), we conclude that U(R)Top is open in X(R)Top. �

5.2. Ultra-paracompacity. We recall that a topological space X is ultra-
paracompact if each open covering (Ui)i∈I of X admits a refinement (Vj)j∈J
such that X =

⊔
j∈J Vj .

5.2.1. Proposition. Let K be a valued field (for a non-trivial valuation v).
Let X be a K-variety. Let Ω be an open subset of X(K)Top. Let (Ωα) be a
open covering of Ω.

(1) Ω admits a basis of open neighboroods B = (Bλ)λ∈Λ finer than (Ωα) such
that for all λ, λ′ ∈ Λ, satisfying Bλ∩Bλ′ 6= ∅, we have Bλ ⊆ Bλ′ or Bλ′ ⊆ Bλ.

(2) Each subset of X(K)Top is ultra-paracompact.

The terminology for (1) is that Ω admits a non-archimedean basis of open
neighboroods [Mo, déf. 5]. This occurs for closed balls of Kn. For γ ∈ Γ,
we put B(x, γ) =

{
w ∈ Kn | v(wl − xl) ≥ γ for l = 1, ..., ni

}
. Assume that

B(x, γ)∩B(x′, γ′) 6= ∅, that γ′ ≤ γ and pick z ∈ B(x, γ)∩B(x′, γ′). We claim
that B(x, γ) ⊂ B(x′, γ′). If y ∈ B(x, γ), we write y−x′ = (y−x) + (x− z) +
(z − x′). It follows that v(yi − x′i) ≥ Inf

(
v(yi − xi), v(xi − zi), v(zi − x′i)

)
≥

Inf(γ, γ, γ′) = γ′ for i = 1, ..., n so that y ∈ B(x′, γ′).
The general case is based on the use of integral models, see [G-MB, Ap-

pendice].

5.3. Topologically henselian fields. Let F be an Hausdorff topological
field.

5.3.1. Definition. The field F is topologically henselian if for each étale map
X → Y between F–varieties, the induced map fTop : X(F )Top → Y (F )Top

is a local homeomorphism.

Basic examples are of course R and C but also their subfields Q and Q∩R.

5.3.2. Lemma. Assume that F is topologically henselian. Let f : X → Y
be a smooth map between F–varieties.

(1) Let Ω ⊂ Y (F )Top be the image of fTop. Then the induced map X(F )Top →
Ω admits locally continuous sections.

(2) The map fTop : X(F )Top → Y (F )Top is open.
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Proof. (1) The ultra-paracompactness property reduces to show the exis-
tence of sections locally on I.

Let x ∈ X(F ) with image y = f(x) ∈ Y (F ). According to [B-L-R, §2.2,
prop. 14], there exists a morphism h : Z → X, a point z ∈ Z(F ) such that
h(z) = x such that f ◦ h : Z → X is étale. The diagram

Z

f◦h
��

h

~~
X

f // Y.

gives rise to

Z(F )Top

F
��

hTop

{{
X

fTop// Y (F )Top.

Our assumption implies that (f ◦ h)Top is a local homeomorphism. There
exist an open neighborood Vy of y and a continuous sy : Vy → Z(F )Top. It
follows that hTop ◦ sy : Vy → X(F )Top is a continuous section of fTop.

(2) It is a consequence of (1). �

5.3.3. Remark. In the statement, if F is furthermore a valued field, the
ultra-paracompactness property (Remark 5.3.3) implies that X(K)Top → Ω
admits a continuous sections.

We remind to the reader the following definition.

5.3.4. Definition. Let (R,m, κ) be a local ring. We say R is henselian if for
every monic f ∈ R[T ] and every root a0 of f such that f ′(a0) ∈ κ× there
exists an a ∈ R such that f(a) = 0 and a = a0.

