Lie analogues of Loday algebras and successors of operads

Chengming Bai (Joint work with Olivia Bellier, Li Guo, Ligong Liu, Xiang Ni and Bruno Vallette)

Chern Institute of Mathematics, Nankai University

Lyon, November 4, 2011

イロト イヨト イヨト イヨト

- A brief introduction to Loday algebras and pre-Lie algebras
- 2 L-dendriform algebras
- Lie analogues of Loday algebras
- Successors of operads and Manin black products

- 4 同 ト 4 ヨ ト 4 ヨ ト

• Dendriform algebras and pre-Lie algebras

Definition

A dendriform algebra (A, \prec, \succ) is a vector space A with two binary operations denoted by \prec and \succ satisfying (for any $x, y, z \in A$)

$$(x \prec y) \prec z = x \prec (y \ast z), \tag{1}$$

$$(x \succ y) \prec z = x \succ (y \prec z), \tag{2}$$

$$x \succ (y \succ z) = (x * y) \succ z, \tag{3}$$

where $x * y = x \prec y + x \succ y$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Definition

A pre-Lie algebra A is a vector space with a binary operation $(x, y) \to xy$ satisfying

$$(xy)z - x(yz) = (yx)z - y(xz), \quad \forall x, y, z \in A.$$
 (4)

• Other names:

- left-symmetric algebra
- 2 Koszul-Vinberg algebra
- quasi-associative algebra
- right-symmetric algebra

5 . . .

Proposition

Let A be a pre-Lie algebra.

The commutator

$$[x,y] = xy - yx, \ \forall x, y \in A$$
(5)

defines a Lie algebra $\mathfrak{g}(A)$, which is called the sub-adjacent Lie algebra of A.

Por any x, y ∈ A, let L(x) denote the left multiplication operator. Then Eq. (4) is just

$$[L(x), L(y)] = L([x, y]), \ \forall x, y \in A,$$
(6)

which means that $L : \mathfrak{g}(A) \to gl(\mathfrak{g}(A))$ with $x \to L(x)$ gives a representation of the Lie algebra $\mathfrak{g}(A)$.

Proposition

Let (A,\prec,\succ) be a dendriform algebra.

1 The binary operation $\bullet : A \otimes A \rightarrow A$ given by

$$x * y = x \prec y + x \succ y, \forall x, y \in A, \tag{7}$$

defines an associative algebra.

2 The binary operation $\circ : A \otimes A \rightarrow A$ given by

$$x \circ y = x \succ y - y \prec x, \forall x, y \in A,$$
(8)

defines a pre-Lie algebra.

Both (A, ∗) and (A, ∘) have the same sub-adjacent Lie algebra g(A) defined by

$$[x,y] = x \succ y + x \prec y - y \succ x - y \prec x, \forall x, y \in A.$$
 (9)

Relationship among Lie algebras, associative algebras, pre-Lie algebras and dendriform algebras in the sense of commutative diagram of categories:

$$\begin{array}{rcccc} \text{Lie algebra} & \leftarrow & \text{Pre-Lie algebra} \\ \uparrow & & \uparrow & (10) \\ \text{Associative algebra} & \leftarrow & \text{Dendriform algebra} \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Loday algebras

Similar algebra structures have a common property of "splitting associativity", that is, expressing the multiplication of an associative algebra as the sum of a string of binary operations. Explicitly, let (X, *) be an associative algebra over a field \mathbb{F} of characteristic zero and $(*_i)_{1 \leq i \leq N} : X \otimes X \to X$ be a family of binary operations on X. Then the operation * splits into the N operations $*_1, \cdots, *_N$ if

$$x * y = \sum_{i=1}^{N} x *_{i} y, \ \forall x, y \in X.$$
(11)

- N = 2: dendriform (di)algebra;
- 2 N = 3: dendriform trialgebra;
- N = 8: octo-algebra;
- **(3)** N = 9: ennea-algebra;

() ...

We pay our main attention to the case that $N=2^n$, $n=0,1,2,\cdots$.

