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Abstract The local time of random walks associated with Gegenbauer polynomials
P

(α)
n (x), x ∈ [−1,1], is studied in the recurrent case: α ∈ [− 1

2 ,0]. When α is nonzero,
the limit distribution is given in terms of a Mittag-Leffler distribution. The proof
is based on a local limit theorem for the random walk associated with Gegenbauer
polynomials. As a by-product, we derive the limit distribution of the local time of
some particular birth-and-death Markov chains on N.

Keywords Random walk · Local time · Local limit theorem · Gegenbauer
polynomials · Markov chain · Transition kernel · Recurrence · Transience · Birth and
death process
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1 Introduction

Random walks on hypergroups have been extensively studied over the last decades.
A history of these processes as well as the motivations for studying them are provided
in [7]. We here restrict ourselves to discrete polynomial hypergroups. Let (αn)n∈N,
(βn)n∈N and (γn)n∈N be real sequences with the following properties: γn > 0, βn ≥ 0,
αn+1 > 0 for all n ∈ N; moreover, α0 = 0, and αn + βn + γn = 1 for all n ∈ N. We
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define the sequence of polynomials (Pn)n∈N by P0(x) = 1, P1(x) = x, and by the
recursive formula

xPn(x) = αnPn−1(x) + βnPn(x) + γnPn+1(x)

for all n ≥ 1 and x ∈ R. In this case, there exist constants c(n,m,k), n,m, k ∈ N,
such that the following linearization formula

PnPm =
n+m∑

k=|n−m|
c(n,m,k)Pk

holds for all n,m ∈ N. Since Pn(1) = 1 for all n ∈ N, we have for all n,m ∈ N,

n+m∑

k=|n−m|
c(n,m,k) = 1.

If the coefficients c(n,m,k) are nonnegative for all n,m,k ∈ N, then a hypergroup
structure on N is obtained from the generalized convolution � defined as follows: for
all n,m ∈ N,

δn � δm =
n+m∑

k=|n−m|
c(n,m,k)δk.

The resulting hypergroup K = (N, �) is called the discrete polynomial hypergroup
associated with the sequence (Pn)n∈N. Many classical families of orthogonal poly-
nomials with respect to some positive measure on [−1,1] satisfy a linearization for-
mula with nonnegative coefficients. A random walk with distribution μ ∈ M1(N) on
the hypergroup (N, �) is then defined as a homogeneous Markov chain on N with
Markov kernel given by

p(x, y) = δx � μ(y), x, y ∈ N.

This Markov chain is called random walk associated with the sequence of polynomi-
als (Pn)n∈N.
Limit theorems (law of large numbers, central limit theorem, local limit theorems,
large deviation principle, iterated logarithm law, etc.) for these processes were earlier
investigated by M. Ehring [2, 3], M. Voit [13–16]. L. Gallardo et al. [5, 6], Y. Guiv-
arc’h et al. [9], M. Mabrouki [10] have more specifically studied limit theorems for
random walks associated with Gegenbauer polynomials. In this paper, we present
some extensions of the theory developed by these authors by deriving a limit theo-
rem for the local time of the random walks associated with Gegenbauer polynomials
(P

(α)
n )n∈N for every α ∈ [−1/2,0].
The organization of the paper is as follows: We recall in Sect. 2 some generalities

on the Bessel process and its local time. In Sect. 3, Gegenbauer polynomials as well
as the definition of random walks associated with these polynomials are given. In
Sect. 4, classical limit theorems for these processes are presented. Section 5 is devoted
to the study of the local time of these Markov chains and some particular cases are
considered.
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2 Preliminaries on the Bessel Process and Its Local Time

For every α ∈ [−1,+∞[, we will denote by B(α) := (B
(α)
t )t∈R+ the unique solution

of the stochastic differential equation

X2
t = X2

0 + 2
∫ t

0

√
X2

s dBs + 2(α + 1)t

where (Bt )t∈R+ is the real Brownian motion. The parameter α is usually called the

index of the Bessel process B(α). The process (B
(α)
t )t∈R+ can also be defined as the

R+-valued Feller diffusion whose infinitesimal generator L is defined as:

Lf = 1

2

d2f

dx2
+ 2α + 1

2x

df

dx

on the domain

D(L) =
{
f : R+ → R; Lf ∈ Cb(R+), lim

x↓0
x2α+1f ′(x) = 0

}
.

