Modular Invariants as Representations of the
Tube Category

Leonard Hardiman
September 18, 2020

Institut Camille Jordan (ICJ), Université Lyon 1

Institut
Camille
Jordan



Plan

CAREE DR SR

The Mathematics of CFT

Motivating example: sii(2) WZW model
The tube category

Extending the trace

A return to the motivating example



The Mathematics of 2d-CFT
Open and Closed Theories

Full 2D Conformal Field Theory

v e
Open CFT Closed CFT

Let C be the category of modules over the associated vertex operator
algebra. In particular C is a Modular Tensor Category i.e. a linear category
which is:

+ semisimple (with finitely many isomorphism classes of simple objects)

+ monoidal

- rigid

- equipped with a spherical pivotal structure

+ equipped with a non-degenerate braiding

A module category over C A modular invariant of C



The Mathematics of CFT
Module Categories

In an open CFT for any two boundary conditions a, b € A we have a Hilbert

space ,H,. Decomposing into simple modules over the VOA gives

oHp = @ aHi)'

I€lrr(C)
M: C — Ac,Ac-Bimod = End(Mod Ac)
I — H'.

A module category over C is a linear category B together with a monoidal

functor
M: C — End(B).

Within the context of this talk we assume that all module categories are

semisimple with finitely many isomorphism classes of simple objects.



The Mathematics of CFT
Modular Invariants

The value of the closed CFT on a torus is given by the partition function:
Z(r) =Y Zyxil)(r)"
1Jelrr(C)
where T € H parametrizes the conformal structure on the torus and y; is
the character of I. MTCs come with a special representation of PSL,(Z) given
by their modular data:

I

I J
Ty =01y k] Sy = @

Conformal invariance is equivalence to the Irr(C) x Irr(C)-matrix of
multiplicities (Z;) commuting with the modular data. We define a modular

invariant to be any such non-negative integer matrix Z such that Z;, = 1.



Motivating Example
The s1(2) WZW model

In the si(2) WZW model the modular category of modules
over the vertex operator algebra is given by

C = Repg(su(2)) forsome k € N>,.

This is a semisimple category with k + 1 simple objects which
we denote

X; forie{1,..R+1}

Furthermore the category is tensor generated by the single
self dual object X, (the fundamental representation).



Motivating Example
Module Categories

Let Q a double Dynkin quiver of type A, D or E, i.e.

n+1 2n —2

An Dn
o { S 0 }
I E7I E8I

Assigning such a quiver with Coxeter number kR +2to a
module category over C given by

MQ: C — Qo, Qo‘BimOd = End(MOd‘Qo)
X2 = Q4

gives a complete list of the irreducible finite semisimple
module categories over C. [EO04]



Motivating Example
Modular Invariants

The modular data of C is given by

. ab B an . a?
PR sin <7rkJr 2) , Tap=(—1)""exp <7rlm> da b

Sap = (71)a+b

i.e. the Kac-Peterson matrices. The corresponding modular
invariants are given as partition functions below [CIZ87],

k+1
Arsr =y [l VR > 1
1=1
k+1 k
De,,= Z X1 Xpi-1p 5 whenever 3 is even
1=
2 2 2 kR .
Di_, = X1+ Xoa* + Ix3 + Xo3 + - +2[xe whenever _ is odd
2 2
&6 = |x1 + x7* + x4 + x8* + xs + xnl? for k =10

& =+ xul* + Ixs + x> + g + xnl?
+ X9 (X3 + x15)" + (X3 + x15) X5 + X0/, for k =16
Es = X1+ X1 + X190 + Xa0l> + X7 + Xa3 + X7 + X3/, for k = 28.



Motivating Example
First Clue: the ADE Pattern

As the notation suggests, su(2) modular invariants satisfy an
ADE pattern.

o—o—I—o—o X1+ x7P + Ixa + X8> + [x5 + xnl?

& double quiver & modular invariant



Motivating Example

First Clue: the ADE Pattern

As the notation suggests, su(2) modular invariants satisfy an

ADE pattern.

(0]

O O O ~ O

&g adjacency matrix

(0]

O O -~ O O

O O o~ O O -

O o O o o O

-~ O o O O O

O o O 0O OO

X+ x7P + Ixa + x84+ [x5 + xnl?

& modular invariant



Motivating Example
First Clue: the ADE Pattern

As the notation suggests, su(2) modular invariants satisfy an
ADE pattern.

Tl
{*2“5(?)} X1+ x7 2 + Ixa + xsl? + [xs + xnl?
for [ =1,4,57,8,11

Ee adjacency matrix & modular invariant
eigenvalues



Motivating Example
Second Clue: The Suggestion of a Trace

To illustrate we consider a different double Dynkin quiver:

10 0 O 1

Mo:C — Qo, Qo-Bimod © 0000
= 0O 0 2 0 O

X2 = O O 0O 0 0 O
10 0 0 1

D, module category D, modular invariant



Motivating Example
Second Clue: The Suggestion of a Trace

To illustrate we consider a different double Dynkin quiver:

Mo:C — Qo, Qo-Bimod T:ZZij X,'®Xj
X2 — O ij
| trace
TrMg:C — Vect T C — Vect
Xy +— (n-cyclesin Q) X — Hom¢(X,T)
D, module category D, modular invariant

Tr Mo(X2) = THXD)



The Tube Category

An Introduction

Let C be a spherical fusion category and let f be in Hom¢ (X, Y).