The "rule" of constructing Loday algebras

- Operation axioms can be summarized to be a set of "associativity" relations;
- ② By induction, for the algebra (A, *_i)_{1≤i≤2ⁿ}, besides the natural (regular) module of A on the underlying vector space of A itself given by the left and right multiplication operators, one can introduce the 2ⁿ⁺¹ operations {*_{i1}, *_{i2}}_{1≤i≤2ⁿ} such that

$$x *_{i} y = x *_{i_{1}} y + x *_{i_{2}} y, \ \forall x, y \in A, \ 1 \le i \le 2^{n},$$
(12)

and their left and right multiplication operators can give a module of $(A, *_i)_{1 \le i \le 2^n}$ by acting on the underlying vector space of A itself.

• Example: quadri-algebras

Definition

Let A be a vector space with four binary operations denoted by $\searrow, \nearrow, \nwarrow$ and $\swarrow : A \otimes A \to A$. $(A, \searrow, \nearrow, \nwarrow, \checkmark)$ is called a *quadri-algebra* if for any $x, y, z \in A$,

$$(x \nwarrow y) \nwarrow z = x \nwarrow (y * z), (x \nearrow y) \nwarrow z = x \nearrow (y \prec z),$$
(13)

$$(x \wedge y) \nearrow z = x \nearrow (y \succ z), (x \swarrow y) \nwarrow z = x \swarrow (y \wedge z), \quad (14)$$

$$(x \searrow y) \nwarrow z = x \searrow (y \nwarrow z), (x \lor y) \nearrow z = x \searrow (y \nearrow z),$$
(15)

$$(x \prec y) \swarrow z = x \swarrow (y \lor z), \quad (x \succ y) \swarrow z = x \searrow (y \swarrow z), \quad (16)$$
$$(x \ast y) \searrow z = x \searrow (y \searrow z), \quad (17)$$

(4月) (日) (日)

Definition

(Continued) where

$$x \succ y = x \nearrow y + x \searrow y, x \prec y = x \nwarrow y + x \swarrow y, \tag{18}$$

$$x \lor y = x \searrow y + x \swarrow y, x \land y = x \nearrow y + x \nwarrow y,$$
 (19)

 $x*y = x \searrow y + x \nearrow y + x \swarrow y + x \swarrow y = x \succ y + x \prec y = x \lor y + x \land y$ (20)

◆□ > ◆母 > ◆目 > ◆日 > ● ● ●

L-dendriform algebras

 Motivations to introduce "L-dendriform" algebra Motivation (I) Extension of the diagram (10)

Application: An interpretation of the relationship between pre-Lie algebras and dendriform algebras in terms of the relationship between pre-Lie algebras and L-dendriform algebras.

Motivation (II) The underlying algebraic structure of a pseudo-Hessian structure on a Lie group

Motivation (III) Algebraic structures behind the \mathcal{O} -operators of pre-Lie algebras and the related *S*-equation

• L-dendriform algebras

Definition

Let A be a vector space with two binary operations denoted by \triangleright and $\triangleleft : A \otimes A \rightarrow A$. $(A, \triangleright, \triangleleft)$ is called an *L*-dendriform algebra if for any $x, y, z \in A$,

$$x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright z + (x \triangleleft y) \triangleright z + y \triangleright (x \triangleright z) - (y \triangleleft x) \triangleright z - (y \triangleright x) \triangleright z,$$
(22)

$$x \triangleright (y \triangleleft z) = (x \triangleright y) \triangleleft z + y \triangleleft (x \triangleright z) + y \triangleleft (x \triangleleft z) - (y \triangleleft x) \triangleleft z.$$
 (23)

() < </p>

L-dendriform algebras

Proposition

Let $(A, \triangleright, \triangleleft)$ be an L-dendriform algebra.

1 The binary operation $\bullet : A \otimes A \rightarrow A$ given by

$$x \bullet y = x \triangleright y + x \triangleleft y, \forall x, y \in A,$$
(24)

defines a (horizontal) pre-Lie algebra.

2 The binary operation $\circ : A \otimes A \rightarrow A$ given by

$$x \circ y = x \triangleright y - y \triangleleft x, \forall x, y \in A,$$
(25)

defines a (vertical) pre-Lie algebra.

