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Abstract

Quantum Bernoulli random walks can be realized as random walks
on the dual of SU(2). We use this realization in order to study a
model of dynamic quantum Bernoulli random walk with time depen-
dent transitions. For the corresponding dynamic random walk on the
dual of SU(2), we prove several limit theorems (local limit theorem,
central limit theorem, law of large numbers, large deviations princi-
ple). In addition, we characterize a large class of transient dynamic
random walks.

1 Introduction

Systems of commuting spins can be viewed as a non-commutative analogue of
classical Bernoulli random walks. More precisely, they contain three orthog-
onal Bernoulli random walks. The non-commutativity comes from the fact
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that these three random walks do not commute. This triple of random walks
is called by P. Biane a quantum Bernoulli random walk (in short QBRW
). P. Biane has proven many fundamental properties of these random walks
(see [2, 3, 4, 5]). In particular he has shown that QBRWs can be realized as
random walks on the dual of SU(2). These random walks have been exten-
sively studied by B. Roynette et al. [19, 9], L. Gallardo et al. [10, 11]. A
theory of dynamic random walks on the euclidean space (i.e. the transition
probabilities are in some sense time dependent) has been developed over the
last decade by N. Guillotin [12, 13, 14] and then extended to Heisenberg
groups in [17]. This theory has also been applied in computer science [15, 8]
and mathematical finance [18] (see also [16]). The purpose of this paper is to
introduce the notion of dynamic quantum Bernoulli random walks (in short
DQBRW) and to investigate their realisations as dynamic random walks on
the dual of SU(2). We prove a local limit theorem, a central limit theo-
rem, a law of large numbers, a large deviations principle and characterize a
large class of transient dynamic random walks. This paper can be viewed
as another (small) step in extending the theory of dynamic random walks to
non-commutative algebraic structures.
The organization is as follows:

2 Quantum Bernoulli random walks

The presentation of this introductory material follows [3].
Let M2(C) be the set of 2× 2 matrices with complex coefficients. The set of
2 × 2 self-adjoint matrices forms a four dimensional real vector subspace of
M2(C). A convenient basis is given by the following matrices

I =

(
1 0
0 1

)
σx =

(
1 0
0 -1

)
σy =

(
0 1
1 0

)
σz =

(
0 -i
i 0

)

σx, σy, σz are the traditional Pauli matrices, they satisfy the commutation
relations: [σx, σy] = 2iσz, and those obtained by cyclic permutations of σx,
σy, σz. Every unitary matrix U gives rise to a *-automorphism of M2(C)

τU : M → UMU∗.

These automorphisms leave the hermitian product < M,N >= 1
2
tr(MN∗)

invariant and M2(C) decomposes into two invariant subspaces for this action:
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CI and the subspace generated by σx, σy, σz. τU acts by rotation on Rσx +
Rσy + Rσz.
A state on M2(C) is given by a density matrix which we will suppose to be
of the form (

p 0
0 q

)
with 0 < p ≤ 1, p + q = 1, since this can be achieved by conjugation by a
unitary matrix. We denote by ρp the state given by this density matrix.
Given a self adjoint element of M2(C), we can compute its law in the state
ρp: let A = λσx + µσy + νσz, and ξ = (λ2 + µ2 + ν2)1/2, the spectrum of A is
{−ξ,+ξ}, its expectation in the state ρp is λ(p− q) and its law is given by

P(A = ξ) =
1

2

[λ(p− q)

ξ
+ 1

]
(1)

P(A = −ξ) =
1

2

[λ(q − p)

ξ
+ 1

]
(2)

In particular, in the state ρp, σy and σz are symmetric Bernoulli random
variables, whereas σx takes 1 with probability p and −1 with probability q.
Let M1,M2, . . . ,Mn, . . ., be infinitely many copies of M2(C). For each p ∈
]0, 1], we consider the algebra

Mp = M1 ⊗ . . .⊗Mk ⊗ . . .

where the product is taken with respect to the product state

wp = ρp ⊗ . . . ρp ⊗ . . .