The Bessel process has the Brownian scaling property: for every c > 0, the processes
(B

(α)
ct )t∈R+ and (

√
cB

(α)
t )t∈R+ have the same law, when B

(α)
0 ≡ 0.

Let us fix α ∈ ]−1,0[. It is well known (see [11]) that there exists a jointly contin-
uous family (L

(α)
t (x))x∈R+,t∈R+ of local times such that the occupation formula

∫ t

0
h
(
B(α)

s

)
ds = 2

∫ ∞

0
h(x)L

(α)
t (x)x2α+1 dx

holds for every Borel function h : R+ → R+. We could also take as a definition of
L

(α)
t (0) the unique continuous increasing process such that

(
B

(α)
t

)2|α| − 2|α|L(α)
t (0), t ≥ 0,

is a martingale.
For every α > 0, the unique distribution with Laplace transform given by the

Mittag-Leffler function (see [4] p. 453)

Eα(x) =
∞∑

p=0

(−x)p

�(pα + 1)
, x ∈ R+

is called the Mittag-Leffler distribution and denoted by M(α). Here, �(·) denotes the
usual Gamma function. The pth moment of M(α) is equal to

p!
�(αp + 1)

.

The probability density of M(α) (see [1]) is equal to

f (x) = 1

π

∞∑

k=1

(−1)k−1

(k − 1)! sin(πkα)�(kα)xk−1, x ∈ ]0,+∞[.
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In [8, p. 567, Formula (R8)], the distribution of the random variable L
(α)
1 (0) is given

in terms of the Mittag-Leffler distribution, namely

2α+1�(α + 1)

�(|α|) L
(α)
1 (0)

law= M(|α|). (1)

3 Random Walk Associated with Gegenbauer Polynomials

3.1 Generalities on Gegenbauer Polynomials

Gegenbauer polynomials, also called ultraspherical polynomials, are defined on
[−1,1] for any α > −1 by

P (α)
n (x) = (−1)n

2n(α + 1) · · · (α + n)
(1 − x2)−α dn

dxn

(
1 − x2)n+α

.

They satisfy the following orthogonality relations:

∫ 1

−1
P (α)

n (x)P (α)
m (x)dπα(x) =

{
0 if n 
= m,

(w
(α)
n )−1 if n = m,

(2)

where dπα(x) = (1 − x2)α1[−1,1](x)dx and
− n 
= 0:

w(α)
n = (2n + 2α + 1)�(n + 2α + 1)

22α+1�(n + 1)�(α + 1)2
, (3)

− n = 0:

w
(α)
0 =

{
(2α+1)�(2α+1)

22α+1�(α+1)2 if α 
= −1/2,

1/π otherwise.
(4)

These polynomials satisfy the following properties:

P
(α)
0 (x) ≡ 1, P

(α)
1 (x) ≡ x,

P (α)
n (−x) = (−1)nP (α)

n (x), (5)

P (α)
n (1) = 1,

and the multiplication formula

P
(α)
1 (x)P (α)

n (x) = n

2n + 2α + 1
P

(α)
n−1(x) + n + 2α + 1

2n + 2α + 1
P

(α)
n+1(x) (6)

for every α > −1, every n ∈ N
� and every x ∈ [−1,1].

More generally, when α ≥ − 1
2 , we have, for m ≤ n,

P (α)
m (x)P (α)

n (x) =
m∑

r=0

C(α)(m,n, r)P
(α)
n−m+2r (x), (7)
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where the nonnegative coefficients C(α)(m,n, r) are explicit (see [5]).
Finally, when α > − 1

2 , for any n ≥ 1,

|P (α)
n (x)| < 1, ∀x ∈ ]−1,+1[.