Both (A, ●) and (A, ○) have the same sub-adjacent Lie algebra g(A) defined by

$$[x,y] = x \triangleright y + x \triangleleft y - y \triangleright x - y \triangleleft x, \forall x, y \in A.$$
(26)

Remark

Let $(A, \triangleright, \triangleleft)$ be an L-dendriform algebra. Then Eqs. (22) and (23) can be rewritten as (for any $x, y, z \in A$)

$$x \triangleright (y \triangleright z) - (x \bullet y) \triangleright z = y \triangleright (x \triangleright z) - (y \bullet x) \triangleright z,$$
(27)

$$x \triangleright (y \triangleleft z) - (x \triangleright y) \triangleleft z = y \triangleleft (x \bullet z) - (y \triangleleft x) \triangleleft z.$$
(28)

The both sides of the above two equations can be regarded as a kind of "generalized associators". In this sense, Eqs. (27) and (28) express certain "generalized left-symmetry" of the "generalized associators".

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Definition

Let (A, \circ) be a pre-Lie algebra and V be a vector space. Let $l, r : A \to gl(V)$ be two linear maps. (l, r, V) is called a *module* of (A, \circ) if

$$l(x)l(y) - l(x \circ y) = l(y)l(x) - l(y \circ x),$$
(29)

$$l(x)r(y) - r(y)l(x) = r(x \circ y) - r(y)r(x), \forall x, y \in A.$$
 (30)

The "rule" of introducing the notion of L-dendriform algebra

Proposition

Let A be a vector space with two binary operations denoted by $\triangleright, \triangleleft : A \otimes A \rightarrow A$.

- (A, ▷, ⊲) is an L-dendriform algebra if and only if (A, ●) defined by Eq. (24) is a pre-Lie algebra and (L_▷, R_⊲, A) is a module.
- (A, ▷, ⊲) is an L-dendriform algebra if and only if (A, ∘) defined by Eq. (25) is a pre-Lie algebra and (L_▷, -L_⊲, A) is a module.

L-dendriform algebras

Relationship between dendriform algebras and L-dendriform algebras

Proposition

Any dendriform algebra (A, \succ, \prec) is an L-dendriform algebra by letting $x \triangleright y = x \succ y, x \triangleleft y = x \prec y$.

Proof.

In fact, for a dendriform algebra, both sides of Eqs. (27) and (28) which are the equivalent identities of an L-dendriform algebra, are zero.

Remark

In the above sense, associative algebras are the special pre-Lie algebras whose associators are zero, whereas dendriform algebras are the special L-dendriform algebras whose "generalized associators" are zero.

Proposition

Let $(A, \searrow, \nearrow, \nwarrow, \swarrow)$ be a quadri-algebra.

- The binary operations given by Eq. (18) define a dendriform algebra (A, ≻, ≺).
- 2 The binary operations given by Eq. (19) define a dendriform algebra (A, ∨, ∧).

$$x \triangleright y = x \searrow y - y \nwarrow x, x \triangleleft y = x \nearrow y - y \swarrow x, \ \forall x, y \in A,$$

$$(31)$$
define an L-dendriform algebra $(A, \triangleright, \triangleleft).$

◆□ > ◆母 > ◆目 > ◆日 > ● ● ●

L-dendriform algebras

Corollary

Let $(A, \searrow, \nearrow, \nwarrow, \checkmark)$ be a quadri-algebra. The binary operation given by

 $x \circ y = x \searrow y + x \swarrow y - y \land x - y \nearrow x = x \triangleright y - y \triangleleft x = x \lor y - y \land x,$ (32)

defines a pre-Lie algebra (A, \circ) .

Eq. (20) defines an associative algebra (A,*).

The binary operation given by

 $x \bullet y = x \searrow y + x \nearrow y - y \nwarrow x - y \swarrow x = x \triangleright y + x \triangleleft y = x \succ y - y \prec x,$ (33)

defines a pre-Lie algebra (A, \bullet) .

