

Graphical Approach to the Drinfeld Centre

Leonard Hardiman

November 25, 2020

Institut Camille Jordan (ICJ), Université Lyon 1

Plan

Part 1. Categorical considerations

- Graphical calculus and Drinfeld centre
- Tube category
- Equivalence with Drinfeld centre

Part 2. Applications in conformal field theory

- Modular invariants as representations of the tube category
- Extending the trace of a module category

Graphical Calculus

Objects and Morphisms

Let \mathcal{C} be a monoidal category. Within the graphical calculus of \mathcal{C} :

objects are depicted
as labelled strands
(except the tensor identity)

X

morphisms are depicted
as labelled boxes

X
 α
 Y

composition is depicted
by vertical juxtaposition

α
 β

tensor product is depicted
by horizontal juxtaposition

α β

We adopt the convention that diagrams are read top to bottom.
Even when not using graphical calculus we often omit the ' \otimes ' symbol.

Graphical Calculus

Half-braidings

A *half-braiding* on X in \mathcal{C} is a collection of natural isomorphisms

$$\tau_G: GX \rightarrow XG \quad \text{such that} \quad \begin{array}{c} G H X \\ \tau_{GH} \\ \hline X G H \end{array} = \begin{array}{c} G H X \\ \tau_H \\ \hline \tau_G \\ X G H \end{array}.$$

for all G, H in \mathcal{C} . From a graphical perspective the condition that τ_G is natural allows us to 'push' morphisms through τ :

$$\begin{array}{c} G X \\ \alpha \\ \hline \tau_H \\ X H \end{array} = \begin{array}{c} G X \\ \tau_G \\ \hline \alpha \\ X H \end{array}.$$

Note that this only works when pushing morphisms from the top-left to the bottom-right, endomorphisms of X cannot be pushed through.

Graphical Calculus

Drinfeld Centre

The *Drinfeld centre* of \mathcal{C} categorifies the notion of the centre of a group or monoid. Whereas the classical centre consists of all elements which commute with everything, in the categorical context we have to specify *how* they commute. This is encoded by a half-braiding.

- Objects in $Z(\mathcal{C})$ are pairs (X, τ) where X is in \mathcal{C} and τ is a half-braiding on X .
- $\text{Hom}_{Z(\mathcal{C})}((X, \tau), (Y, \nu))$ is given by the subspace $\text{Hom}_{\mathcal{C}}(X, Y)$ defined by the condition that $\alpha \in \text{Hom}_{\mathcal{C}}(X, Y)$ satisfies

$$\begin{array}{c} G \quad X \\ | \quad \square \alpha \\ \nu_G \\ | \\ Y \quad G \end{array} = \begin{array}{c} G \quad X \\ | \quad \square \tau_G \\ \alpha \\ | \\ Y \quad G \end{array} \quad \forall G \text{ in } \mathcal{C}.$$

In other words $\text{Hom}_{Z(\mathcal{C})}((X, \tau), (Y, \nu))$ is the space of morphisms which *can* be pushed through top-right to bottom-left.

Applications: Mathematical physics and the representation theory of monoidal categories in general.

Graphical Calculus

Dual Objects

We now suppose that \mathcal{C} is rigid, i.e. for every X in \mathcal{C} there is an object X^\vee and ${}^\vee X$ together with morphisms

$$X \xrightarrow{\quad} X^\vee, \quad X^\vee \xrightarrow{\quad} X, \quad {}^\vee X \xrightarrow{\quad} X \quad \text{and} \quad X \xrightarrow{\quad} {}^\vee X$$

such that the 'S-relations' holds:

$$\begin{array}{c} X \\ \curvearrowright \end{array} = \begin{array}{c} X \\ | \end{array} = \begin{array}{c} X \\ \curvearrowleft \end{array}.$$

Furthermore we chose a *pivotal structure* in \mathcal{C} i.e. a natural isomorphism ${}^\vee X \rightarrow X^\vee$. This allows us to identify left and right duals. We can now consider the left and right dimensions of an object X ,

$$d_r(X) = X \bigcirc X^\vee \quad \text{and} \quad d_l(X) = {}^\vee X \bigcirc X.$$

Finally we suppose that our pivotal structure is *spherical*, i.e.