Consider the elements xk, yk, zk of Mp given by:

xk = I ⊗ . . .⊗ I ⊗ σx ⊗ I ⊗ I . . . (3)

yk = I ⊗ . . .⊗ I ⊗ σy ⊗ I ⊗ I . . . (4)

zk = I ⊗ . . .⊗ I ⊗ σz ⊗ I ⊗ I . . . (5)

where each σ. appears at the kth place. Define for k ≥ 1,

Xk =
k∑

i=1

xi, Yk =
k∑

i=1

yi, Zk =
k∑

i=1

zi

and X0 = Y0 = Z0 = 0.
The triple (Xn, Yn, Zn)n∈N is called a quantum random walk.
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3 The dual of SU(2)

The presentation in this section follows [19].
SU(2) is the group of matrices

g =

(
a b
-b̄ ā

)

where a and b are complex numbers such that | a |2 + | b |2 = 1. It is a
compact Lie group. For each x ∈ N, let Hx be the vector space on C of
polynomials of degree less than or equal to x. If g is as indicated above and
if p ∈ Hx, let

[πx(g)p](z) = (bz + ā)xp

(
az − b̄

bz + ā

)
, z ∈ C.

In this way we define an irreducible, continuous representation of dimension
x+ 1 from SU(2) into Hx. It is known that as x goes trough N then the πx

produce (up to equivalence) the full list of unitary irreducible representations
of SU(2). Therefore N can be identified with the dual group of SU(2).
The character of πx is given by the formula

ξx(g) =
1

x+ 1
tr (πx(g)) =

sin[(x+ 1)θ]

(x+ 1) sin θ

where eiθ, e−iθ are the eigenvalues of the matrix g ∈ SU(2). ξx obeys
ξx(g1g2) = ξx(g1)ξx(g2) for all g1 ∈ SU(2), g2 ∈ SU(2).
Notation: φ(θ) will stand for φ(M) where

M =

(
eiθ 0
0 e−iθ

)

For the characters we get the orthogonality relations with respect to the
measure

dλ(θ) =
2

π
sin2 θ dθ

More precisely, for x ∈ N and y ∈ N,∫ π

0
ξx(θ)ξy(θ) dλ(θ) =

{
0 if x 6= y
(x+ 1)−2 if x = y

Finally, we recall Clebsch-Gordan’s formula for SU(2).
If x ≤ y are in N, then the tensorial product of the representations πx and

4



πy splits into the direct sum of a finite number of irreducible representations
as follows:

πx ⊗ πy = πy−x ⊕ πy−x+2 ⊕ . . .⊕ πy+x−2 ⊕ πy+x

This formula leads to the character multiplication formula:

ξxξy =
| x− y | +1

(x+ 1)(y + 1)
ξ|x−y|+

| x− y | +3

(x+ 1)(y + 1)
ξ|x−y|+2+. . .+

x+ y + 1

(x+ 1)(y + 1)
ξx+y

where x ∈ N, y ∈ N and the integers run from | x− y | to x+ y by jumps of
length two.
Now let P(N) be the set of probability measures µ =

∑
x∈N axδx on N, where

δx is the Dirac measure at point x and ax are coefficients which are non
negative and

∑
x≥0 ax = 1. We define a generalized convolution denoted ? as

follows:

δx?δy =
| x− y | +1

(x+ 1)(y + 1)
δ|x−y|+

| x− y | +3

(x+ 1)(y + 1)
δ|x−y|+2+. . .+

x+ y + 1

(x+ 1)(y + 1)
δx+y

and more generally, if µ, ν are in P(N):

µ ? ν = (
∑
x≥0

axδx) ? (
∑
y≥0

byδy) =
∑

x,y≥0

axbyδx ? δy

and we denote by µn the probability measure µ ? µ ? . . . ? µ (n times).
The (generalized) Fourier transform of µ =

∑
x∈N axδx ∈ P(N) is the function

µ̂ defined on [0, π] by

µ̂(θ) =
∑
x≥0

axξx(θ) =
∑
x≥0

ax sin[(x+ 1)θ]

(x+ 1) sin θ
.

The coefficient ax of the measure µ can be obtained from µ̂ by the following
formula

ax = (x+ 1)2
∫ π

0
µ̂(θ)ξx(θ) dλ(θ)

=
2(x+ 1)

π

∫ π

0
µ̂(θ) sin[(x+ 1)θ] sin θ dθ. (6)

In particular δ̂x = ξx and ̂(δx ? δy) = δ̂xδ̂y. More generally,

̂(µ ? ν) = µ̂ ν̂.