An important point is that such a root a of f is unique. This is clear if R
is integral and the general case goes as follows. We write f(x+ y)− f(x) =
f ′(x)y + g(x, y)y2 in R[x, y]. Let b another root of f such that b = a0. We
have 0 = f(b) − f(a) = f(a + (b − a)) − f(a) = f ′(a)(b − a) + c(b − a)2

for some c ∈ R. By assumption f ′(a) is a unit in R. Hence (b − a)(1 +
f ′(a)−1c(b− a)) = 0. By assumption b− a ∈ m, hence 1 + f ′(a)−1c(b− a) is
a unit in R so that ba = 0 in R.

There are several equivalent definitions, see [Stacks, Tag 04GE]. Here we
shall use only that we can remove the “monic” assumption in the definition
(and the unicity argument holds as well).

Complete discretly valued fields are henselian (Newton’s method [Wa1,
th. 32.11]) and also henselizations of local rings. Another examples are
iterated Laurent fields k((t1))((t2)) . . . ((tn)) [Wd, §3]. The next statement
justifies the terminology.

5.3.5. Proposition. Let F be an henselian valued field, i.e. its valuation
ring Ov is henselian. Then F is topologically henselian.
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This applies in particular to p-adic fields.

Proof. We are given an étale morphism f : X → Y between F -varieties.
Let x ∈ X(F ) and put y = f(x). Without loss of generality we can assume
that Y = Spec(A) is affine and that X is an open subset of Spec(A[t]/P (t))
where P is a monic separable polynomial such that P ′(x) ∈ F× [B-L-R,
§2.3, prop. 3]. We can even assume that X = Spec(A[t]/P (t)).

We embed Y is an affine K–space Ỹ = An
F = Spec(Ã) and lift P in an

unitary polynomial P̃ (t) ∈ Ã[t]. We claim that we can replacing Y by Ỹ

and P by P̃ . We have indeed a cartesian diagram

X

f

��

// Spec(Ã[t]/P̃ (t)) = X̃

f̃
��

Y // Ỹ = Spec(Ã)

where the horizontal map are closed immersions. It gives rise to the following
cartesian diagram of topological spaces

X(F )Top

f

��

// X̃(F )Top

f̃
��

Y (F )Top
// Ỹ (F )Top.

If f̃Top is a local isomorphism at x, so is fTop by base change. We can then as-
sume that Y = An

F = SpecF [Z] = SpecF [Z1, . . . , Zn], X = Spec (F [Z, T ]/(P ))
where P is monic in T , and where y (resp. x) is the origin of An

F (resp. of

An+1
F ). Furthermore the projection X → Y is étale at x. We can choose

then coordinates such that the tangent hyperplane at x in X is given by the
equation T = 0, so that P is (up scaling) of the shape

P (Z, T ) = T +
∑
|I|+j≥2

aI,j Z
IT j (aI,j ∈ F ).

Let R be the valuation ring of v and denote by m its maximal ideal. For each
α ∈ F×, we may replace P by Pα(Z, T ) := 1

αP (αZ, αT ). The coefficient

of ZIT j is Pα is α|I|+j−1aI,j : in that formula the exposant of α is > 0.
Taking α close enough of 0, we can assume that the coefficients aI,j belong
to m. The Hensel property shows that for each z ∈ Rn, the polynomial
P (z, T ) ∈ R[T ] admits a unique root t(z) in m. In other words, fTop induces
a bijection between fTop

−1(Rn) ∩ (Rn ×m) (neighborood of x in XTop) and
Rn (neighborood of y in Fn).

It remains to see that the map z 7→ t(z) is continous at the origin. This
is enough to establish the inequality

v(t(z)) ≥ min
i=1,...,n

v(zi).
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In other words, we have to show for z = (z1, . . . , zn) ∈ Rn and t ∈ m
satisfying

v(t) < min
i=1,...,n

v(zi),

(note that it implies that t 6= 0), then P (z, t) 6= 0. This is enough to
observe that each term zI tj , for |I|+ j ≥ 2 has valuation > v(t) (recall that
v(aI,j) > 0). This holds if |I| ≥ 1 from the assumption on the v(zi), and it
holds also for |I| = 0: in this case we have j ≥ 2 and t ∈ m. �

Together with Remark 5.3.3, Proposition 5.3.5 has the following nice con-
sequence.