3.2 Random Walk Associated with Gegenbauer Polynomials

Let M1(N) be the set of probability measures μ = ∑
n∈N

μ(n)δn on N. Thanks to
formula (7), for every α ∈ [−1/2,+∞[, we can define a generalized convolution
denoted � as follows:

δm � δn =
∑

r

C(α)(m,n, r)δn−m+2r ,

and more generally, if μ, ν are in M1(N),

μ � ν =
∑

m,n∈N

μ(n)ν(m)δn � δm.

For each x ∈ N and for each subset A of N, we can define the transition kernel from
N to N as

P(x,A) = (δx � μ)(A).

The random walk associated with Gegenbauer polynomials is defined as the Markov
chain with state space N and transition kernel given by P , and will be denoted by
(Sn)n≥0. In the sequel, for the sake of clarity, we will omit in the notation of the
Markov chain the index α and the measure μ from which the process is defined.

The probability to be in a subset A of N at time n when departing from state x at
time 0 is then given by

P (n)(x,A) = (δx � μ(n))(A),

with the notation μ(n) = μ � · · · � μ (n times).
It is worth noticing that if the distribution μ is the Dirac mass at point 1, then the

random walk associated with Gegenbauer polynomials with index α is the birth-and-
death Markov chain on N with transition probabilities given by

p(0,1) = 1

and

p(i, i + 1) = 1 − p(i, i − 1) = 1

2

(
1 + λ

i + λ

)

where λ = α + 1
2 ∈ [0,+∞[.

A natural question is to know if a given Markov chain with state space N corre-
sponds to a random walk associated with Gegenbauer polynomials. This is true if and
only if the transition probabilities of the Markov chain satisfy the following relation
(see [5])
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i

2(i + λ)
p(i − 1, j) + i + 2λ

2(i + λ)
p(i + 1, j)

= j + 2λ − 1

2(j + λ − 1)
p(i, j − 1) + j + 1

2(j + λ + 1)
p(i, j + 1)

for some λ ∈ [0, 1
2 ].

The distribution μ is then given by μ(n) = p(0, n).
Finally, we call (generalized) Fourier transform of μ ∈ M1(N) the function μ̂

defined on [0,π] by

μ̂(θ) =
∑

n∈N

μ(n)P (α)
n (cos(θ)).

From orthogonality relations (2), the coefficient μ(n) of the measure μ can be ob-
tained from μ̂ by the following formula

μ(n) = w(α)
n

∫ π

0
μ̂(θ)P (α)

n (cos(θ)) sin2α+1(θ)dθ. (8)

In particular, δ̂n(θ) = P
(α)
n (cos(θ)) and, thanks to formula (7),

̂(δn � δm) = δ̂nδ̂m.

More generally, for every μ,ν ∈ M1(N),

(̂μ � ν) = μ̂ν̂.

4 Limit Theorems

In this section, we denote by (Sn)n≥0 the random walk associated with Gegenbauer
polynomials (as defined in Sect. 3.2) with transition kernel given by δx � μ for some
μ ∈ M1(N).

4.1 A Functional Central Limit Theorem

Let D = D([0,+∞[) be the space of càdlàg functions on R+ endowed with the
Skorokhod topology. We denote by (B

(α)
t )t∈R+ the Bessel process on R+ of index

α ∈ [− 1
2 ,+∞[ defined in Sect. 2.

Theorem 4.1 [10] Let μ ∈ M1(N) with a second order moment and

C = 1

4(α + 1)

∞∑

n=1

μ(n)n(n + 2α + 1).

The sequence (
S[nt]√
2Cn

)t∈R+ converges in D, as n → +∞, to the process (B
(α)
t )t∈R+ .
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4.2 A Large Deviation Principle—A Law of Large Numbers

A large deviation principle for polynomial hypergroups was proved by Ehring [2].