$$d_l(X) = d_r(X) =: d(X).$$

Graphical Calculus

Braidings and Factorizability

At times we will also suppose \mathcal{C} is equipped with a *braiding* $\sigma_{XY}: XY \rightarrow YX$ which is depicted by the over-crossing,

Naturality of the braiding allows morphisms to pass over and under strands,

$$\begin{array}{ccc} X & Y \\ \boxed{\alpha} & \end{array} = \begin{array}{ccc} X & Y \\ & \boxed{\alpha} \end{array} \quad \text{and} \quad \begin{array}{ccc} X & Y \\ & \boxed{\nu} \end{array} = \begin{array}{ccc} X & Y \\ \nu & \end{array}.$$

A choice of braiding on \mathcal{C} determines a functor

$$\Phi: \mathcal{C} \boxtimes \overline{\mathcal{C}} \rightarrow Z(\mathcal{C})$$

$$X \boxtimes Y \mapsto (XY, \begin{array}{c} GXY \\ \diagup \diagdown \end{array}).$$

The braiding is called *factorisable* if Φ is an equivalence.

Graphical Calculus

Fusion Categories

For the rest of this talk we assume that \mathcal{C} is a *linear category* over an algebraically closed field (i.e. enriched over Vect). We also assume that \mathcal{C} is *semisimple* and admits a finite complete set of simple objects \mathcal{I} .

Such categories are equivalent to $\mathcal{RC} := \text{Fun}^{\text{op}}(\mathcal{C}, \text{Vect})$. Indeed, the functor

$$\flat: \mathcal{RC} \rightarrow \mathcal{C}$$

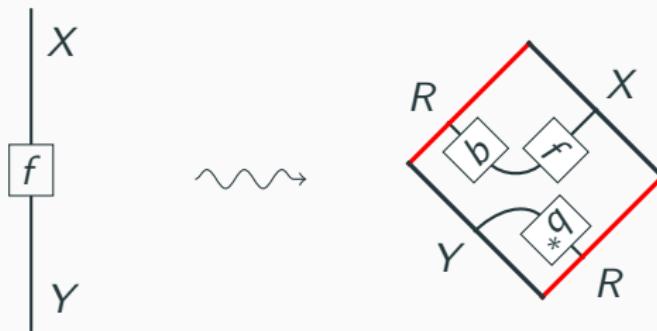
$$F \mapsto \bigoplus_S F(S) \cdot S$$

(where the sum ranges over \mathcal{I}) is a inverse to the Yoneda embedding \sharp . When such a category is equipped with a rigid monoidal product it is known as a *fusion category*. Its dimension is given by $d(\mathcal{C}) = \sum_S d(S)^2$.

The Tube Category

An Introduction

Let \mathcal{C} be a spherical fusion category and let f be in $\text{Hom}_{\mathcal{C}}(X, Y)$.



$$\text{Hom}_{\mathcal{TC}}(X, Y) = \bigoplus_R \text{Hom}_{\mathcal{C}}(RX, YR)$$

\mathcal{TC} shares the same objects as \mathcal{C} but has more morphisms.

Morphisms in \mathcal{TC} are described by diagrams in \mathcal{C} drawn on a cylinder.

The Tube Category

Representations of \mathcal{TC}

We consider the following morphism in \mathcal{TC}

$$c_{G,X} = \begin{array}{c} G \quad X \\ \diagdown \quad \diagup \\ G \quad X \\ \diagup \quad \diagdown \\ G \quad G \end{array}$$

Any morphism in \mathcal{TC} may be re-written in the following form:

$$\begin{array}{c} G \quad X \\ \diagdown \quad \diagup \\ Y \quad G \\ \alpha \end{array} = \begin{array}{c} G \quad Y \\ \diagdown \quad \diagup \\ X \quad G^\vee \\ \beta \end{array} \circ \begin{array}{c} Y \quad G \\ \diagdown \quad \diagup \\ G \quad G^\vee \\ \gamma \end{array} \circ \begin{array}{c} Y \\ G^\vee \quad G \end{array}$$

Therefore a (contravariant) representation $\mathcal{F}: \mathcal{TC} \rightarrow \underline{\text{Vect}}$ is simply a representation of \mathcal{C} together with an action of the $c_{G,X}$ morphisms i.e. a collection of isomorphisms $\kappa_{G,X}: \mathcal{F}(GX) \rightarrow \mathcal{F}(XG)$ which are natural in G and X and satisfy $\kappa_{GH,X} = \kappa_{H,XG} \circ \kappa_{G,HX}$.

