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Plan

Part 1. Categorical considerations

- Graphical calculus and Drinfeld centre
- Tube category
- Equivalence with Drinfeld centre

Part 2. Applications in conformal field theory

- Modular invariants as representations of the tube category
- Extending the trace of a module category



Graphical Calculus
Objects and Morphisms

Let C be a monoidal category. Within the graphical calculus of C:

objects are depicted
as labelled strands

(except the tensor identity)

X

morphisms are depicted

as labelled boxes

X

composition is depicted

by vertical juxtaposition

o]

tensor product is depicted

by horizontal juxtaposition

We adopt the convention that diagrams are read top to bottom.

Even when not using graphical calculus we often omit the ‘®’

symbol.



Graphical Calculus
Half-braidings

A half-braiding on X in C is a collection of natural isomorphisms
GHX GHX
76: GX — XG such that = .
XGH XGH

for all G, H in C. From a graphical perspective the condition that
T¢ is natural allows us to ‘push’ morphisms though 7:

G X G X
o]
[TH] = [a] -
X H X H

Note that this only works when pushing morphisms from the
top-left to the bottom-right, endomorphisms of X cannot be
pushed through.



Graphical Calculus
Drinfeld Centre

The Drinfeld centre of C categorifies the notion of the centre of a group or
monoid. Whearas the classical centre consists of all elements which commute
with everything, in the categorical context we have to specify how they
commute. This is encoded by a half-braiding.
e Objects in Z(C) are pairs (X, 7) where X is in C and 7 is a half-braiding
on X.
e Homz)((X,7),(Y,v)) is given by the subspace Home¢(X, Y') defined by
the condition that o € Home (X, Y) satisfies

G X
H = VG inC.

In other words Homz(c)((X,T), (Y, 1/)) is the space of morphisms which
can be pushed through top-right to bottom-left.
Applications: Mathematical physics and the representation theory of monoidal

categories in general.



Graphical Calculus
Dual Objects

We now suppose that C is rigid, i.e. for every X in C there is an object X" and

¥ X together with morphisms
N XV X N X VX
X XYoo\ Vvx x ad

such that the ‘S-relations’ holds:
~ e

Furthermore we chose a pivotal structure in C i.e. a natural isomorphism

YX — XY. This allows us to identify left and right duals. We can now consider

the left and right dimensions of an object X,

d,(X) = XOXv and di(X) = VXUX.

Finally we suppose that our pivotal structure is spherical, i.e.
di(X) = d(X) =: d(X).



Graphical Calculus

Braidings and Factorizability

At times we will also suppose C is equipped with a braiding
oxy: XY — YX which is depicted by the over-crossing,
XY

X

Naturality of the braiding allows morphisms to pass over and under

XY X )/ XY X )’
[CQ = and = \ .
; (& :
A choice of braiding on C determines a functor

¢: CRC — Z(C)

strands,

Ca(y
X®Y e (XY, ).

The braiding is called factorisable if is ® is an equivalence.



Graphical Calculus

Fusion Categories

For the rest of this talk we assume that C is a linear category over
an algebraically closed field (i.e. enriched over Vect). We also
assume that C is semisimple and admits a finite complete set of
simple objects Z.

Such categories are equivalent to RC := Fun®?(C, Vect). Indeed,

the functor

b: RC — C
F>EDF(S) s
S

(where the sum ranges over 7) is a inverse to the Yoneda
embedding §. When such a category is equipped with a rigid
monoidal product it is known as a fusion category. Its dimension is

given by d(C) = > d(S)>.



The Tube Category

An Introduction

Let C be a spherical fusion category and let f be in Hom¢(X, Y).

Hom7¢(X,Y) = @ Home(RX, YR)
R

TC shares the same objects as C but has more morphisms.
Morphisms in 7C are described by diagrams in C drawn on a
cylinder.



The Tube Category

Representations of 7C

We consider the following morphism in 7C

Any morphism in 7C may be re-written in the following form:

&-& P

Therefore a (contravariant) representation F: 7C — Vect is simply a
representation of C together with an action of the cg x morphisms i.e. a
collection of isomorphisms k¢ x: F(GX) — F(XG) which are natural in G and

X and satisfy KgH,x = KH,xG © KG,HX-



The Tube Category

Equivalence of Representations with Z(C)

Z(C) is a category with objects (F,7) where F € C and 7: (-®F) — (F ®-)
is a half-braiding i.e. satisfies:
TéH = (7’(; ® id,t./)ﬁ o (idG ®7’H)ﬁ.
KGH,X = KH,XG © KG,HX
As C is fusion the Yoneda embedding F — F* is an equivalence. This induces
an equivalence (F,7) — (F*,7%) between Z(C) and Z(RC) where
rh (Ve ) — (Fe GV
I I
Ffo(G®-) Ffo(-®G)
kex: FH(GX) — F}(XG)
An object in Z(C) = Z(RC) is an object in RC together with together with

isomorphisms kg x as above, i.e. an object in RTC.