The (generalized) Laplace transform of µ =
∑

x∈N axδx ∈ P(N) is the function
µ̃ defined on R+ by

µ̃(t) =
∑
x≥0

ax sinh[(x+ 1)t]

(x+ 1) sinh(t)
.
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For every x ≥ 0, we denote by ψx the function

t→ sinh[(x+ 1)t]

(x+ 1) sinh(t)
.

The Laplace transform of the Dirac measure at x ∈ N is then δ̃x = ψx. The
Clebsch-Gordan’s formula can be extended as follows:

ψxψy =
| x− y | +1

(x+ 1)(y + 1)
ψ|x−y|+

| x− y | +3

(x+ 1)(y + 1)
ψ|x−y|+2+. . .+

x+ y + 1

(x+ 1)(y + 1)
ψx+y.

(7)
From the definition of the generalized convolution, relation (7) and the fact
that δ̃x = ψx, we obtain the formula

˜(µ ? ν) = µ̃ ν̃. (8)

Let µ ∈ P(N). For each x ∈ N and for each subset A of N, we consider the
transition kernel from N to N:

P (x,A) = δx ? µ(A).

Let (Ω = NN, (Xn)n≥0, (Px)x∈N) be the canonical Markov chain associated
with the kernel P . This chain will be called the random walk of law µ on
N. In other words: the probability P (x, y) to be in the state y at time n+ 1
when departing from state x at time n, is equal to the coefficient on δy of
the probability measure δx ? µ.

4 Quantum Bernoulli random walks as ran-

dom walks on the dual of SU(2)

P. Biane [3] has proved that QBRW can be related to a random walk of the
dual of SU(2). In this section we outline his observation.
Let A be the von Neuman algebra of SU(2). This is the von Neuman al-
gebra of operators on L2(SU(2)) generated by the left translation operators
λg: λg(f(h)) = f(g−1h) (see [7]). It is thought of as an algebra of functions
on a non-commutative lattice: the dual of SU(2).
Let 1√

2
X, 1√

2
Y , 1√

2
Z be an orthonormal basis of the Lie algebra of right invari-

ant vector fields on SU(2) (with respect to the Killing inner product).Then
iX, iY , iZ induce self-adjoint operators on L2(SU(2)) which are affiliated to
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A. The spectrum of these operators is Z, so that one can see them as coordi-
nate functions on the dual of SU(2). The algebra A is endowed with a struc-
ture of cocommutative bialgebra by the morphism of algebras m : A → A
determined by λg → λg ⊗ λg. In order to define a non commutative random
walk on A, we let θ be an irreducible 2-dimensional representation of SU(2)
(see Section 3). We get a quantum Markov chain on A whose generator Q is
given by

Qp(λg) = ρp(θ(g))λg

Let N be a von Neuman algebra and τ a morphism: A → A ⊗ N . Let
W = A ⊗ N . . . ⊗ N ⊗ . . ., the tensor product being taken with respect to
the product space w = ρ⊗ . . .⊗ ρ⊗ . . ..
We define T : W → W by T = τ ⊗ s where s : N [1,∞[ → N [2,∞[ is the right
shift. We construct morphisms jn : A → W by putting jn = T n◦i where
i : A →W is the canonical injection.
The family of morphisms (jn) forms a non-commutative process in the sense
of Accardi, Frigerio, Lewis [1] and the triple (jn(iX), jn(iY ), jn(iZ)) forms a
quantum Bernoulli random walk.

5 Dynamic random walks on the dual of SU(2)

5.1 Definition

In Section 3 we have considered the set P(N) of probability measures µ =∑
x∈N axδx on N, where δx is the Dirac measure at point x and ax are coeffi-

cients which are non negative and
∑

x∈N ax = 1.
We consider now a sequence of probability measures (µi)i≥1 where µi =∑

x∈N a
(i)
x δx on N, where a(i)

x are coefficients which depend on i and x, are
non negative and for every i ≥ 1,

∑
x∈N a

(i)
x = 1.

For every i ≥ 1, for each x ∈ N and for each subset A of N, we can define
the transition kernel from N to N:

Pi(x,A) = δx ? µi(A).