The Tube Category

Equivalence of Representations with $\mathcal{Z}(\mathcal{C})$

$\mathcal{Z}(\mathcal{C})$ is a category with objects (F, τ) where $F \in \mathcal{C}$ and $\tau: (- \otimes F) \rightarrow (F \otimes -)$ is a half-braiding i.e. satisfies:

$$\tau_{GH}^\sharp = (\tau_G \otimes \text{id}_H)^\sharp \circ (\text{id}_G \otimes \tau_H)^\sharp.$$

$$\kappa_{GH,X} = \kappa_{H,XG} \circ \kappa_{G,HX}$$

As \mathcal{C} is fusion the Yoneda embedding $F \mapsto F^\sharp$ is an equivalence. This induces an equivalence $(F, \tau) \mapsto (F^\sharp, \tau^\sharp)$ between $\mathcal{Z}(\mathcal{C})$ and $\mathcal{Z}(\mathcal{RC})$ where

$$\begin{array}{ccc} \tau_{G^\vee}^\sharp: (G^\vee \otimes F)^\sharp & \rightarrow & (F \otimes G^\vee)^\sharp \\ \parallel & & \parallel \end{array}$$

$$F^\sharp \circ (G \otimes -) \qquad \qquad F^\sharp \circ (- \otimes G)$$

$$\kappa_{G,X}: F^\sharp(GX) \rightarrow F^\sharp(XG)$$

An object in $\mathcal{Z}(\mathcal{C}) = \mathcal{Z}(\mathcal{RC})$ is an object in \mathcal{RC} together with together with isomorphisms $\kappa_{G,X}$ as above, i.e. an object in \mathcal{RC} .

The Tube Category

Primitive Idempotents when \mathcal{C} is Modular

We now suppose that \mathcal{C} is equipped with a *factorisable* braiding, in particular, we have a canonical equivalence

$$\Phi: \mathcal{C} \boxtimes \overline{\mathcal{C}} \rightarrow \mathcal{Z}(\mathcal{C}) = \mathcal{RT}\mathcal{C}.$$

Therefore elements of the form $\Phi(I \boxtimes J)$ for $I, J \in \mathcal{I}$ form a complete set of simples in $\mathcal{RT}\mathcal{C}$. Helpfully, the simple representation $\Phi(I \boxtimes J)$ is represented by the idempotent

$$\epsilon_I^J = \frac{1}{d(\mathcal{C})} \sum_S d(S) \begin{array}{c} \text{Diagram of a } 3 \times 3 \text{ grid with red lines forming a diagonal path from top-left to bottom-right, with labels } S \text{ in the cells.} \\ \text{The path is: } (S, I) \rightarrow (I, J) \rightarrow (J, S) \end{array} \in \text{End}_{\mathcal{TC}}(IJ).$$

Therefore every representation of \mathcal{TC} is represented by an idempotent. This effectively allows us to translate any computation in $\mathcal{Z}(\mathcal{C})$ into a computation of idempotents in \mathcal{TC} .

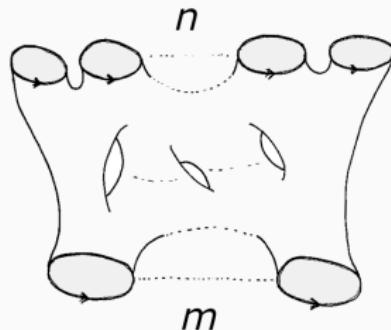
Conformal Field Theory

The cobordism category $\underline{\text{Seg}}^{\text{op/cl}}$

$$\text{Obj}(\underline{\text{Seg}}^{\text{cl}}) = \left\{ \underline{n} := \bigsqcup_n S_1 \mid n \in \mathbb{N} \right\}$$

$$\underline{n} = \underbrace{\circ \circ \circ \dots \circ}_{n}$$

$\text{Hom}_{\underline{\text{Seg}}^{\text{cl}}}(\underline{n}, \underline{m}) = \{[X] \mid \begin{array}{l} X \text{ is a Riemann surface with } n \text{ incoming} \\ \text{boundaries and } m \text{ outgoing boundaries.} \end{array}\}$



There is an analogous category $\underline{\text{Seg}}^{\text{op}}$ where the objects are 1-dimensional manifolds with two boundary points labelled by *boundary conditions*.