Theorem 4.2 [2] Let μ ∈ M1(N) with finite support. Then, the sequence of ran-
dom variables ( Sn

n
)n≥1 satisfies a large deviation principle of speed n and good rate

function

I (x) =
{+∞ if x /∈ [0, x0],

supλ≥0{λx − log(μ̃(λ))} if x ∈ [0, x0],
where x0 = max{x ∈ N | μ(x) 
= 0} and μ̃ is the (generalized) Laplace transform of
the measure μ (see [2] for the definition).

In [2], x = 0 is proved to be the unique infimum point of the function I , then a
weak law of large numbers for ( Sn

n
)n≥1 holds.

4.3 Local Limit Theorems

By using a (generalized) Fourier calculus, a local limit theorem for the random walk
associated with Gegenbauer polynomials for any α ≥ − 1

2 was proved in [3].

Theorem 4.3 Let us assume that μ is aperiodic (i.e. the support of μ is not a subset
of 2N) with a finite second order moment.
Then, for every x, y ∈ N, as n → +∞,

p(n)(x, y) ∼ w
(α)
y �(α + 1)

2(Cn)α+1

where

C = 1

4(α + 1)

∞∑

n=1

μ(n)n(n + 2α + 1).

The random walk associated with Gegenbauer polynomials is then
{

recurrent if α ∈ [− 1
2 ,0],

transient if α ∈ ]0,+∞[.
The properties of recurrence/transience of the Markov chain (Sn)n∈N were estab-

lished in [9] by computing the potential kernel of the Markov chain. The previous
statement can be extended to the case when the measure μ is not aperiodic. We are
only interested in the case μ = δ1, but generalization to any periodic measure can
easily be done.

Proposition 4.1 Assume that μ = δ1, then for any x, y ∈ N, as n → +∞,

p(n)(x, y) ∼
{

w
(α)
y 2α+1�(α + 1)n−(α+1) when n + x + y is even,

0 otherwise.
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We now prove a local limit theorem with a new normalization in space following
the same lines as the proof of Theorem 4.3 in [3]. Therefore, in the proof, we just
stress on points which differ.

Theorem 4.4 Let us assume that μ is aperiodic with a second order moment. Then,
for every x ∈ R

�+, as n → +∞,

√
np(n)

(�x√
n�, �x√

n�) ∼ x

2C
e− x2

2C Iα

(
x2

2C

)
(9)

and

√
np(n)

(
0, �x√

n�) ∼ x2α+1e− x2
4C

22α+1Cα+1�(α + 1)
(10)

where Iα is the modified Bessel function of index α.

Proof From formula (8),

√
np(n)

(�x√
n�, �x√

n�)

= √
nw

(α)

�x√
n�

∫ π

0
μ̂(θ)n

(
P

(α)

�x√
n�(cos(θ)) sinα+ 1

2 (θ)
)2

dθ

= w
(α)

�x√
n�

∫ π
√

n

0
μ̂

(
θ√
n

)n(
P

(α)

�x√
n�

(
cos

(
θ√
n

))
sinα+ 1

2

(
θ√
n

))2

dθ

using the change of variables u = √
nθ .

The right-hand side is then decomposed as the sum of the following integrals:

I0(n) = w
(α)

�x√
n�

∫ ∞

0
exp

(−Cθ2)
(

P
(α)

�x√
n�

(
cos

(
θ√
n

))
sinα+ 1

2

(
θ√
n

))2

dθ,

I1(n,A) = w
(α)

�x√
n�

∫ A

0

[
μ̂

(
θ√
n

)n

− exp
(−Cθ2)

]

×
(

P
(α)

�x√
n�

(
cos

(
θ√
n

))
sinα+ 1

2

(
θ√
n

))2

dθ,

I2(n,A) = −w
(α)

�x√
n�

∫ +∞

A

exp
(−Cθ2)

×
(

P
(α)