The dynamic random walk on the dual of SU(2) denoted by (Sn)n≥0 is defined
as the (inhomogeneous) Markov chain with state space N and transition
kernel at time n given by Pn. The probability to be in a subset A of N at
time n when departing from state x at time 0 is then given by

P (n)(x,A) = δx ? µ1 ? . . . ? µn(A) = δx ? µ
(n)(A)

with the notation µ(n) = µ1 ? . . . ? µn.
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5.2 Limit theorems for dynamic random walks on the
dual of SU(2)

5.2.1 A local limit theorem

Assume that:
(H1): ∀i ≥ 1, µi is aperiodic. In particular, for every r ∈ ]0, π[, there exists
δi = δi(r) such that

|µ̂i(θ)| ≤ 1− δi, ∀θ ∈ [r, π].

We will assume that

n3/2
n∏

i=1

(1− δi) = o(1),

(H2): ∀i ≥ 1, ∑
x∈N

a(i)
x (x+ 1)2 < +∞,

(H3): There exists a sequence of non negative reals (Ax)x∈N such that
∑

x∈NAx =
1,
∑

x∈NAx(x
2 + 2x) <∞ and

lim
n→+∞

∑
x∈N

∣∣∣ 1
n

n∑
i=1

a(i)
x − Ax

∣∣∣(x+ 1)2 = 0,

(H4):

sup
i≥1

∣∣∣ ∑
x∈N

(a(i)
x − Ax)(x+ 1)2

∣∣∣ < +∞.

Remark: If the union of the supports of the measures µi is reduced to a
finite set G, assumptions (Hi), i = 2, 3, 4 can be replaced by the following
one:
(H5): There exists a sequence of reals (Ax)x∈N such that

lim
n→+∞

1

n

n∑
i=1

a(i)
x = Ax.

The support of the measure µ =
∑

x∈NAxδx is evidently a subset of G.

Theorem 5.1 Under the assumptions (H1), (H2), (H3) and (H4),

lim
n→+∞

sup
x∈N

∣∣∣∣∣2√πn3/2P (n)(x, 0)− 2n

(x+ 1)
√
C
e−

(x+1)2+1
4Cn sinh

(
x+ 1

2Cn

)∣∣∣∣∣ = 0
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where

C =
1

6

∑
x≥0

Ax(x
2 + 2x).

In particular: as n→∞,

P (n)(x, 0)∼(2
√
π)−1C−3/2n−3/2.

Proof:
From formula (6),

2
√
πn3/2P (n)(x, 0) =

4n3/2

√
π(x+ 1)

∫ π

0
µ̂(n)(θ) sin

(
(x+ 1)θ

)
sin(θ) dθ.

Using the change of variables: θ = α√
n
, we get

2
√
πn3/2P (n)(x, 0) =

4n√
π(x+ 1)

∫ π
√

n

0
µ̂(n)

( α√
n

)
sin

(
(x+ 1)

α√
n

)
sin

( α√
n

)
dα

= I0(n) + I1(n,A) + I2(n,A) + I3(n,A, r) + I4(nA, r)

where for some A > 0 and 0 < r < π,

I0(n) =
4n√

π(x+ 1)

∫ +∞

0
e−Cα2

sin
(
(x+ 1)

α√
n

)
sin

( α√
n

)
dα

I1(n,A) =
4n√

π(x+ 1)

∫ A

0

[
µ̂(n)

( α√
n

)
− e−Cα2

]
sin

(
(x+ 1)

α√
n

)
sin

( α√
n

)
dα

I2(n,A) = − 4n√
π(x+ 1)

∫ +∞

A
e−Cα2

sin
(
(x+ 1)

α√
n

)
sin

( α√
n

)
dα

I3(n,A, r) =
4n√

π(x+ 1)

∫ r
√

n

A
µ̂(n)

( α√
n

)
sin

(
(x+ 1)

α√
n

)
sin

( α√
n

)
dα

I4(n,A, r) =
4n√

π(x+ 1)

∫ π
√

n

r
√

n
µ̂(n)

( α√
n

)
sin

(
(x+ 1)

α√
n

)
sin

( α√
n

)
dα.