5.3.6. Corollary. Assume that F is an henselian valued field. Let f : X → Y
be a smooth morphism and denote by Ω = f(X(F )). Then the induced map
X(F )Top → Ω admits a continuous section.

5.4. Application to torsors.

5.4.1. Proposition. We assume that F is a topologically henselian field.
Let f : X → Y be a morphism between of F–varieties which is a G-torsor
for a smooth affine algebraic F -group G.

(1) The map fTop : X(F )Top → Y (F )Top is open.

(2) The characteristic map ϕ : Y (F )→ H1(F,G) is locally constant.

(3) Let I the image of fTop. Then I is clopen and the induced map fTop :
X(F )Top → I is a principal G(K)Top-fibration.

Proof. (1) The map f is smooth so fTop is open.

(2) We need to show that the non-trivial fibers of ϕ are open in Y (F )Top.
This is the case for I = ϕ−1(1). We are given c = ϕ(y0) for y0 ∈ Y (F ).
We consider the G–torsor E = Ey0 =. If y′ ∈ Y (F ) we have ϕ(y′) = c
if and only if the G–torsors E and Ey are isomorphic. This condition is
equivalent to require that the EG-torsor IsomG(E,Ey′) is trivial where EG

stands for the twisted F–group. This rephrases to say that the EG-torsor
P = IsomG(EY , E) over Y satisfies Py(k) 6= 0.

Since the twisted F -group EG is smooth as well, the preceding case en-
ables us to conclude that ϕ−1(c) is open in Y (F )Top.

(3) We have I = ϕ−1(1), so I is clopen in Y (F )Top. The induced map admits
local sections, so is a principal G(K)Top-fibration.

�

5.4.2. Remark. If (K, v) is an henselian valued field, we can say more. Since
X(F )Top → I admits locally sections, the paracompactness property yields
that X(F )Top → I admits a continuous section. The principal fibration is
then trivial.

5.4.3. Corollary. We assume that F is a topologically henselian field. Let
G be an affine algebraic F–group acting on a F–variety. Let x ∈ X(F ) such
that the stabilizer Gx is smooth.



TORSORS OVER LOCAL FIELDS (September 3, 2021) 35

(1) The orbit G(F ).x is open in X(F )Top.

(2) If X ∼= G/Gx, then G(F ).x is clopen in X(F )Top and the map G(F )→
G(F ).x is a principal G(K)Top-fibration.

Note that it applies to group morphisms G → G/N whenever N is a
smooth normal F–subgroup of G.
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6. Lecture 6: Using integral models

6.1. Integral models. We are given a valued field (K, v) and denote by
A its valuation ring (not necessarily noetherian). We recall the following
fact. If X is a K–variety, then there exists a separated A–scheme X of finite
presentation such that X×AK ∼= X. Such a A-scheme X is called an integral
model of X.

If X is affine and embedded in An
K , it is enough take the schematic

adherence of We can do that also in the projective case but the general case
is an application of Nagata’s compactification theorem [GW, th. 12.70].
We compactify X in a proper K-variety Xc and write K = Af with f ∈
m. We apply Nagata’s theorem to the map Xc → Spec(Af ) → Spec(A).
There exists a proper A–scheme Xc such that Xc is isomorphic to an open
schematically dense subscheme of Xc. Then Xc is open dense in XcK so
we have Xc = XcK . Finally X = Xc \ Z where Z stands for the schematic
adherence of Z = Xc \X.

6.1.1. Lemma. Let X be an A-model of the K–variety X.

(1) The map X(A)Top → X(K)Top is topological open embedding.

(2) If X is proper, then X(A)Top → X(K)Top is a homeomorphism.

Proof. (1) Since X is separated, the map X(A)→ X(K) is injective.

