1. Montrons que

$$\forall x, y \in \mathbb{R}_+, \quad |\sqrt{x} - \sqrt{y}| \le \sqrt{|x - y|}. \tag{1}$$

On remarque que la proposition est triviale si x = y. Soit $x, y \in \mathbb{R}_+$ avec $x \neq y$. Alors:

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{|x - y|}$$
 $\iff |\sqrt{x} - \sqrt{y}|^2 \le |x - y| \text{ car } z \mapsto z^2 \text{ est strictement croissante sur } \mathbb{R}_+$
 $\iff |\sqrt{x} - \sqrt{y}|^2 \le |\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}|$
 $\iff |\sqrt{x} - \sqrt{y}| \le \sqrt{x} + \sqrt{y} \text{ car } \sqrt{x} - \sqrt{y} \ne 0$

et la dernière inégalité est vraie par inégalité triangulaire.

2. Soit $\varepsilon > 0$. Posons $\delta = \varepsilon^2$. Soit $x, y \in \mathbb{R}_+$. Supposons $|x - y| \le \delta$. Alors

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{|x - y|} \le \sqrt{\delta} \le \varepsilon. \tag{2}$$

Donc $x \mapsto \sqrt{x}$ est uniformément continue.

Remarque. $x \mapsto \sqrt{x}$ est un exemple de fonction uniformément continue mais pas lipschitzienne sur \mathbb{R}_+ . En effet, raisonnons par l'absurde et supposons qu'il existe k > 0 tel que :

$$\forall x, y \in \mathbb{R}_+, \quad |\sqrt{x} - \sqrt{y}| \le k|x - y|. \tag{3}$$

Définissons les suite $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n^2}, \quad v_n = \frac{1}{4n^2}. \tag{4}$$

Soit $n \in \mathbb{N}^*$. Alors

$$|\sqrt{u_n} - \sqrt{v_n}| \le k|u_n - v_n| \tag{5}$$

d'où

$$\frac{1}{2n} \le k \frac{3}{4n^2} \tag{6}$$

puis $n \leq 3k/2$, ce qui est absurde (prendre par exemple $n = \lfloor 3k/2 \rfloor + 1$).