Estimation of I0(n):
From the well-known equality,

1√
2π

∫
R

cos(tx)e−x2/2 dx = e−t2/2 (9)

we deduce that∫ +∞

0
e−Cα2

sin
(
(x+ 1)

α√
n

)
sin

( α√
n

)
dα

=
1

2

∫ +∞

0
e−Cα2

cos
( xα√

n

)
dα− 1

2

∫ +∞

0
e−Cα2

cos
((x+ 2)α√

n

)
dα

=
1

2

√
π

C
e−

(x+1)2+1
4Cn sinh

(x+ 1

2Cn

)
.
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Estimation of I1(n,A):
For every i ≥ 1, the Fourier transform of the distribution µi can be written
as

µ̂i(θ) =
φi(θ)

sin(θ)

with

φi(θ) =
∑
x∈N

a(i)
x

(x+ 1)
sin((x+ 1)θ).

In the same manner, the Fourier transform of the distribution µ :=
∑

x∈NAxδx
is given by

µ̂(θ) :=
φ(θ)

sin(θ)

with

φ(θ) :=
∑
x∈N

Ax

(x+ 1)
sin((x+ 1)θ).

For every x, there exists η = η(x) ∈ ]0, 1[ such that

sin(x) = x− x3

6
− x3

6
[cos(ηx)− 1].

Then, from hypotheses (H2) and (H3), for every i ≥ 1,

φi(θ) = θ− θ3

6

∑
x∈N

a(i)
x (x+1)2− θ3

6

∑
x∈N

a(i)
x (x+1)2[cos(ηx,θ(x+1)θ)−1] (10)

and

φ(θ) = θ− θ3

6

∑
x∈N

Ax(x+ 1)2 − θ3

6

∑
x∈N

Ax(x+ 1)2[cos(ηx,θ(x+ 1)θ)− 1] (11)

where ηx,θ are real numbers in ]0, 1[ depending on x and θ.
Thus, for every α ∈ [0, A],∣∣∣∣∣µ̂(n)(

α√
n

)− µ̂(
α√
n

)n

∣∣∣∣∣ =

∣∣∣∣∣
n∏

i=1

µ̂i

( α√
n

)
− µ̂

( α√
n

)n
∣∣∣∣∣

=
1

| sin( α√
n
)|n

∣∣∣∣∣
n∏

i=1

φi

( α√
n

)
− φ

( α√
n

)n
∣∣∣∣∣

=
|φ
(

α√
n

)
|n

| sin( α√
n
)|n

∣∣∣∣∣∣exp

 n∑
i=1

log

φi

(
α√
n

)
φ
(

α√
n
)

− 1

∣∣∣∣∣∣
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Using the following inequality,

| ez − 1 |≤| z | e|z|,∀z ∈ C,

we obtain that∣∣∣∣∣µ̂(n)(
α√
n

)− µ̂(
α√
n

)n

∣∣∣∣∣ ≤
|φ
(

α√
n

)
|n

| sin( α√
n
)|n

∣∣∣∣∣∣
n∑

i=1

log

φi

(
α√
n

)
φ
(

α√
n

)
∣∣∣∣∣∣ exp

∣∣∣∣∣∣
n∑

i=1

log

φi

(
α√
n

)
φ
(

α√
n

)
∣∣∣∣∣∣

Now, thanks to (11),

lim
n→∞

sup
α∈[0,A]

∣∣∣∣∣∣
φ
(

α√
n

)n

sin( α√
n
)n
− exp(−Cα2)

∣∣∣∣∣∣ = 0.

It remains to prove that

lim
n→∞

sup
α∈[0,A]

∣∣∣∣∣∣
n∑

i=1

log

φi

(
α√
n

)
φ
(

α√
n

)
∣∣∣∣∣∣ = 0.

For n large enough, thanks to (H4), (10) and (11),

n∑
i=1

log

φi

(
α√
n

)
φ
(

α√
n

)
 =

n∑
i=1

log

1 +
φi

(
α√
n

)
− φ

(
α√
n

)
φ
(

α√
n

)


= −α
2

6n

n∑
i=1

∑
x∈N

[a(i)
x − Ax](x+ 1)2

− α2

6n

n∑
i=1

∑
x∈N

[a(i)
x − Ax](x+ 1)2[cos(ηx,θ(x+ 1)θ)− 1] + o(1)

= o(1)

using hypothesis (H3).
From the inequality: | sin(x)| ≤ x for x ≥ 0, we get that

|I1(n,A)| ≤ 4A3

3
√
π

sup
0≤α≤A

|µ̂(n)(
α√
n

)− exp(−C α2)| = o(1)

uniformly in x.