Reduction to the affine case. We assume that the statement is known in
the affine case. Let U1, . . . ,Un be an affine covering of X. Our assumption
implies that Ui(A)Top → Ui(K)Top is a topological embedding and so is
Ui(A)Top → X(K)Top. Since the Ui(K)(s form an open cover of X(K)Top

and Ui(A) = X(A) ∩ Ui(K), we conclude that X(A)Top → X(K)Top is a
topological embedding.

We assume that X is affine and consider a closed embedding Let j : X ⊂
AN
A . We have the cartesian diagram

X(A)
_�

��

⊂ AN_�

��
X(K) ⊂ KN .

We observe that the horizontal maps are topological embeddings and that
the map AN → Kn is continuous and an open embedding. It follows that
X(A)Top → X(K)Top is continuous and is an open embedding.

(2) In this case we have X(A) = X(K). �

6.2. The locally compact case.

6.2.1. Proposition. Assume that K is locally compact. Let X be a K-
variety together with an A-model X.

(1) X(A)Top is a compact subset of X(K)Top and the topological space X(K)Top

is locally compact.
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(2) Let f : X → Y be a proper morphism between K–varieties. Then
fTop : X(K)Top → Y (K)Top is a proper topological map.

In particular, if X is proper over K, then X(K)Top is compact.

Proof. (1) Once again, we can assume that X is affine and choose a closed A-
immersion j : X→ An

A. Then X(A) is a closed subset of AN so is compact.
Since X(K) is a closed subset of the locally compact space Kn, X(K)Top is
locally compact.

(2) We assume firstly that f is projective, that is there exists a closed im-
mersion i : X → Pn

Y such that f = p2 ◦ i. Since Pn(K)Top is compact, the
map (p2)Top : Pn(K)Top × Y (K)Top → Y (K)Top is proper [B:TG1, I.10.2,
cor. 5]. On the other hand, iTop is proper and so is fTop by composition.

Since the spaces are locally compact, we can use the criterion of properness
with preimages of compact [B:TG1, I.10.3, prop. 7]. In general, we shall
argue by induction on dim(X) (allowing any Y ), the case of dimension 0
being clear (for all Y ). We may assume that X is reduced and irreducible,
so by Chow’s Lemma [GW, 13.100], there is a surjective projective birational
K-map h : X ′ → X with X ′ a reduced and irreducible K-scheme such that
X ′ is also projective over Y . Choose a proper closed subset Z ⊆ X such that
h is an isomorphism over X \ Z. Clearly X(K) = Z(K) ∪ h(X ′(K)), and
Z(K) is Y (K)-proper since dim(Z) < dim(X). Also, X ′(K)Top is Y (K)-
proper and X ′(K)-proper since X ′ is projective over Y and X, so the maps
Z(K)Top t X ′(K)Top → Y (K)Top and Z(K)Top t X ′(K)Top →→ X(K)Top

are proper. Hence, the map X(K)Top → Y (K)Top between Hausdorff spaces
is proper [B:TG1, I.10.1, prop. 3]. �

In particular, if f : X → Y is proper, the image f(X(K)) is closed in
Y (K)Top.

6.3. Completions. We come back in the general framework of a valued
field (K, v) with valuation ring A. We denote by Γ the valuation group. For
each γ ≥ 0, the ideal

mγ =
{
x ∈ A | v(x) ≥ γ

}
is principal and is closed in A. All finitely generated ideals of A are of this
shape (in particular it is always the case when A is noetherian).

The completion K̂ (resp. Â) of K (resp. A) is defined by means of Cauchy
filters [B:AC, VII.3]. This is equivalent to the following construction. We

define Â = lim←−
γ>0

A/mγ .

Let â be a non-zero element of Â, i.e. there exists γ > 0 such that its
projection in A/mγ is non zero. If a, a′ ∈ A lift â mod mγ , we have v(a) >
γ and v(a − a′) > γ whence v(a) ≥ Min(v(a′), v(a′ − a)) ≥ v(a′). Similarly
we have v(a′) ≥ v(a) so that v(a′) = v(a). We define then v̂(â) = v(a)
for an arbitrary lift a of â mod mγ and it is straightforward to check that
is does not depend of the choice of γ. We extended then v to a valuation
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v̂ on Â and we write v = v̂. The ring Â is local with maximal ideal

m̂ = {a ∈ Â | v(a) > 0} = mÂ; it is reduced so is a domain. Its fraction

field K̃ is valued field with contains (K, v).