Conformal Field Theory

The Algebraic Data

Full 2D Conformal Field Theory

$$\mathcal{F}: \mathbf{Seg}^{\text{op}/\text{cl}} \rightarrow \mathbf{\underline{Vect}}$$

4

Open CFT

1

Closed CFT

The *vertex operator algebra* (VOA) structure axiomatises (one chiral half of) the genus zero part of \mathcal{F} . The category of modules \mathcal{C} over a (rational) VOA is a *modular tensor category* i.e. a linear category which is:

- spherical
- fusion
- equipped with a factorisable braiding

Extra data:

Module category over \mathcal{C} Modular invariant of \mathcal{C}

Conformal Field Theory

Module Categories

A module category over \mathcal{C} is a linear category \mathcal{B} together with a monoidal functor

$$\mathcal{M}: \mathcal{C} \rightarrow \text{End}(\mathcal{B}).$$

In other words it is simply a categorification of a module over a ring.

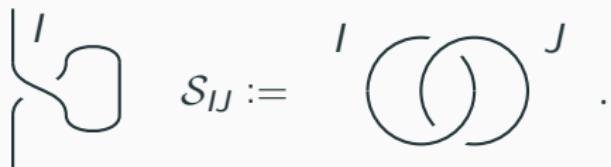
Conformal Field Theory

Modular Invariants

The value of a closed CFT \mathcal{F} on a torus is given by the *partition function* Z .

$$\mathcal{F}(\mathbb{T}_\tau) =: Z(\tau) = \sum_{I,J \in \mathcal{I}} Z_{IJ} \chi_I(\tau) \chi_J(\tau)^* \in \mathbb{C}$$

where $\tau \in \mathbb{H}$, $T_\tau = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ and χ_I is the character of I . Conformal invariance implies invariance of Z under the action of the mapping class group on \mathbb{H} . MTCs come with a special representation of $\mathrm{PSL}_2(\mathbb{Z})$ given by their *modular data*:

$$\mathcal{T}_{IJ} := \delta_{I,J} \quad \text{and} \quad \mathcal{S}_{IJ} := \begin{cases} I & \text{if } I = J \\ 1 & \text{if } I \neq J \end{cases}.$$


Conformal invariance of $Z(\tau)$ is equivalent to the $\mathcal{I} \times \mathcal{I}$ -matrix of multiplicities (Z_{IJ}) commuting with the modular data. We define a *modular invariant* to be any such non-negative integer matrix Z .

Conformal Field Theory

Modular Invariants as Representations of \mathcal{TC}

As described before, a complete set of simple objects in \mathcal{RTC} is indexed by $\mathcal{I} \times \mathcal{I}$ so the isomorphism classes in \mathcal{RTC} are in bijection with non-negative integer $\mathcal{I} \times \mathcal{I}$ -matrices.

$$Z: \mathcal{RTC} \rightarrow \text{Mat}_{\mathcal{I} \times \mathcal{I}}(\mathbb{N})$$
$$F \mapsto \left(\dim \text{Im } F(\epsilon_i^j) \right)$$

We may therefore assign to any $F \in \mathcal{RTC}$ a *candidate* modular invariant by simply considering its isomorphism class. In fact we can go further and *define* a modular invariant to be a representation of \mathcal{TC} satisfying its own notion of invariance under the modular group.

Conformal Field Theory

Recovering the Mapping Class Group

Under what condition should an object $F \in \mathcal{RTC}$ be a modular invariant?

$$\text{tr } F \left(\begin{array}{ccccc} & & G & & X \\ & & \alpha & & \\ & & \alpha & & \\ & & G & & X \\ X & & & & X \\ & & & & \end{array} \right)$$

Theorem (to appear, H.)