Estimation of I2(n,A):
Since | sin(x)| ≤ x for x ≥ 0, we have

|I2(n,A)| ≤ 4√
π

∫ +∞

A
α2 exp(−C α2) dα→ 0,
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when A goes to infinity, uniformly in x.

Estimation of I3(n,A, r):

I3(n,A, r) =
4n√

π(x+ 1)

∫ r
√

n

A
µ̂(n)(

α√
n

) sin

(
(x+ 1)

α√
n

)
sin(

α√
n

) dα

We can choose r small enough to have

|µ̂(n)(
α√
n

)| ≤ exp(−α
2

6n

n∑
i=1

∑
x∈N

a(i)
x (x2 + 2x))

Then, from hypothesis (H3), there exists a constant C ′ strictly positive such
that

|µ̂(n)(
α√
n

)| ≤ exp(−C ′α2).

So,

|I3(n,A, r)| ≤
4√
π

∫ +∞

A
α2 exp(−C ′ α2) dα→ 0

when A goes to infinity, uniformly in x.

Estimation of I4(n,A, r):

I4(n,A, r) =
4n√

π(x+ 1)

∫ π
√

n

r
√

n
µ̂(n)(

α√
n

) sin

(
(x+ 1)

α√
n

)
sin(

α√
n

) dα

=
4n3/2

√
π(x+ 1)

∫ π

r
µ̂(n)(θ) sin ((x+ 1)θ) sin(θ) dθ

For every i ≥ 1, the probability measure µi being aperiodic, there exists
δi = δi(r) > 0 such that

|µ̂i(θ)| ≤ 1− δi, ∀θ ∈ [r, π],

so

|I4(n,A, r)| ≤
4
√
πn3/2

(x+ 1)

n∏
i=1

(1− δi) = o(1)

uniformly in x.
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5.2.2 Recurrence and transience

The question of recurrence-transience is natural and can be deduced from a
slightly modification of the previous local limit theorem.

Definition 5.1 The dynamic random walk on the dual of SU(2) is transient
if and only if for every point x ∈ N, y ∈ N, the walk starting from x visits
y only a finite number of times. It is equivalent to say that, for every point
x ∈ N, y ∈ N, the potential kernel defined by

G(x, y) =
∑
n≥0

P (n)(x, y)

is finite.

Under the assumptions (H1), (H2), (H3) and (H4),

lim
n→+∞

sup
x∈N

∣∣∣∣∣2√πn3/2P (n)(x, y)− 2n(y + 1)√
C(x+ 1)

e−
(x+1)2+(y+1)2

4Cn sinh

(
(x+ 1)(y + 1)

2Cn

)∣∣∣∣∣ = 0

where

C =
1

6

∑
x≥0

Ax(x
2 + 2x).

In particular: for every point x ∈ N, y ∈ N, as n→∞,

P (n)(x, y)∼(y + 1)2(2
√
π)−1C−3/2n−3/2.

From this result, we easily deduce the following theorem

Theorem 5.2 Under assumptions (H1), (H2), (H3) and (H4), the dynamic
random walk on the dual of SU(2) is transient.

5.2.3 A central limit theorem

From the local limit theorem established in Section 5.2.1., we deduce a central
limit theorem for the dynamic random walk on the dual of SU(2).

Theorem 5.3 Under the assumptions (H1), (H2), (H3) and (H4), the se-
quence Yn = Sn√

2Cn
where

C =
1

6

∑
x≥0

Ax(x
2 + 2x).

13



converges in distribution, as n → +∞, to the random variable whose the
distribution density is √

2

π
x2 exp(−x

2

2
).

Proof:
For 0 ≤ a ≤ b, we have the relation

P(a ≤ Yn ≤ b) = P(a
√

2Cn ≤ Sn ≤ b
√

2Cn)

=
∑

a
√

2Cn≤x≤b
√

2Cn;x∈N

2(x+ 1)

π

∫ π

0
µ̂(n)(θ) sin

(
(x+ 1)θ

)
sin(θ) dθ.