• The binary operation given by

 $[x,y] = x \searrow y + x \swarrow y + x \nearrow y + x \nwarrow y - (y \searrow x + y \swarrow x + y \nearrow x + y \swarrow x),$ (34)

defines a Lie algebra $(\mathfrak{q}(A), [,])$.

Chengming Bai

Lie analogues of Loday algebras and successors of operads

Commutative diagram:

Lie
$$\leftarrow$$
 Pre-Lie \leftarrow^{+} L-dendriform
 $\overline{\checkmark}$ $\Uparrow \in \overline{\checkmark}$ $\Uparrow \in \overline{\checkmark}$ (35)
Associative $\stackrel{+}{\leftarrow}$ Dendriform $\stackrel{+}{\leftarrow}$ Quadri

where " $\Uparrow \in "$ means the inclusion. "+" means the binary operation $x \circ_1 y + x \circ_2 y$ and "-" means the binary operation $x \circ_1 y - y \circ_2 x$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lie analogues of Loday algebras

Let (X, [,]) be a Lie algebra and $(*_i)_{1 \le i \le N} : X \otimes X \to X$ be a family of binary operations on X. Then the Lie bracket [,] splits into the commutator of N binary operations $*_1, \dots, *_N$ if

$$[x,y] = \sum_{i=1}^{N} (x *_{i} y - y *_{i} x), \quad \forall x, y \in X.$$
(36)

We pay our main attention to the case that $N=2^n$, $n=0,1,2,\cdots$.

"Rule" of construction

A "rule" of constructing the binary operations $*_i$ as follows: the 2^{n+1} binary operations give a natural module structure of an algebra with the 2^n binary operations on the underlying vector space of the algebra itself, which is the beauty of such algebra structures. That is, by induction, for the algebra $(A, *_i)_{1 \le i \le 2^n}$, besides the natural module of A on the underlying vector space of A itself given by the left and right multiplication operators, one can introduce the 2^{n+1} binary operations $\{*_{i_1}, *_{i_2}\}_{1 \le i \le 2^n}$ such that

 $x *_{i} y = x *_{i_{1}} y - y *_{i_{2}} x, \quad \forall x, y \in A, \ 1 \le i \le 2^{n},$ (37)

and their left or right multiplication operators give a module of $(A, *_i)_{1 \leq i \leq 2^n}$ by acting on the underlying vector space of A itself.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Lie analogues of Loday algebras

- When N = 1, the corresponding algebra (A, *_i)_{1≤i≤N} is a pre-Lie algebra;
- **2** When N = 2, the corresponding algebra $(A, *_i)_{1 \le i \le N}$ is an L-dendriform algebra.

Remark

Note that for $n \ge 1$ $(N \ge 2)$, in order to make Eq. (36) be satisfied, there is an alternative (sum) form of Eq. (37)

$$x *_{i} y = x *_{i_{1}} y + x *_{i_{2}}' y, \quad \forall x, y \in A, \ 1 \le i \le 2^{n},$$
(38)

by letting $x *'_{i_2} y = -y *_{i_2} x$ for any $x, y \in A$. In particular, in such a situation, it can be regarded as a binary operation * of a pre-Lie algebra that splits into the $N = 2^n$ $(n = 1, 2 \cdots)$ binary operations $*_1, \ldots, *_N$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

N = 3: L-quadri-algebra

Definition

Let A be a vector space with four bilinear products $\searrow, \nearrow, \nwarrow,$ $\swarrow: A \otimes A \to A. (A, \searrow, \nearrow, \nwarrow, \checkmark)$ is called an *L-quadri-algebra* if for any $x, y, z \in A$,

$$x \searrow (y \searrow z) - (x * y) \searrow z = y \searrow (x \searrow z) - (y * x) \searrow z, \quad (39)$$

$$x \searrow (y \nearrow z) - (x \lor y) \nearrow z = y \nearrow (x \succ z) - (y \land x) \nearrow z, \quad (40)$$

$$x \searrow (y \nwarrow z) - (x \searrow y) \nwarrow z = y \leftthreetimes (x * z) - (y \And x) \leftthreetimes z, \quad (41)$$

$$x \nearrow (y \prec z) - (x \nearrow y) \leftthreetimes z = y \swarrow (x \land z) - (y \swarrow x) \leftthreetimes z, \quad (42)$$

$$x \searrow (y \swarrow z) - (x \succ y) \swarrow z = y \swarrow (x \lor z) - (y \prec x) \swarrow z, \quad (43)$$