By construction, the ring A is dense in Â and so is K in K̂.

6.3.1. Remark. Note that we have also Â = lim←−J∈JA/J where J stands for

all proper non-zero ideals of A.

6.3.2. Examples. (a) The completion of k(t) for the valuation vt is the
Laurent serie field k((t)).

(b) More generally the completion K̂ of (K, v) when v is of rank one is

henselian [Wa1, th. 32.11]. Furthermore the separable closure L of K in K̂
is henselian [Wa1, th. 32.18].

(c) This is not true for higher valuations [Wa1, ex. 32.3].

6.3.3. Lemma. [Wa1] Let (K, v) be a henselian valued field.

(1) K̂ is henselian.

(2) The field K is separably closed in K̂.

(3) K̂ ⊗K Ks is a field which is a separable closure of K̂.

Assertion (1) is straightforward (by approximation of coefficients of the
relevant polynomial) and for (2), (3), see [Wa1, 32.19 and 32.20].

6.3.4. Proposition. Let (K, v) be a henselian valued field. Let X be a

smooth K-variety. Then X(F ) is dense in X(K̂)Top.

Proof. Let Ω be an non-empty open subset of X(K̂)Top. We want to show

that Ω ∩ X(K) is non-empty. We pick x ∈ X(K̂). Up to shrink X, we

can assume that there exists an étale morphism f : X → Ad
K . Since K̂ is

henselian, the map fTop : X(K̂)Top → (K̂)n is open so that f(Ω) is open in

(K̂)n. It follows that f(Ω) ∩ (K)n 6= ∅. We pick a ∈ f(Ω) ∩ (K)n. Since

K is separably closed in K̂ and f is étale, we have that Xa(K) = Xa(K̂).
Thus X(K) ∩ Ω 6= ∅. �

6.4. Admissible valuation fields. We assume that the valued field K
is of characteristic p > 0. The Frobenius morphism Fr : Ga,K → Ga,K ,
x 7→ xp, is a faithfully flat morphism of K–algebraic groups whose kernel is
Fp. According to Proposition 2.4.1, Fr is then a proper map. We have

Fr(K) = Kp ⊂ K.
The natural question to address is whether Kp is closed in K.

6.4.1. Lemma. Let K̂ be the completion of K.

(1) Âp is closed in Â and K̂p is closed in K̂.

(2) If the completion K̂ is separable over K, then Kp is closed in K.

(3) If (K, v) is henselian, the following are equivalent:



TORSORS OVER LOCAL FIELDS (September 3, 2021) 39

(i) Kp is closed in K;

(ii) K is algebraically closed in K̂;

(iii) K̂ is separable over K.

Proof. (1) Let b ∈ Â an element adherent to Âp. For each γ > 0, there

exists a ∈ Â such that v(ap − a) ≥ p γ. For another choice a′, we have

p v(a′ − a) = v((a′)p − ap) ≥ Min
(
v((a′)p − b), v((a)p − b)

)
≥ pγ.

If follows that a− a′ ∈ mγ so that the image of a in A/mγ does not depend
of the choice of the lift. We have defined a coherent family (aγ)γ>0 that is

a point a ∈ Â which satisfies ap = b. We have shown that (Â)p is closed in

Â and so is (K̂)p in K̂.

(2) We assume that K̂ is separable over K. If an element a of K is adherent

to Kp, (1) implies that a = bp with b ∈ K̂. The assumption implies that
a ∈ Kp.

(3) The implication (iii) =⇒ (i) is a special case of (2).