�x√
n�

(
cos

(
θ√
n

))
sinα+ 1

2

(
θ√
n

))2

dθ,

I3(n,A, r) = w
(α)

�x√
n�

∫ r
√

n

A

μ̂

(
θ√
n

)n(
P

(α)

�x√
n�

(
cos

(
θ√
n

))
sinα+ 1

2

(
θ√
n

))2

dθ,

I4(n, r) = w
(α)

�x√
n�

∫ π
√

n

r
√

n

μ̂

(
θ√
n

)n(
P

(α)

�x√
n�

(
cos

(
θ√
n

))
sinα+ 1

2

(
θ√
n

))2

dθ.
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We only give the way of estimating I0(n) for n large. The integrals Ij , j = 1, . . . ,4,

can be proved to be negligible as in the proof of Theorem 4.3. From the definition of
the w

(α)
x ’s, we easily deduce that as n → +∞,

w
(α)

�x√
n� ∼ x2α+1nα+ 1

2

22α�(α + 1)2
.

Moreover, from formula 8.21.12 in [12], we get

lim
n→+∞P

(α)

�x√
n�

(
cos

(
θ√
n

))
= 2α�(α + 1)Jα(θx)

θαxα

where Jα is the Bessel function of index α, which yields (9) from the dominated
convergence theorem, by remarking that

∫

R+
e−Cθ2

(θx)J 2
α (θx)dθ = x

2C
e−x2/2CIα

(
x2

2C

)
.

We obtain (10) by remarking that we have

∫

R+
e−Cθ2

(θx)α+1Jα(θx)dθ = x2α+1

(2C)α+1
e− x2

4C . �

5 Limit Distribution of the Local Time

The local time (Nn(x))n≥0;x∈N of the Markov chain (Sn)n∈N defined in Sect. 3.2 is
equal to the number of times the chain visits the site x up to time n, namely

Nn(x) =
n∑

k=0

1{Sk=x}.

For every x ∈ N, we denote by Px the distribution of the Markov chain (Sn)n≥0
starting from x and by Ex the corresponding expectation. We prove in the case α ∈
[− 1

2 ,0] the following limit theorem for the local time (Nn(x))n≥0;x∈N.

Theorem 5.1 Assume that μ is aperiodic with a finite second order moment.

• When α ∈ [− 1
2 ,0[, for every x, y ∈ N, under Px ,

Nn(y)

n|α|
L−→ w

(α)
y �(α + 1)�(|α|)

2Cα+1
M(|α|) (11)

where the w
(α)
x ’s are defined in formulae (3) and (4).

• When α = 0, for every x, y ∈ N, under Px ,

Nn(y)

logn

L−→ (2y + 1)

4C
E (1)

where E (1) denotes the exponential distribution with parameter one.
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Remark From (1), the limit distribution in formula (11) is equal to the law of the
random variable

(2y + 2α + 1)�(y + 2α + 1)

�(y + 1)(2C)α+1
L

(α)
1 (0)

where L
(α)
1 (0) denotes the local time at 0 of the Bessel process with index α.

Proof Assume that α ∈ [− 1
2 ,0[. For every x, y ∈ N, we denote by Fx,y the generating

function of the sequence (p(n)(x, y))n≥0, namely for every λ ∈ [0,1[,

Fx,y(λ) =
∞∑

n=0

λnp(n)(x, y).

From Theorem 4.3, for every ε > 0, there exists n0 such that for every n ≥ n0,

(1 − ε)w
(α)
y �(α + 1)

2(Cn)α+1
≤ p(n)(x, y) ≤ (1 + ε)w

(α)
y �(α + 1)

2(Cn)α+1
.