・ロン ・回 と ・ヨン ・ヨン

Definition

(Continued) where

$$x \succ y = x \searrow y + x \nearrow y, x \prec y = x \nwarrow y + x \swarrow y, \tag{44}$$

$$x \lor y = x \searrow y + x \swarrow y, x \land y = x \nearrow y + x \nwarrow y, \tag{45}$$

 $x*y = x \searrow y + x \nearrow y + x \swarrow y + x \swarrow y = x \succ y + x \prec y = x \lor y + x \land y$ (46)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Commutative diagram

Chengming Bai, Ligong Liu, Xiang Ni, Some results on L-dendriform algebras, Journal of Geometry and Physics (2010) 60:940-950.

Ligong Liu, Xiang Ni, Chengming Bai, L-quadri-algebras (in Chinese), Sci. Sin. Math. (2011) 42: 105-124.

Successors of operads

Definition

Let $\mathcal{P} = \mathcal{T}(V)/(R)$ be a binary algebraic operad on the \mathbb{S}_2 -module V = V(2), concentrated in arity 2 with a $\mathbf{k}[\mathbb{S}_2]$ -basis \mathcal{V} , such that R is spanned, as an \mathbb{S}_2 -module, by locally homogeneous elements of the form

$$R := \left\{ r_s := \sum_i c_{s,i} \tau_{s,i} \Big| c_{s,i} \in \mathbf{k}, \tau_{s,i} \in \{t(\mathcal{V}), t \in \mathfrak{R}\}, 1 \le s \le k, k \ge 1 \right\}$$
(48)

where \mathfrak{R} is a set of representatives of \mathcal{J}/\sim . The **bisuccessor** of \mathcal{P} is defined to be the binary algebraic operad BSu(\mathcal{P}) = $\mathcal{T}(\widetilde{V})/(BSu(R))$ where the \mathbb{S}_2 -action on \widetilde{V} is given by

Definition

(continued)

$$\binom{\omega}{\prec}^{(12)} := \binom{\omega^{(12)}}{\succ}, \quad \binom{\omega}{\succ}^{(12)} := \binom{\omega^{(12)}}{\prec}, \ \omega \in V,$$
 (49)

and the space of relations is generated, as an $\mathbb{S}_2\text{-module},$ by

$$BSu(R) := \left\{ Su_x(r_s) := \sum_i c_{s,i} Su_x(t_{s,i}) \mid x \in Lin(t_{s,i}), \ 1 \le s \le k \right\}$$
(50)

(1日) (日) (日)

The notion of the **bisuccessor** $BSu(\mathcal{P})$ of a binary operad \mathcal{P} generalizing the relationships among Loday algebras (and their Lie analogues) in the operadic sense.

Example

Let $\mathcal{A}s$, Dend, Quad be the operad of associative, dendriform and quadri-algebras respectively. Then

$$BSu(As) = Dend, BSu(Dend) = Quad.$$

$$BSu(\mathcal{L}ie) = \mathcal{P}reLie, \ BSu(\mathcal{P}reLie) = \mathcal{L}Dend,$$

$$BSu(\mathcal{L}Dend) = \mathcal{L}Quad.$$

Chengming Bai, Olivia Bellier, Li Guo and Xiang Ni, Splitting of operations, Manin products and Rota-Baxter operators, arXiv:1106.6080.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Manin black products

Definition

Let $\mathcal{P} = \mathcal{F}(V)/(R)$ and $\mathcal{Q} = \mathcal{F}(W)/(S)$ be two binary quadratic operads with finite-dimensional generating spaces. Define their **Manin black product** by the formula

$$\mathcal{P} \bullet \mathcal{Q} := \mathcal{F}(V \otimes W \otimes \mathbf{k}.\mathrm{sgn}_{\mathbb{S}_2}) / (\Psi(R \otimes S)).$$
(51)

V. Ginzburg and M. M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1995), 203-272.

B. Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math. 620 (2008) 105-164.