Using the changes of variables: y = (x+1)√
n

and θ = α√
n
, we get

P(a ≤ Yn ≤ b) =
∑

a
√

2Cn+1≤y
√

n≤b
√

2Cn+1;y
√

n∈N

2y

π

∫ π
√

n

0
µ̂(n)(

α√
n

) sin
(
yα
)

sin(
α√
n

) dα

Now,

lim
n→+∞

1√
n

∑
a
√

2Cn+1≤y
√

n≤b
√

2Cn+1;y
√

n∈N
y sin

(
yα
)

=
∫ b

√
2C

a
√

2C
y sin(yα) dy

and
lim

n→+∞
µ̂(n)(

α√
n

) = exp(−Cα2).

Thus,

lim
n→∞

P(a ≤ Yn ≤ b) =
2

π

∫ b
√

2C

a
√

2C
y
[∫ ∞

0
α sin(yα) exp(−Cα2) dα

]
dy.

Integrating by parts and using formula (9), we get

∫ ∞

0
α sin(yα) exp(−Cα2) dα =

y
√
π

4C3/2
exp(−y2/(4C)).

Thus,

lim
n→∞

P(a ≤ Yn ≤ b) =

√
2

π

∫ b

a
y2 exp(−y

2

2
) dy.

Example: Let S = (E,A, µ, T ) be a dynamical system where (E,A, µ)
is a probability space and T is a measure-preserving transformation defined
on E.
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For each e ∈ E, let a(i)
x = ax(T

ie) where ax are positive functions such
that

∑
x≥0 a

(i)
x (e) = 1. A particular example is ax = 0 if x 6= 1, 2 and

a1(e) = f(e) and a2(e) = 1− f(e) where f is a measurable function defined
on E with values in ]0, 1[. This is a model similar to the dynamic random
walks considered in [12, 13, 14, 15, 16, 17, 18]. Under assumption of uniform
ergodicity of the dynamical system, assumptions (Hi), i = 1, . . . , 4 are clearly
satisfied and in that case, Theorems 5.1, 5.2 and 5.3 hold with the constant
C = 1

3
[4− 5

2

∫
E f dµ] > 0.

5.2.4 A weak law of large numbers

From the central limit theorem (Theorem 5.3), we deduce the

Theorem 5.4 Under the assumptions (H1), (H2), (H3) and (H4), for every
ε > 0, the sequence of random variables (Sn/n

1/2+ε)n≥1 converges in proba-
bility to 0, as n goes to infinity.

Remark:
ε = 1/2 provides the traditional law of large numbers. A strong law of
large numbers should hold using the method developed in Section III of [11].
Details are omitted. This will be the object of further investigation.

5.2.5 A large deviations principle

In the previous section, Sn/n was proved to converge in probability to 0
under convenient assumptions, so the sequence of random variables (Sn/n)n

is a good candidate for a large deviations principle. Let us first recall what
we mean by Large Deviations Principle: Let Γ be a Polish space endowed
with the Borel σ-field B(Γ). A good rate function is a lower semi-continuous
function Λ∗ : Γ→[0,∞] with compact level sets {x; Λ∗(x) ≤ α}, α ∈ [0,∞[.
Let v = (vn)n ↑ ∞ be an increasing sequence of positive reals. A sequence
of random variables (Yn)n with values in Γ defined on a probability space
(Ω,F ,P) is said to satisfy a Large Deviations Principle (LDP) with speed
v = (vn)n and the good rate function Λ∗ if for every Borel set B ∈ B(Γ),

− inf
x∈Bo

Λ∗(x) ≤ lim inf
n

1

vn

log P(Yn ∈ B)

≤ lim sup
n

1

vn

log P(Yn ∈ B) ≤ − inf
x∈B̄

Λ∗(x).
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When the upper inequality holds, (Yn)n is said to satisfy an upper Large
Deviations Principle. Let us consider now a sequence of probability measures
(µi)i≥1 where µi =

∑
x∈N a

(i)
x δx on N (remember that a(i)

x are coefficients which
are non negative and

∑
x∈N a

(i)
x = 1). We denote by µ̃i the Laplace transform

of the measure µi.
We make the following assumption:
(H): the function Γ defined by

∀t ∈ R+, Γ(t) := lim sup
n→+∞

1

n

n∑
i=1

log µ̃i(t)

is finite in a neighbourhood of 0.