(i) =⇒ (ii) Let L/K a finite subextension of K̂. Let E be the maximal
separable subextension of E/K. According to Lemma 6.4.1.(2), we have
E = K so that L is purely inseparable. If K ( L, there exists x ∈ L \K
such that xp ∈ K. Since Kp is dense and closed in K ∩ (K̂)p, we have

Kp = K ∩ (K̂)p whence x ∈ Kp. We conclude that x ∈ K and that K = L.

(ii) =⇒ (iii): obvious.
�

6.4.2. Definition. A valued field (K, v) is admissible if it henselian and if

K̂ is a separable extension of K.

6.4.3. Example. (a) The henselian field Fp((t)) is obviously admissible since
it is complete. Let K be the algebraic closure of Fp(t) in Fp((t)), this is an
henselian valued field. Since Fp((t)) is separable over F(t) (use for example
MacLane criterion), it follows that K is admissible.

(b) (F.K. Schmidt) Since Fp((t)) has infinite transcendence degree over Fp(t),
we can choose some element s ∈ Fp[[t]] which is transcendental over Fp(t).
We consider the subfields K = Fp(t, sp) and K ′ = Fp(t, s) of Fp((t)). Since

K̂ is the adherence of K in Fp((t)), we see that K ′ ⊂ K̂ so that K̂ is not
separable over K.

Those fields are not henselian. Let Kh (resp. (K ′)h) be the separable
closure of K (resp. K ′) in Fp((t)). Then Kh (resp. (K ′)h) is henselian
(and separable) over K (resp. over K ′) [Wa1, th. 32.18]. This shows that

(̂Kh) = K̂ is not separable over Kh.

Admissible fields have further nice properties (e.g. [G-G-MB, 3.5.3, 4.1.1]).
We record the following refinement of Proposition 6.3.4.
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6.4.4. Theorem. (Moret-Bailly, [MB2, cor. 1.2.1]) Let (K, v) be an admis-

sible valued field. Let X be a K-variety. Then X(K) is dense in X(K̂)Top.

6.5. The strong approximation theorem. Let (K, v) be an admissible
valued field and denote by A its valuation ring.

6.5.1. Theorem. (Moret-Bailly, [MB2]) Let X be a separated A–scheme of
finite presentation. Let γ ∈ Γ, γ > 0. Then there exists γ′ ≥ γ such that

Im
(
X(A)→ X(A/mγ)

)
= Im

(
X(A/mγ′)→ X(A/mγ)

)
.

This extends a result of Greenberg [Gre] which is the case when v is a
discrete valuation.

6.5.2. Corollary. (Infinitesimal Hasse principle) Let X be a separated A–
scheme of finite presentation. Then the following are equivalent:

(i) X(A) 6= ∅;
(ii) X(A/mγ) 6= ∅ for all γ > 0.

6.5.3. Remark. Example 6.4.3.(2) provides an henselian valued field K such

that Kp ( K ∩ (K̂)p so that Ap ( A ∩ (Â)p. In this case, the infinitesimal
Hasse principle fails and a fortiori the strong approximation theorem.

We come back to properness issues.

6.5.4. Theorem. Let f : X → Y be a proper morphism between K-varieties.

(1) (Moret-Bailly [MB2]) The image of fTop is closed in Y (K)Top.

(2) [G-G-MB, Th. 4.2.3] Let y ∈ Y (K) such that the fiber C = Xy(K)Top

is compact. Then each neighborhood Ω of C in X(K)Top contains a neigh-
borhood of the shape f−1(Υ) where Υ is a neighborhood of y in Y (K)Top.

Proof. Both statements are local on the target so we can assume that Y is
affine.

(1) We are given an element y ∈ Y (K) which is adherent to f(X(K)) and
want to show that Xy(K) 6= ∅. There exists an affine A–model Y of Y such
that y ∈ Y(A) ⊂ Y (K). By using Nagata’s compactification theorem, there
exists an A-model X of X together with a proper A-map X → Y. Since
f is proper, we have X(A) = X(K) ∩ f−1(Y(A)). Then y is adherent to
f(X(A)). We put Xy = f−1(y).