YN

X X
i N
Y

Y Y,

TC shares the same objects as C but has more morphisms. Morphisms in
TC are described by diagrams in C drawn on a cylinder.
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Let C be a spherical fusion category and let f be in Hom¢ (X, Y).
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The Tube Category

An Introduction

Let C be a spherical fusion category and let f be in Hom¢ (X, Y).

Hom7¢(X,Y) = € Hom¢(RX, YR)
R

TC shares the same objects as C but has more morphisms. Morphisms in
TC are described by diagrams in C drawn on a cylinder.



The Tube Category

Representations of 7C

We consider the following morphism in 7C

Therefore a representation F: 7C — Vect is simply a representation of C
together with an action of the ¢ x morphisms i.e. a collection of
isomorphisms g x: F(GX) — F(XG) which are natural in G and X and

satisfy kenx = K xe © Ko, Hx-



The Tube Category

Equivalence of Representations with Z(C)

Z(C) is a category with objects (F,7) where Fe Cand 7: (- ®F) — (F®-) is

a half-braiding i.e. satisfies:

TGH = (TG (024 idH) o (idG ®TH).

As C is fusion the Yoneda embedding F — F* is an equivalence. This
induces an equivalence (F,7) — (F*,7%) between Z(C) and Z(RC) where

™ (-eF)F = (Fe-)h
I I

Fio(G®-) Ffo (- ®G)



The Tube Category

Equivalence of Representations with Z(C)

Z(C) is a category with objects (F,7) where Fe Cand 7: (- ®F) — (F®~-) is
a half-braiding i.e. satisfies:
T(%H = (TG & idH)ﬁ o (idG ®TH)ﬁ.
KGHX = KHXG © KG,HX
As C is fusion the Yoneda embedding F — F* is an equivalence. This
induces an equivalence (F,7) — (F*,7%) between Z(C) and Z(RC) where
i (GY @R = (FRGY)
I I
Fio(G®-) Ff o (- ®G)
rex: FF(GX) — F¥(XG)
An object in Z(C) = Z(RC) is an object in RC together with together with
isomorphisms r x as above, i.e. an object in R7C.



Extending the Trace
Construction

Let M: C — D be a monoidal, pivotal functor. We consider
the (contravariant) trace of M i.e. the object in RC given by

Tr M: C — Vect
X — Homp(M(X),1p)

To extend Tr M to a representation of 7C, which we denote
T M, we have to specify the value of 7 M on the ¢ x
morphisms. Setting

6K G X X G
G
R INGE
GX G
defines a unique object in R7C (where the blue colour
denotes evaluation under M).



Extending the Trace
The Associated Modular Invariant

Let M: C — End(B) be a module category which induces a pivotal structure
on its full image. We may extend Tr M to a representation of the tube
category T M.

TMeRTC=2Z2(C)=CRC
when C is modular. 7 M's irreducible multiplicities therefore give an
integer Irr(C) x lrr(C)-matrix Z(7M). As TC admits a complete set of
primitive idempotents these multiplicities may also be obtained by

evaluating 7 M on these idempotents.
Z(TM)y = dimIm T M (e{)

where

€ Endyc(XY).




Extending the Trace

Prior Approches to Relating Module Categories and Modular Invariants

« a-induction (1998) — Béckenhauer, Evans, Kawahigashizk

% Stated and proved within an operator algebraic
framework [BE98].

* Full Centre Construction (2006) — Runkel, Fjelstad, Fuchs,
Schweigert

% Any module category may be realised (non uniquely) as
M: C — End(Mod-A)
X—-X
where A is an algebra object in C.

* The full centre of A is an object in Z(C). Under certain
assumptions on A its full centre will be a modular
invariant [RFFSo7].



Motivating Example
Decategorification of the Module Category

We start by recalling the A-D-E pattern appearing in the
classification of sii(2) modular invariants.

Mg: C — End(B) where B = Mod-Q,
$
R1: Kc(C) — End(Kc(B))

where K(C) denotes the Grothendieck ring of C and K¢(C)
denotes K(C) ®z C.

The A-D-E pattern describes how the diagonal entries to the
modular invariant encode the weights of R,.

The 7 M construction reveals another
representation of ¢ (C)!



The Tube Category

Recovering the (complexified) Grothendieck Ring

Endrc(1) and K¢ (C) are canonically isomorphic algebras.

* End7c(1) = s End(S) = BsC
« composition in Endr¢(1) corresponds to the tensor
product in K¢(C).

J I J

We therefore obtain another representation of K¢(C),
R,: Kc(C) — End(T M(1))

Theorem. R, and R, are isomorphic representations of ¢ (C).



Motivating Example
The Conclusion

As TC admits a complete set of primitive idempotents, K¢ (C) = End7¢(1)
is a semisimple commutative algebra generated by the primitive
idempotents of 1:

1= 37d(S) for I € Irr(C).
S S

Therefore the weight spaces of R, are given by T M(1)) for | € Irr(C).
However, (1,1)) and (I1V, ¢]") are isomorphic idempotent objects in the
Karoubi envelope and so the diagonal entries to the modular invariant are

precisely T M(1;) for | € Irr(C)i.e. the dimension of the corresponding
weight space.
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