(ロ) (同) (E) (E) (E)

Notation

- Let V be a (left) S₂-module. The free operad F(V) on V is given by the k-vector space spanned by binary trees with vertices indexed by elements of V, together with an action of the symmetric groups.
- ② Ψ is a S₃-module homomorphism from $\mathcal{F}(V)(3) \otimes \mathcal{F}(W)(3) \otimes \mathbf{k}.\mathrm{sgn}_{S_3}$ to $\mathcal{F}(V \otimes W \otimes \mathbf{k}.\mathrm{sgn}_{S_2})(3)$ satisfying certain conditions.

Roughly speaking, Manin black product provides a method of constructing a new operad from two operads.

Example

The operad $\mathcal{L}ie$, of Lie algebras is the neutral element for \bullet . That is, for any binary quadratic operad \mathcal{P} , we know that

$$\mathcal{P} = \mathcal{L}ie \bullet \mathcal{P} = \mathcal{P} \bullet \mathcal{L}ie.$$
(52)

▲□→ ▲ □→ ▲ □→

Proposition

(Vallete, Bellier) Let $\mathcal{P}reLie$, $\mathcal{L}Dend$ and $\mathcal{L}Quad$ be the operad of pre-Lie, L-dendriform and L-quadri-algebras respectively. Then

$$\mathcal{L}Dend = \mathcal{P}reLie \bullet \mathcal{P}reLie.$$
(53)

$$\mathcal{L}Quad = \mathcal{P}reLie \bullet \mathcal{L}Dend = \mathcal{P}reLie \bullet \mathcal{P}reLie \bullet \mathcal{P}reLie.$$
 (54)

Remark

The above result is listed partly as one of the conjectures given by Loday in "Some problems in operad theory", arXiv: 1109.3290 (Problem 6).

() < </p>

Theorem

Let \mathcal{P} be a binary quadratic operad. Then we have the isomorphism of operads

$$BSu(\mathcal{P}) = \mathcal{P}reLie \bullet \mathcal{P}.$$

Remark

In the above sense, we know that

- *PreLie* plays a role as a "splitting factor";
- PreLie plays a role of "partition of unit" if Lie is regarded as a unit for the Manin black product •.

イロト イヨト イヨト イヨト

Corollary

- Loday algebras
 - $\mathcal{D}end = \mathcal{P}reLie \bullet \mathcal{A}s;$
 - $Quad = PreLie \bullet Dend;$

2 Lie analogues of Loday algebras

•
$$\mathcal{P}reLie = \mathcal{P}reLie \bullet \mathcal{L}ie;$$

•
$$\mathcal{L}Dend = \mathcal{P}reLie \bullet \mathcal{P}reLie;$$

•
$$\mathcal{L}Quad = \mathcal{P}reLie \bullet \mathcal{L}Dend.$$

A (B) > A (B) > A (B) >

The trisuccessor $TSu(\mathcal{P})$ of a binary quadratic operad \mathcal{P} is the operad of algebras "splitting" the operations into three ones. The algebra playing a similar role of pre-Lie algebras is PostLie algebra.

Definition

A (left) PostLie algebra is a vector space A with two bilinear operations \circ and [,] which satisfy the relations: (for any $x, y, z \in A$)

$$[x, y] = -[y, x], (56)$$

$$[[x, y], z] + [[z, x], y] + [[y, z], x] = 0,$$
(57)

$$z \circ (y \circ x) - y \circ (z \circ x) + (y \circ z) \circ x - (z \circ y) \circ x + [y, z] \circ x = 0,$$
(58)
$$z \circ [x, y] - [z \circ x, y] - [x, z \circ y] = 0.$$
(59)

Theorem

Let \mathcal{P} be a binary quadratic operad. Then we have the isomorphism of operads

$$TSu(\mathcal{P}) = \mathcal{P}ostLie \bullet \mathcal{P}.$$
 (60)

・ロン ・回 と ・ ヨン ・ ヨン

Thank You!

Chengming Bai Lie analogues of Loday algebras and successors of operads

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < ⊙