Our assumption implies that Xy(A/mγ) 6= ∅ for all γ > 0. The infini-
tesimal Hasse principle yields Xy(A) 6= ∅. We conclude that y belongs to
f(X(K)).

(2) We have C = Xy(A) which is assumed compact. Since Y(A) is a neigh-
borhood of y ∈ Y (K) (Lem. 6.1.1), we can assume (up to shrink Ω) that
U ⊂ Y(A).

(2) We have C = Xy(A). For each ξ ∈ C, there exists γξ > 0 such that

BX(ξ, γξ) =
{
ξ′ ∈ X(A) | ξ′ ≡ ξ in X(A/mγξ)

}
⊂ Ω.
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But C is compact so is covered by finitely many open subsets as above. Up
to shrink Ω, we can assume that there exists γ > 0 such that
(6.5.1)

Ω =
⋃
ξ∈C

BX(ξ, γ) =
{
x ∈ X(A) | ∃ξ ∈ Xy(A) satisfying x ≡ ξ in X(A/mγ)

}
.

The strong approximation theorem provides γ′ ≥ γ such that

Im
(
Xy(A)→ Xy(A/mγ)

)
= Im

(
Xy(mγ′)→ Xy(mγ)

)
.

We define Υ = BY(y, γ′) and claim that f−1(Υ) ⊂ Ω. Let x ∈ f−1(Υ) ⊂
X(A). Then f(x) agrees with y modulo mγ′ . Its image in Xy(A/mγ) admits
a lifting ξ ∈ Xy(A). With the shape of Ω in (6.5.1), we get that x ∈ Ω. �

6.5.5. Remark. In (2), C = ∅ is allowed so that (2) covers (1).

6.6. Application to group homomorphisms. The valued field (K, v) is
still assumed admissible.

6.6.1. Corollary. Let f : G → H be a finite homomorphism of affine alge-
braic K–groups. Then f(G(K)) is a closed subgroup of H(K)Top.

With some more work, one can show that fTop is a topologically proper
[G-G-MB, Cor. 4.2.5].
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7. Lecture 7: Proof of the main result

7.1. Gabber’s condition (∗).

7.1.1. Definition. Let G be an affine algebraic k–group. We say that G
satisfies the (∗)-condition if the k-tori of Gk are tori of (G†)k.

If G is smooth, commutative or unipotent, then G satisfies (∗).

7.1.2. Lemma. We assume that G satifies condition (∗). Then G satisfies
the following condition

(**) for each G† ⊂ H ⊂ G, any H-immersion H/G† ↪→ Y in an affine
H–variety Y is a closed embedding.

Proof. An easy reduction permits to assume G and H connected. It is
enough to show that the orbit of the smooth k–group (Hk)red on the origin
y0 ∈ Yk is closed. Our assumption implies that the maximal tori of (Hk)red
fix y0 so that (Hk)red acts through its maximal unipotent quotient U (de-
fined in [CGP, A.2.8]). Rosenlicht’s lemma [SGA3, XVII.5.7.3] yields that
(Hk)red.y0 = U.y0 is closed in Yk. �

7.2. The statement. Let (K, v) be an admissible valuation field.

7.2.1. Theorem. [G-G-MB, 1.2, 1.4] Let G be an affine algebraic K-group.
Let f : X → Y be a G–torsor where X,Y are algebraic K-varieties.

(1) The image I := f(X(K)) is locally closed in Y (K)Top and the induced
map X(K)Top → I is a trivial principal topological G(K)Top-fibration. In
particular fTop it is strict.

(2) If G satisfies the condition (∗), then I is clopen in Y (K)Top.

This applies to orbits and also to group homomorphisms.

7.2.2. Corollary. Let f : G → H be a morphism of affine algebraic K-
groups. Then I := f(G(K)) is a closed subgroup of Y (K)Top and fTop is
strict.

