Examination

Lattice Models - EPFL 2018-2019 January 15, 2019

Justify all your questions. You do not have to prove again the things seen during the lesson.

1. We simulated two Ising models on a square grid domain for two different $\beta_1 < \beta_2$ (+1 spins in blue, -1 spins in yellow). Which picture is more likely to be the one we obtained for β_1 ? Justify. [3 pt]

2. Let us consider two simple random walks $(X_n)_{n \in \mathbb{N}}$ and $(Y_n)_{n \in \mathbb{N}}$ such that $X_0 = 20$ and $Y_0 = 18$. Then $X_{\max(Y_n,0)}$ visits 2019 almost surely. True or False? Justify in either case! [1 + 6 pt]

3. Let $G \subset \mathbb{Z}^2$ be a bounded connected domain with - boundary conditions. Consider the Ising model on G with parameter $\beta > 0$. There exist x and y in G such that $\mathbb{E}[\sigma_x] \mathbb{E}[\sigma_y] \leq 0$. True or False? Justify in either case! [1 + 6 pt]

4. Let $G \subset \mathbb{Z}^2$ be a bounded connected domain with + boundary conditions. Consider the low temperature expansion (L.T.E.) of the Ising model with parameter $\beta > 0$. For any distinct x and y in G, $\mathbb{E}[\sigma_x \sigma_y]$ is strictly smaller than:

 $\mathbb{P}(x \text{ and } y \text{ are not separated by any loop in the LTE}) - \mathbb{P}(x \text{ and } y \text{ are separated by at least one loop in the LTE}).$

True or False? Justify in either case! $[1\,+\,6~{\rm pt}]$

5. For $n \ge 1$, consider the $2n \times 2n$ chessboard C with black cells $\mathcal{B} = \{b_1, \ldots, b_{2n^2}\}$ and white cells $\mathcal{W} = \{w_1, \ldots, w_{2n^2}\}$. Let A denote the $2n^2 \times 2n^2$ reduced adjacency matrix $(A_{i,j} = 1 \text{ if } b_i \text{ adjacent to } w_j, 0 \text{ if not})$. Then $|\det A| < \#$ {Domino tilings of C}. True or False? Justify in either case! [1 + 6 pt]

6. Let us consider a discretization of a square $[0, 1] \times [0, 1]$ by a honeycomb lattice of small mesh size and color the hexagons of D_{δ} in black or white with probability 1/2 in an independent fashion. Let $L = [0, 1] \times \{0\}$ and $U = [0, 1] \times \{1\}$. Then

 $\mathbb{P}\left\{\text{There exists a black and a white path both linking } L \text{ and } U\right\} \leq \frac{1}{4}.$

True or False? Justify in either case! [1 + 6 pt]

7. Consider a random domino tiling of the 8×8 chessboard, picked uniformly at random. Show that the probability that the top row is occupied by 4 adjacent horizontal dominos is equal to

_

$$\sqrt{\frac{\prod_{k=1}^{8}\prod_{\ell=1}^{7}\left(2\cos\left(\frac{\pi k}{9}\right)+2i\cos\left(\frac{\pi \ell}{8}\right)\right)}{\prod_{k=1}^{8}\prod_{\ell=1}^{8}\left(2\cos\left(\frac{\pi k}{9}\right)+2i\cos\left(\frac{\pi \ell}{9}\right)\right)}}.$$

[6 pt]

8. For $N \ge 1$, consider the graph G_N consisting of the 3N - 2 vertices $\{n, ne^{2\pi i/3}, ne^{4\pi i/3} : n = 0, ..., N\}$ where two vertices are adjacent if they are at (Euclidean) distance 1 from each other. (Make a picture) For n = 0, ..., N, compute the probability that a simple random walk on G_N starting from n hits $Ne^{4\pi i/3}$ before $\{N, Ne^{2\pi i/3}\}$. [6 pt] 9. Consider the domain $D = \{z^2 : 0 \leq \Re e(z), \Im m(z) \leq 1\}$. Discretize D_{δ} by a honeycomb lattice of mesh size δ and color the hexagons of D_{δ} in black or white with probability 1/2 in an independent fashion. Let P_{δ} denote the probability that the points $\frac{1}{4}$ and $-\frac{1}{4}$ are separated by a black path from the points $\frac{3}{4} + i$ and $-\frac{3}{4} + i$ in D_{δ} . Show that $\lim_{\delta \to 0} P_{\delta} = \frac{1}{2}$. [6 pt]

10. Consider a modified simple random walk on \mathbb{Z} starting from 0 which jumps with probability $\frac{3}{4}$ to the right nearest neighbor and with probability $\frac{1}{4}$ to the left nearest neighbor. Show that the expected number of visits of 0 is finite. Show that it is equal to

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{1 - \frac{1}{2}\cos\left(\xi\right) - \frac{1}{2}e^{i\xi}} d\xi.$$

[6 pt]

11. Suppose we want to apply Wilson's algorithm on \mathbb{Z}^d , by taking a root and v_0 labelling the vertices of $\mathbb{Z}^d = \{v_1, \ldots, v_n, \ldots\}$ arbitrarily (using a bijection between \mathbb{N} and \mathbb{Z}^d), thus defining (if the algorithm works) a growing sequence of trees $\{v_0\} = T_0 \subset T_1 \subset \ldots$ Will the algorithm work and will any finite box be included in some T_k tree for large enough k? Justify your answer. [6 pt]

12. (A bit harder) Let us consider a finite graph G with a fixed root v_0 . Let v_1, \ldots, v_n be a labelling of the vertices of G. Suppose we apply Wilson's algorithm following the labelling v_1, \ldots, v_n and sample the LERW by sampling SRW and erasing their loops in chronological order. Let K denote the total number of steps of all these SRW. Show that the law of K does not depend on the labelling v_1, \ldots, v_n , but that it may depend on v_0 . [6 + 4 pt]

13. (Harder) Find a function $f : \mathbb{Z}^3 \to \mathbb{R}$ which is discrete harmonic on \mathbb{Z}^3 except at $\{(0,0,0)\}$, bounded but not constant. Justify! [10 pt]

14. What was your favorite topic covered in class? [1 pt]