The Tube Category

Primitive ldempotents when C is Modular

We now suppose that C is equipped with a factorisable braiding, in
particular, we have a canonical equivalence

¢: CXC — Z(C)=RTC.
Therefore elements of the form ®(/ X J) for I, J € Z form a
complete set of simples in R7C. Helpfully, the simple
representation ®(/ X J) is represented by the idempotent
1 SN
J
= — d Endyc(1)).
€ d(C) ZS: (S) % € kn TC( J)

Therefore every representation of 7C is represented by an
idempotent. This effectively allows us to translate any

computation in Z(C) into a computation of idempotents in 7C.



Conformal Field Theory

The cobordism category Seg®/®
ObJ(Segd) = {n = |_|51 ne N}
n

-000.0

_ X is a Riemann surface with n incoming
Homgc'(ﬁ7 m) - {[X] ‘ boundaries and m outgoing boundaries. }

n

There is an analogous category Seg®® where the objects are 1-dimensional

manifolds with two boundary points labelled by boundary conditions.



Conformal Field Theory
The Algebraic Data

Full 2D Conformal Field Theory
F: EOP/C' — Vect

Ve N\
Open CFT Closed CFT

The vertex operator algebra (VOA) structure axiomatises (one chiral half of)
the genus zero part of F. The category of modules C over a (rational) VOA is
a modular tensor category i.e. a linear category which is:

e spherical
e fusion

e equipped with a factorisable braiding

Extra data:
Module category over C  Modular invariant of C



Conformal Field Theory

Module Categories

A module category over C is a linear category 3 together with a
monoidal functor

M: C — End(B).

In other words it is simply a categorification of a module over a
ring.



Conformal Field Theory

Modular Invariants

The value of a closed CFT F on a torus is given by the partition function Z.
F(T;)=:2Z(r)= Z Zy xi(t)xu(r)* e C
I,JeT
where 7 € H, T. = C/(Z+ Z7) and x; is the character of /. Conformal
invariance implies invariance of Z under the action of the mapping class group
on H. MTCs come with a special representation of PSL2(Z) given by their

modular data:

/ J
Ty =941y [ Sy = @

Conformal invariance of Z(7) is equivalent to the Z x Z-matrix of multiplicities
(Z1y) commuting with the modular data. We define a modular invariant to be

any such non-negative integer matrix Z.



Conformal Field Theory

Modular Invariants as Representations of 7C

As described before, a complete set of simple objects in R7C is
indexed by Z x Z so the isomorphism classes in R7C are in
bijection with non-negative integer Z x Z-matrices.

Z:RTC — I\/IatZXI(N)
F (dim Im F(e,J))

We may therefore assign to any F € RTC a candidate modular
invariant by simply considering its isomorphism class. In fact we
can go further and define a modular invariant to be a
representation of 7C satisfying its own notion of invariance under
the modular group.



Conformal Field Theory
Recovering the Mapping Class Group

Under what condition should an object F € R7C be a modular
invariant?

Theorem (to appear, H.)

The isomorphism class Z(F) gives a modular invariant if and only
if tr F is invariant under the action of SLy(Z) = MCG(T?).

For a = e,J this is equivalent to For a = e,J this is equivalent to
(TZ(F)T)u = Z(F)u (STZ(F)S)y = Z(F)u




Conformal Field Theory
A Unified Approach to Open/Closed CFT

‘closing up’
7~ N
Open CFT |  Closed CFT
module category | modular invariant
M:C — End(B) | F:TC — Vect
N—"

‘trace’

There is a notion of trace for monoidal functors. However it simply
gives the following representation of C:

Tr M: C — Vect
X = Homgyg(s) (1, M(X)).



Conformal Field Theory

Extending the Trace

To extend Tr M to a representation of 7C, which we denote 7 M,
we have to specify the value of 7 M on the cg x morphisms. Setting

N G X X G
5 ) i
() - QY
X
defines a unique object in RTC (where the blue colour denotes
evaluation under M) when M ‘induces a pivotal structure’.

Theorem (Theorem 6.7, H.)
T M is a symmetric, commutative Frobenius algebra in RTC.

This result together with the work of Kong and Runkel [KR,
Theorem 3.4] implies that 7. M is a modular invariant if and only if

d(TM) = d(C).
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