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Plan

Part 1. Categorical considerations

- Graphical calculus and Drinfeld centre

- Tube category

- Equivalence with Drinfeld centre

Part 2. Applications in conformal field theory

- Modular invariants as representations of the tube category

- Extending the trace of a module category



Graphical Calculus

Objects and Morphisms

Let C be a monoidal category. Within the graphical calculus of C:

objects are depicted

as labelled strands

(except the tensor identity)

X
morphisms are depicted

as labelled boxes
α

X

Y

composition is depicted

by vertical juxtaposition

α

β

tensor product is depicted

by horizontal juxtaposition
α β

We adopt the convention that diagrams are read top to bottom.

Even when not using graphical calculus we often omit the ‘⊗’

symbol.



Graphical Calculus

Half-braidings

A half-braiding on X in C is a collection of natural isomorphisms

τG : GX → XG such that

G H X

HGX

τGH =

G H X

HGX

τH

τG .

for all G ,H in C. From a graphical perspective the condition that

τG is natural allows us to ‘push’ morphisms though τ :

G X

HX

α

τH =

G X

HX

α

τG
.

Note that this only works when pushing morphisms from the

top-left to the bottom-right, endomorphisms of X cannot be

pushed through.



Graphical Calculus

Drinfeld Centre

The Drinfeld centre of C categorifies the notion of the centre of a group or

monoid. Whearas the classical centre consists of all elements which commute

with everything, in the categorical context we have to specify how they

commute. This is encoded by a half-braiding.

• Objects in Z(C) are pairs (X , τ) where X is in C and τ is a half-braiding

on X .

• HomZ(C)((X , τ), (Y , ν)) is given by the subspace HomC(X ,Y ) defined by

the condition that α ∈ HomC(X ,Y ) satisfies

G X

GY

α

νG =

G X

GY

α

τG
∀G in C.

In other words HomZ(C)((X , τ), (Y , ν)) is the space of morphisms which

can be pushed through top-right to bottom-left.

Applications: Mathematical physics and the representation theory of monoidal

categories in general.



Graphical Calculus

Dual Objects

We now suppose that C is rigid, i.e. for every X in C there is an object X∨ and

∨X together with morphisms

X X∨ ,
X∨ X

, ∨X X and
X ∨X

such that the ‘S-relations’ holds:

X
=

X
=

X
.

Furthermore we chose a pivotal structure in C i.e. a natural isomorphism

∨X → X∨. This allows us to identify left and right duals. We can now consider

the left and right dimensions of an object X ,

dr (X ) = X∨X and dl(X ) = X∨X .

Finally we suppose that our pivotal structure is spherical, i.e.

dl(X ) = dr (X ) =: d(X ).



Graphical Calculus

Braidings and Factorizability

At times we will also suppose C is equipped with a braiding

σXY : XY → YX which is depicted by the over-crossing,

X Y
.

Naturality of the braiding allows morphisms to pass over and under

strands,
X Y
α =

X Y

α
and

X Y
ν =

X Y

ν
.

A choice of braiding on C determines a functor

Φ: C � C → Z (C)

X � Y 7→
(
XY ,

YXG )
.

The braiding is called factorisable if is Φ is an equivalence.



Graphical Calculus

Fusion Categories

For the rest of this talk we assume that C is a linear category over

an algebraically closed field (i.e. enriched over Vect). We also

assume that C is semisimple and admits a finite complete set of

simple objects I.

Such categories are equivalent to RC := Funop(C,Vect). Indeed,

the functor
[ : RC → C

F 7→
⊕
S

F (S) · S

(where the sum ranges over I) is a inverse to the Yoneda

embedding ]. When such a category is equipped with a rigid

monoidal product it is known as a fusion category. Its dimension is

given by d(C) =
∑

S d(S)2.



The Tube Category

An Introduction

Let C be a spherical fusion category and let f be in HomC(X ,Y ).

X

Y

f

Y

X

R

R
fb
b
∗

HomT C(X ,Y ) =
⊕
R

HomC(RX ,YR)

T C shares the same objects as C but has more morphisms.

Morphisms in T C are described by diagrams in C drawn on a

cylinder.



The Tube Category

Representations of T C

We consider the following morphism in T C

cG ,X =

X

X

G

G G

G

Any morphism in T C may be re-written in the following form:

α
X

Y

G

G

=

G

G∨

X

Y

α ◦
G∨

G

G

Y

◦
G

G∨

Y

Therefore a (contravariant) representation F : T C → Vect is simply a

representation of C together with an action of the cG ,X morphisms i.e. a

collection of isomorphisms κG ,X : F(GX )→ F(XG) which are natural in G and

X and satisfy κGH,X = κH,XG ◦ κG ,HX .



The Tube Category

Equivalence of Representations with Z(C)

Z(C) is a category with objects (F , τ) where F ∈ C and τ : (–⊗F )→ (F ⊗ –)

is a half-braiding i.e. satisfies:

τ ]GH = (τG ⊗ idH)] ◦ (idG ⊗τH)].