The isomorphism class $Z(F)$ gives a modular invariant if and only if $\text{tr } F$ is invariant under the action of $\text{SL}_2(\mathbb{Z}) = \text{MCG}(\mathbb{T}^2)$.

$$\text{tr } F \left(\begin{array}{ccccc} & & G & & X \\ & & \alpha & & \\ & & \alpha & & \\ & & G & & X \\ X & & & & X \\ & & & & \end{array} \right) = \text{tr } F \left(\begin{array}{ccccc} & & G & & X \\ & & \alpha & & \\ & & \alpha & & \\ & & G & & X \\ X & & & & X \\ & & & & \end{array} \right)$$

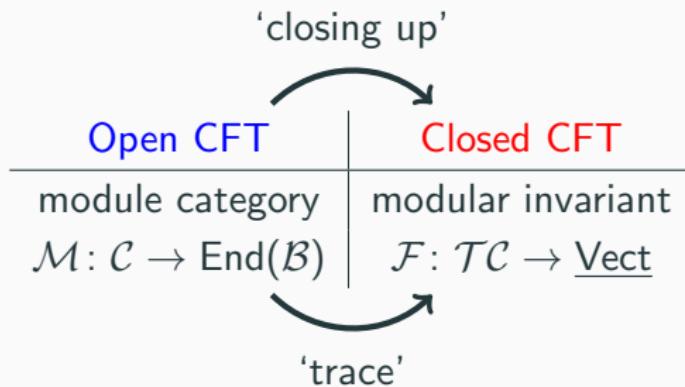
For $\alpha = \epsilon_I^J$ this is equivalent to
 $(\mathcal{T}^{-1}Z(F)\mathcal{T})_{IJ} = Z(F)_{IJ}$

$$\text{tr } F \left(\begin{array}{ccccc} & & G & & X \\ & & \alpha & & \\ & & \alpha & & \\ & & G & & X \\ X & & & & X \\ & & & & \end{array} \right) = \text{tr } F \left(\begin{array}{ccccc} X^V & & G & & \\ & & \alpha & & \\ & & \alpha & & \\ & & G & & X^V \\ G & & & & X^V \\ & & & & \end{array} \right)$$

For $\alpha = \epsilon_I^J$ this is equivalent to
 $(S^{-1}Z(F)\mathcal{S})_{IJ} = Z(F)_{IJ}$

Conformal Field Theory

A Unified Approach to Open/Closed CFT



There is a notion of trace for monoidal functors. However it simply gives the following representation of \mathcal{C} :

$$\text{Tr } \mathcal{M}: \mathcal{C} \rightarrow \underline{\text{Vect}}$$

$$X \mapsto \text{Hom}_{\text{End}(\mathcal{B})}(\mathbf{1}, \mathcal{M}(X)).$$

Conformal Field Theory

Extending the Trace

To extend $\text{Tr } \mathcal{M}$ to a representation of \mathcal{TC} , which we denote \mathcal{TM} , we have to specify the value of \mathcal{TM} on the $c_{G,X}$ morphisms. Setting

$$\mathcal{TM} \left(\begin{array}{c} G & X \\ \diagup & \diagdown \\ G & X \\ \diagdown & \diagup \\ G & X \end{array} \right) : \begin{array}{c} G & X \\ \text{---} & \text{---} \\ \alpha & \end{array} \mapsto \begin{array}{c} X & G \\ \text{---} & \text{---} \\ \alpha & \end{array}$$

defines a unique object in \mathcal{RTC} (where the blue colour denotes evaluation under \mathcal{M}) when \mathcal{M} ‘induces a pivotal structure’.

Theorem (Theorem 6.7, H.)

\mathcal{TM} is a symmetric, commutative Frobenius algebra in \mathcal{RTC} .

This result together with the work of Kong and Runkel [KR, Theorem 3.4] implies that \mathcal{TM} is a modular invariant if and only if $d(\mathcal{TM}) = d(\mathcal{C})$.

Leonard Hardiman.

Extending the trace of a pivotal monoidal functor.

To appear in *Comm. Math. Phys.*

<https://arxiv.org/abs/1911.09024>.

Liang Kong and Ingo Runkel.

Cardy algebras and sewing constraints. I.

Comm. Math. Phys., 292(3):871912, 2009.

<https://arxiv.org/abs/0807.3356>.