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From rewriting systems to omega-Cat

Homotopy of omega-Cat



Monoids

Presentations
A presentation of a monoid M consists in a pair (Σ,R)

I an alphabet Σ;

I a set R ⊂ Σ∗ ×Σ∗ of rewriting rules r : w → w ′, where w , w ′

are words on the alphabet Σ,

such that M is the quotient of the free monoid Σ∗ by the
congruence generated by R.

Example

Z2 is presented by ({a}, {r : aa→ 1})



Complete system

Definition
A rewriting system is complete if it is noetherian and confluent.

Example

aaaa raa //

ara
��

aa

r
��

aa r
// 1



Homology

Theorem (Squier 1987)

If a monoid M admits a finite, complete presentation, then H3(M)
is of finite type.



Higher-categorical approach

I A monoid M is a category with a single object.

I The “space of computations” attached to a presentation of M
supports a 2-dimensional categorical structure.

I More generally, the notion of resolution of M leads to
categories of dimension 2, 3,...,n,...

I This leads to interpret Squier’s result in an appropriate
homotopical structure on ωCat.



Globular sets

The category O

0
s0 //

t0

// 1
s1 //

t1

// 2
s2 //

t2

// . . .

I objects are integers 0, 1, 2, . . .

I morphisms are generated by sn, tn : n→ n+1, with

sn+1sn = tn+1sn
tn+1tn = sn+1tn



Globular sets

Definition
A globular set is a presheaf on O:

X : Oop → Sets

I globular sets are obtained by glueing together globe-shaped
cells.

I looks like simplicial sets with O replacing ∆, but topologically
much more restricted.



Higher categories

Definition
A (strict) ω-category C is given by:

I a globular set C0 ⇔ C1 ⇔ C2 ⇔ · · ·
I compositions and units satisfying: associativity, exchange...

ωCat = ω-categories + ω-functors



Higher categories

Examples

1. set
S ⇔ () ⇔ · · ·

2. monoid
1 ⇔ M ⇔ () ⇔ · · ·

3. presentation
1 ⇔ Σ∗ ⇔ R∗/∼ ⇔ () ⇔ · · ·



Polygraphs

Free cell adjunction

Let C be an n-category. Any graph

Cn Sn+1
τn

oo
σnoo

such that g ∈ Sn+1, σng ‖ τng for each generator g defines an
(n + 1)-category, the free extension of C by a set Sn+1 of
(n + 1)-cells.



Polygraphs

Definition
A computad (Street 76) or polygraph (Burroni 91) S is a sequence
of sets Sn of n-dimensional cells defining a freely generated
n-category in each dimension n.

S0

��

S1

��~~~~~~~~~~

~~~~~~~~~~
S2

��~~~~~~~~~~

~~~~~~~~~~
S3

��~~~~~~~~~~

~~~~~~~~~~
· · ·

~~}}}}}}}}

~~}}}}}}}}

S∗0 S∗1oooo S∗2oooo S∗3oooo · · ·oooo



Examples from rewriting systems

Σ = {a} graph 1 ⇔ Σ

free category 1 ⇔ Σ∗

R = {r} 2-graph 1 ⇔ Σ∗ ⇔ R

free 2-category 1 ⇔ Σ∗ ⇔ R∗

2-category 1 ⇔ Σ∗ ⇔ R∗/ ∼

I what about higher dimensions ?



Resolutions

Definition
A polygraphic resolution of an ω-category C is a morphism
p : S∗ → C , where S is a polygraph and:

I p0 is surjective;

I for each pair (x , y) of parallel n-cells in S∗n and each
u : px → py , there exists z : x → y such that pz = u.



Resolutions

•
x

((

y
66
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Theorem
Each ω-category admits a polygraphic resolution, which is unique
up to “homotopy”.



A partial resolution of Z2

{•}

��

{a}

�����������������

���������������
{r , r}

�����������������

���������������
{s, s, . . .}

�����������������

���������������
{t, t, . . .}

�����������������

���������������

{•}∗

p0

��

{a}∗

p1

��

oooo {r , r}∗

p2

��

oooo {s, s, . . .}∗

p3

��

oooo {t, t, . . .}∗

p4

��

oooo

1 Z2oo oo ()oooo ()oooo ()oooo



Weak equivalences

Definition

I Two parallel n-cells x , y are ω-equivalent if there is a
reversible (n + 1)-cell u : x → y ;

I An (n + 1)-cell u : x → y is reversible if there is a cell
v : y → x such that u ∗ v and v ∗ u are ω-equivalent to 1x

and 1y respectively.

Definition
A morphism f : C → D is a weak equivalence if:

I for all d ∈ D0, there is c ∈ C0 such that fc ∼ d ;

I for each pair (c, c ′) of parallel n-cells in C and each
d : fc → fc ′, there exists u : c → c ′ such that fu ∼ d .

We denote by W the class of weak equivalences.



Globes

n-Globes

I For each n, the n-globe On is the free ω-category generated
by the globular set with two cells in dimensions < n, one cell
in dimension n, and none in dimensions > n, that is

On = O(−, n)∗

I Likewise, ∂On denotes the boundary of the n-globe, obtained
from On by removing the unique n-dimensional generator.



Generating cofibrations

Canonical inclusions
We denote by in the inclusion of ∂On in On:

I = {in | n ≥ 0}

I is the set of generating cofibrations.



Model structure

Theorem (Lafont, Worytkiewicz & FM)

The class W of weak equivalences and the set I of generating
cofibrations determine a Quillen model structure on ωCat.

Fibrations & Cofibrations
The trivial fibrations are the morphisms having the right-lifting
property with respect to I and the class C of cofibrations is the
class of morphisms having the left-lifting property with respect to
all trivial fibrations.
The class F of fibrations is the class of morphisms having the
right-lifting property with respect to all morphisms in C ∩W.



Cylinders

I (C I )n = Hom(cyl[n],C );

I C I is an ω-category;

I there are natural transformations π1, π2 : C I → C
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Properties

I reversible cylinders Γ(C ) ⊂ C I define a path object on C ;

I all objects are fibrant;

I cofibrant objects are exactly polygraphs.

(ωCat)cf = Pol∗



Abelian group objects

Denormalization theorem (Bourn)

There is an equivalence of categories between:

ωCatab = abelian group objects in ωCat
and Ch = chain complexes

Abelianization functor

Ab : ωCat→ Ch, C 7→ (A, ∂)

Ai = ZCi/≈, where id(x) ≈ 0 and x ∗j y ≈ x + y



Homology as a derived functor

Derived functor

C

γ
��

F

%%JJJJJJJJJJJ
Ab // Cab

��
Ho(C)

LF
//

t ;C����
Ho(Cab)

t : LF ◦ γ → F

Model structure on Ch

I Weak equivalences induce isomorphisms in homology

I ν : Ch→ Ho(Ch)



Deriving the abelianization functor

Theorem
Let F = ν ◦ Ab. There is a left derived functor LF and for any
polygraph S, (LF ◦ γ)(S∗) ' F (S∗).

ωCat
Ab //

γ
��

F
MMMMM

&&MMMM

Ch

ν
��

Ho(ωCat)
LF

// Ho(Ch)

Proof.

I on cofibrant objects Ab(S∗) = [S∗] = ZS ;

I If f : S∗ → T ∗ is a weak equivalence, then Ab(f ) is a
quasi-isomorphism.
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