7.2.3. Remark. For local non-archimedean fields, there is then no need to
appeal to the Baire’s theorem.

7.3. Proof of (1). We are given a G-torsor f : X → Y . We denote by
H = G† the largest smooth K–subgroup of G. According to Theorem
4.3.3, the homogeneous space G/H admits a G-equivariant compactification
(G/H)c such that {•} = (G/H)(F ) = (G/H)c(F ) for each separable field

extension F/K. We consider the contracted product Zc := X
G
∧(G/H)c,

it is proper over Y and this is then a relative compactification of Z :=

X
G
∧(G/H) ∼= X/H. We put Z∞ := Zc \Z (with its reduced structure). We

have a commutative diagram
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X

f

((

π // Z

h

!!

� � j // Zc

hc

��

oo i ? _ Z∞

h∞

||
Y

where π is a torsor under the smooth K–group H, j is an open immersion,
i is the complementary open immersion, hc are h∞ proper.

7.3.1. Lemma. (a) Z(Ks)→ Y (Ks) is injective;

(b) The images of hTop and of h∞
Top

are disjoint.

Proof. (a) Since π is smooth, the map X(Ks) → Z(Ks) is onto. We are
given z1, z2 ∈ Z(Ks) having same image in Y (Ks). We lift zi in xi ∈ X(Ks)
for i = 1, 2. Since x1, x2 have same image in Y (Ks), it follows that there
exists g ∈ G(Ks) such that x1 = x2.g. Since H(Ks) = G(Ks), we have
g ∈ H(Ks) so that z1 = z2.

(b) We denote by L = hTop(Z(K)). Let y ∈ L and consider the fibers
Zy ⊂ Zcy of h anf hc at y. By (1), Zy(K) = {z} and z is the only separable

point of Zy. Since π is smooth surjective, π−1(z)(Ks) 6= ∅, so that the G

torseur Xy becomes trivial over Ks. It follows that (Zcy)Ks is isomorphic
to (G/H)cKs and has also only a single separable point. We conclude that
Z∞y (Ks) = ∅. Thus L ∩ Im(h∞

Top
) = ∅. �

This implies that
L = Im(hc

Top
) \ Im(h∞

Top
).

Since hc and h∞ are proper, Im(hc
Top

) and Im(h∞
Top

) are closed according to

Theorem 6.5.4.(1). We have proven that L is locally closed.

7.3.2. Claim. The induced map ϕ : Z(K)Top → L is a homeomorphism.

Let z ∈ Z(K) and put y = h(z). We want to show that ϕ−1 is continuous
at y. Let Ω be an open neighborhood of z ∈ Z(K)Top, it is also an open
neighborood of z ∈ Zc(K)Top. We apply Theorem 6.5.4.(2) to C = {z}
and to the proper map hc : Zc → Y . It provides a neighborhood Υ of
y in Y (K)Top such that (hc)−1(Υ) ⊂ Ω. It follows that ϕ−1(Υ ∩ L) ⊂
(hc)−1(Υ ∩ L) ⊂ Ω. Since Υ ∩ L is a neighborhood of y in L, we conclude
that ϕ−1 is continuous at y.

Summarizing fTop decomposes as follows:

X(K)Top

π
Top−−−→ Ω ↪→ Z(K)Top

∼−→L ↪→ Y (K)Top

where Ωπ := Im(πTop) ⊂ Z(K)Top . Furthermore we have the following prop-
erties:

• the first map XTop → Ωπ is open and surjective, this is a trivial
principal GTop-fibration (Remark 5.3.3).
• Ωπ ↪→ ZTop is a clopen embedding;
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• ZTop

∼−→L is an homeomorphism;
• L ↪→ YTop is a locally closed topological embedding.

Thus fTop is strict.

7.4. Sketch of proof of (2). We assume that G satisfies condition (∗).
Lemma 7.1.2 shows that it satisfies condition (∗∗). Theorem 4.3.3.(2) shows
that in (1) we can assume that G has no separable orbit on (G/H)c\(G/H).
This ensures that Z(k) = Zc(k) [G-G-MB], so that Im(hTop) = Im(hcTop).

By inspection of the proof of (1), we conclude that the image Im(fTop) is
closed.
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