Theorem 5.5 Under Assumption (H), the sequence of random variables
(Sn/n)n≥1 satisfies an upper Large Deviations Principle: for every y ∈ R+,∗,

lim sup
n→+∞

1

n
log P

(Sn

n
≥ y

)
≤ −Λ∗(y)

where
Λ∗(y) = sup

t;Γ(t)<∞
{ty − Γ(t)}.

Assume that the function Λ∗ is strictly positive on R+,∗, then the sequence of
random variables (Sn/n)n≥1 converges almost surely to 0 as n goes to infinity.

Proof:
Since the function x → sinh[(x+1)t]

(x+1) sinh(t)
is increasing on R+, using the Markov

inequality, we get

P
(Sn

n
≥ y

)
= P

(
sinh[(Sn + 1)t]

(Sn + 1) sinh(t)
≥ sinh[(ny + 1)t]

(ny + 1) sinh(t)

)

≤ E
(

sinh[(Sn + 1)t]

(Sn + 1) sinh(t)

)
(ny + 1) sinh(t)

sinh[(ny + 1)t]
.

Now, from the definition of the Laplace transform and formula (8),

E
(

sinh[(Sn + 1)t]

(Sn + 1) sinh(t)

)
=

∑
x∈N

ψx(t) δ0 ? µ
(n)(x)

= ˜(δ0 ? µ(n))(t)

=
n∏

i=1

µ̃i(t)
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Moreover
sinh(t)

sinh[(ny + 1)t]
≤ e−nyt.

Hence,

1

n
log P

(Sn

n
≥ y

)
≤ −ty +

1

n
log(ny + 1) +

1

n

n∑
i=1

log(µ̃i(t))

Then, using assumption (H),

lim sup
n→+∞

1

n
log P

(Sn

n
≥ y

)
≤ −ty + lim sup

n→+∞

1

n

n∑
i=1

log(µ̃i(t))

≤ −ty + Γ(t).

Taking the infimum in the right hand side over all t > 0, we get the result.

Let ε > 0. For n large enough,

P
(Sn

n
≥ ε

)
≤ e−nΛ∗(ε)/2

Since the series
∑

n e
−nα is finite for any α > 0, from Borel-Cantelli lemma,

we deduce that Sn/n converges almost surely to 0 as n goes to infinity.

Example: Consider the example from Section 5.1.3 that is a dynamical
system (E,A, µ, T ) where (E,A, µ) is a probability space and T is a trans-
formation on E. Let e ∈ E a fixed point, and choose a(i)

x = ax(T
ie) where

ax = 0 if x 6= 1, 2, a1(e) = f(e) and a2(e) = 1− f(e) where f is a measurable
function defined on E with values in ]0, 1[. Then, for every i ≥ 1, the Laplace
transform of the measure µi =

∑
x a

(i)
x δx is given by

µ̃i(t) = cosh(t)f(T ie) + (1− f(T ie))
sinh(3t)

3 sinh(t)
.

When the dynamical system is uniformly ergodic (e.g. T is an irrational
rotation on the torus), assumption (H) is clearly satisfied with the function

Γ(t) =
∫

E
log

[
cosh(t)f(x) + (1− f(x))

sinh(3t)

3 sinh(t)

]
dµ(t).

It is worth remarking that using Jensen’s inequality, the function Γ is less
than or equal to log(µ̃(t)) where µ is the probability measure

∫
E f dµδ1 +(1−∫

E f dµ)δ2. Consequently,

− sup{tx− Γ(t)} ≤ − sup{tx− log µ̃(t)}.
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Assumption (H) is weaker than assuming that the average of the µ̃i’s con-
verges to µ̃. Take for instance the irrational rotation on the one-dimensional
torus and f = 1[0,1/2] , then

Γ(t) =
1

2

[
log

(
cosh(t)

)
+ log

( sinh(3t)

3 sinh(t)

)]

and

log(µ̃(t)) = log

[
1

2
cosh(t) +

1

2

sinh(3t)

3 sinh(t)

]
.

We recover the fact that the dynamic random walk is more concentrated
around the origin as the random walk with stationary increments, a phe-
nomenon already encountered in [8].

6 Concluding remarks

As stated in the introduction, this paper is a first attempt in extending
the theory of dynamic random walks developed by the first author to non-
commutative algebraic structures.
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