κGH,X = κH,XG ◦ κG ,HX

As C is fusion the Yoneda embedding F 7→ F ] is an equivalence. This induces

an equivalence (F , τ) 7→ (F ], τ ]) between Z(C) and Z(RC) where

τ ]G∨ : (G∨ ⊗ F )] → (F ⊗ G∨)].

= =

F ] ◦ (G ⊗ –) F ] ◦ (–⊗G )

κG ,X : F ](GX )→ F ](XG )

An object in Z(C) = Z(RC) is an object in RC together with together with

isomorphisms κG ,X as above, i.e. an object in RT C.



The Tube Category

Primitive Idempotents when C is Modular

We now suppose that C is equipped with a factorisable braiding, in

particular, we have a canonical equivalence

Φ: C � C → Z(C) = RT C.

Therefore elements of the form Φ(I � J) for I , J ∈ I form a

complete set of simples in RT C. Helpfully, the simple

representation Φ(I � J) is represented by the idempotent

εJI =
1

d(C)

∑
S

d(S)

I
JS

S

∈ EndT C(IJ).

Therefore every representation of T C is represented by an

idempotent. This effectively allows us to translate any

computation in Z(C) into a computation of idempotents in T C.



Conformal Field Theory

The cobordism category Segop/cl

Obj(Segcl) =

{
n :=

⊔
n
S1

∣∣∣∣ n ∈ N
}

n = ...︸ ︷︷ ︸
n

HomSegcl(n,m) = {[X ] | X is a Riemann surface with n incoming
boundaries and m outgoing boundaries. }

There is an analogous category Segop where the objects are 1-dimensional

manifolds with two boundary points labelled by boundary conditions.



Conformal Field Theory

The Algebraic Data

Full 2D Conformal Field Theory

F : Segop/cl → Vect

↙ ↘
Open CFT Closed CFT

The vertex operator algebra (VOA) structure axiomatises (one chiral half of)

the genus zero part of F . The category of modules C over a (rational) VOA is

a modular tensor category i.e. a linear category which is:

• spherical

• fusion

• equipped with a factorisable braiding

Extra data:

Module category over C Modular invariant of C



Conformal Field Theory

Module Categories

A module category over C is a linear category B together with a

monoidal functor

M : C → End(B).

In other words it is simply a categorification of a module over a

ring.



Conformal Field Theory

Modular Invariants

The value of a closed CFT F on a torus is given by the partition function Z .

F (Tτ ) =: Z (τ) =
∑
I ,J∈I

ZIJ χI (τ)χJ(τ)∗ ∈ C

where τ ∈ H, Tτ = C/(Z + Zτ) and χI is the character of I . Conformal

invariance implies invariance of Z under the action of the mapping class group

on H. MTCs come with a special representation of PSL2(Z) given by their

modular data:

TIJ := δI ,J

I

SIJ :=

I J

.

Conformal invariance of Z(τ) is equivalent to the I × I-matrix of multiplicities

(ZIJ) commuting with the modular data. We define a modular invariant to be

any such non-negative integer matrix Z .



Conformal Field Theory

Modular Invariants as Representations of T C

As described before, a complete set of simple objects in RT C is

indexed by I × I so the isomorphism classes in RT C are in

bijection with non-negative integer I × I-matrices.

Z : RT C → MatI×I(N)

F 7→
(

dim ImF (εJI )
)

We may therefore assign to any F ∈ RT C a candidate modular

invariant by simply considering its isomorphism class. In fact we

can go further and define a modular invariant to be a

representation of T C satisfying its own notion of invariance under

the modular group.



Conformal Field Theory

Recovering the Mapping Class Group

Under what condition should an object F ∈ RT C be a modular

invariant?

tr F

 α

X

X

G

G


Theorem (to appear, H.)

The isomorphism class Z (F ) gives a modular invariant if and only

if tr F is invariant under the action of SL2(Z) = MCG(T2).

tr F α
X

X

G

G

= tr F

 G

G

X

X∨

X∨

X

α

 tr F α
X

X

G

G

= tr F

 α

X∨

X∨ G

G


For α = εJI this is equivalent to For α = εJI this is equivalent to

(T −1Z (F )T )IJ = Z (F )IJ (S−1Z (F )S)IJ = Z (F )IJ



Conformal Field Theory

A Unified Approach to Open/Closed CFT

‘closing up’

Open CFT Closed CFT

module category modular invariant

M : C → End(B) F : T C → Vect

‘trace’

There is a notion of trace for monoidal functors. However it simply

gives the following representation of C:

TrM : C → Vect

X 7→ HomEnd(B)(1,M(X )).



Conformal Field Theory

Extending the Trace

To extend TrM to a representation of T C, which we denote TM,

we have to specify the value of TM on the cG ,X morphisms. Setting

TM

( X

X

G

G G

G )
:

XG

α 7→

GX

α

defines a unique object in RT C (where the blue colour denotes

evaluation under M) when M ‘induces a pivotal structure’.

Theorem (Theorem 6.7, H.)

TM is a symmetric, commutative Frobenius algebra in RT C.

This result together with the work of Kong and Runkel [KR,

Theorem 3.4] implies that TM is a modular invariant if and only if

d(TM) = d(C).
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