From Tauberian theorem for power series (see Feller [4], p. 447), we deduce that, as
λ → 1−,

Fx,y(λ) ∼ w
(α)
y �(α + 1)�(|α|)

2C(α+1)(1 − λ)|α| . (12)

Let p ≥ 1, by combining all permutations of the same indices j1, . . . , jp , we have

Ex(Nn(y)p) =
∑

0≤j1,...,jp≤n

Px(Sj1 = · · · = Sjp = y)

= p!
∑

0≤j1≤···≤jp≤n

p(j1)(x, y)p(j2−j1)(y, y) · · ·p(jp−jp−1)(y, y)

+ Rn. (13)

The remainder term Rn contains the sums over the q-tuples (j1, . . . , jq) ∈ {0, . . . , n}q
with q < p. From Theorem 4.3, we deduce that Rn = O(n|α|q) = o(n|α|p), so it will
be negligible in the limit.

We denote by mn := mn(x,p) the first sum in the right-hand side of (13) and by
G the generating function of the sequence (mn)n≥0, that is, for every λ ∈ [0,1[,

G(λ) =
∞∑

n=0

λnmn

which can be rewritten as
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G(λ) = p!
∞∑

n=0

∑

0≤j1≤···≤jp≤n

(
λj1p(j1)(x, y)

)(
λj2−j1p(j2−j1)(y, y)

) · · ·

× (
λjp−jp−1p(jp−jp−1)(y, y)

)
λn−jp

= p!
∞∑

n=0

∑

m1+···+mp+1=n;mi≥0

(
λm1p(m1)(x, y)

)(
λm2p(m2)(y, y)

) · · ·

× (
λmpp(mp)(y, y)

)
λmp+1

= p!
(

1

1 − λ

)
Fx,y(λ)

(
Fy,y(λ)

)p−1
.

From (12), we deduce that, as λ → 1−,

G(λ) ∼ p! (w
(α)
y �(α + 1)�(|α|))p

2pCp(α+1)(1 − λ)|α|p+1
. (14)

Then, from Tauberian theorem for power series (see Feller [4], p. 447), we get as
n → +∞,

Ex

((
Nn(y)

n|α|

)p)
∼ p!

�(|α|p + 1)

(
w

(α)
y �(α + 1)�(|α|)

2Cα+1

)p

=: βp.

The Carleman condition
+∞∑

p=1

1

β
1/2p

2p

= +∞

being satisfied, the limit distribution is uniquely determined and the weak conver-
gence is proved. We characterize the limit distribution by recognizing the moments
of the Mittag-Leffler distribution M(|α|) (see Sect. 2).

The proof in the case α = 0 is similar and is omitted. �

When μ = δ1, the random walks associated with Gegenbauer polynomials are the
birth-and-death Markov chains on N with transition probabilities (p(i, j))i,j∈N given
by p(0,1) = 1 and

p(i, i + 1) = i + 2α + 1

2i + 2α + 1
; p(i, i − 1) = i

2i + 2α + 1
.

When α ∈ [−1/2,0], the Markov chain is positive recurrent; we still denote by
(Nn(x))n∈N;x∈N its local time. Thanks to Proposition 4.1, we can adapt the proof of
the previous theorem to provide a complete description of the limit behavior of these
local times. When α = −1/2, the Markov chain corresponds to the simple random
walk on N with reflection at 0. The mean number of times the Markov chain visits 0
is asymptotically equal to

√
n. The random walk associated with Gegenbauer poly-

nomials with index α = 0 is the birth-and-death Markov chain on N with transition
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probabilities given by

p(0,1) = 1

and

p(i, i + 1) = i + 1

2i + 1
, p(i, i − 1) = i

2i + 1
.

In that case, the mean number of times the Markov chain visits 0 is asymptotically
equal to 1

2 log(n). More precisely, we have

Proposition 5.1

• When α ∈ [− 1
2 ,0[, for every x, y ∈ N, under the measure Px ,

Nn(y)

n|α|
L−→ (2y + 2α + 1)�(y + 2α + 1)�(|α|)

2α+1�(y + 1)�(α + 1)
M(|α|) (15)

(with the convention 0 × �(0) = 1).
• When α = 0, for every x, y ∈ N, under the measure Px ,

Nn(y)

log(n)

L−→ E
(

2

2y + 1

)
. (16)
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