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The Mathematics of 2d-CFT
Open and Closed Theories

Full 2D Conformal Field Theory
↙ ↘

Open CFT Closed CFT

Let C be the category of modules over the associated vertex operator
algebra. In particular C is a Modular Tensor Category i.e. a linear category
which is:

• semisimple (with �nitely many isomorphism classes of simple objects)
• monoidal
• rigid
• equipped with a spherical pivotal structure
• equipped with a non-degenerate braiding

A module category over C A modular invariant of C



The Mathematics of CFT
Module Categories

In an open CFT for any two boundary conditions a,b ∈ A we have a Hilbert
space Ha b. Decomposing into simple modules over the VOA gives

Ha b =
⊕

I∈Irr(C)
Ha I
b.

M : C → AC,AC-Bimod = End(ModAC)

I 7→ HI.

A module category over C is a linear category B together with a monoidal
functor

M : C → End(B).

Within the context of this talk we assume that all module categories are
semisimple with �nitely many isomorphism classes of simple objects.



The Mathematics of CFT
Modular Invariants

The value of the closed CFT on a torus is given by the partition function:

Z(τ) =
∑

I,J∈Irr(C)
ZIJ χI(τ)χJ(τ)∗.

where τ ∈ H parametrizes the conformal structure on the torus and χI is
the character of I. MTCs come with a special representation of PSL2(Z) given
by their modular data:

TIJ := δI,J

I

SIJ :=
I J

.

Conformal invariance is equivalence to the Irr(C)× Irr(C)-matrix of
multiplicities (ZIJ) commuting with the modular data. We de�ne a modular
invariant to be any such non-negative integer matrix Z such that Z1 1 = 1.



Motivating Example
The ŝu(2)WZWmodel

In the ŝu(2) WZW model the modular category of modules
over the vertex operator algebra is given by

C = Repk(ŝu(2)) for some k ∈ N≥1.

This is a semisimple category with k+ 1 simple objects which
we denote

Xi for i ∈ {1, ..., k+ 1}

Furthermore the category is tensor generated by the single
self dual object X2 (the fundamental representation).



Motivating Example
Module Categories

Let Q a double Dynkin quiver of type A, D or E, i.e.

Q ∈

 r r. . . r rAn
n + 1

, r r. . . r r rrDn
2n− 2

,

r r rr r rE6 12
, r r rr r r rE7 18

, r r rr r r r rE8 30


Assigning such a quiver with Coxeter number k+ 2 to a
module category over C given by

MQ : C → Q0,Q0-Bimod = End(Mod-Q0)

X2 7→ Q1

gives a complete list of the irreducible �nite semisimple
module categories over C. [EO04]



Motivating Example
Modular Invariants

The modular data of C is given by

Sab = (−1)a+b
√

2
k+ 2 sin

(
π
ab
k+ 2

)
, Tab = (−1)a−1 exp

(
πi a2
2k+ 4

)
δa,b

i.e. the Kac-Peterson matrices. The corresponding modular
invariants are given as partition functions below [CIZ87],

Ak+1 =
k+1∑
I=1
|χI|2 , ∀k ≥ 1

D k
2+2

=
k+1∑
I=1

χI χ
∗
σI−1I , whenever k2 is even

D k
2+2

= |χ1 + χσ1|2 + |χ3 + χσ3|2 + · · ·+ 2|χ k
2
|2 , whenever k2 is odd

E6 = |χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2 , for k = 10
E7 = |χ1 + χ17|2 + |χ5 + χ13|2 + |χ7 + χ11|2

+ χ9 (χ3 + χ15)
∗ + (χ3 + χ15)χ

∗
9 + |χ9|2 , for k = 16

E8 = |χ1 + χ11 + χ19 + χ29|2 + |χ7 + χ13 + χ17 + χ23|2 , for k = 28.



Motivating Example
First Clue: the ADE Pattern

As the notation suggests, ŝu(2) modular invariants satisfy an
ADE pattern.

r r rr r r |χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2

E6 double quiver E6 modular invariant

In other words the diagonal entries of the modular invariant
describe the eigenvalues of the quiver.



Motivating Example
First Clue: the ADE Pattern

As the notation suggests, ŝu(2) modular invariants satisfy an
ADE pattern.

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


|χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2

E6 adjacency matrix E6 modular invariant

In other words the diagonal entries of the modular invariant
describe the eigenvalues of the quiver.



Motivating Example
First Clue: the ADE Pattern

As the notation suggests, ŝu(2) modular invariants satisfy an
ADE pattern.

{
−2 cos

(
π∗l
h

)}
for l = 1,4,5,7,8,11

|χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2

E6 adjacency matrix
eigenvalues

E6 modular invariant

In other words the diagonal entries of the modular invariant
describe the eigenvalues of the quiver.



Motivating Example
Second Clue: The Suggestion of a Trace

To illustrate we consider a di�erent double Dynkin quiver:

MQ : C → Q0,Q0-Bimod
X2 7→ Q1

Z =


1 0 0 0 1
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
1 0 0 0 1



↓ trace

TrMQ : C → Vect

Xn2 7→ 〈n-cycles in Q〉
T] : C → Vect

X 7→ HomC(X, T)

D4 module category D4 modular invariant

TrMQ(Xn2 ) ∼= T](Xn2 )

How to recover Z from TrMQ?



Motivating Example
Second Clue: The Suggestion of a Trace

To illustrate we consider a di�erent double Dynkin quiver:

MQ : C → Q0,Q0-Bimod
X2 7→ Q1

T =
∑
ij
Zij Xi ⊗ Xj

↓ trace

TrMQ : C → Vect

Xn2 7→ 〈n-cycles in Q〉
T] : C → Vect

X 7→ HomC(X, T)

D4 module category D4 modular invariant
TrMQ(Xn2 ) ∼= T](Xn2 )

How to recover Z from TrMQ?



The Tube Category
An Introduction

Let C be a spherical fusion category and let f be in HomC(X, Y).

X

Y

f

X

Y

f

HomT C(X, Y) =
⊕
R

HomC(RX, YR)

T C shares the same objects as C but has more morphisms. Morphisms in
T C are described by diagrams in C drawn on a cylinder.



The Tube Category
An Introduction

Let C be a spherical fusion category and let f be in HomC(X, Y).

X

Y

f

Y

X

Y∨

Y∨ f

HomT C(X, Y) =
⊕
R

HomC(RX, YR)

T C shares the same objects as C but has more morphisms. Morphisms in
T C are described by diagrams in C drawn on a cylinder.



The Tube Category
An Introduction

Let C be a spherical fusion category and let f be in HomC(X, Y).

X

Y

f ∑
R,b

Y

X

R

R
fb
b
∗

HomT C(X, Y) =
⊕
R

HomC(RX, YR)

T C shares the same objects as C but has more morphisms. Morphisms in
T C are described by diagrams in C drawn on a cylinder.



The Tube Category
Representations of T C

We consider the following morphism in T C

cG,X =

X

X

G

G G

G

Any morphism in T C may be re-written in the following form:

α
X

Y

G

G
=

G
G∨

X

Y
α ◦

G∨

G

G

Y

◦
G

G∨

Y

Therefore a representation F : T C → Vect is simply a representation of C
together with an action of the cG,X morphisms i.e. a collection of
isomorphisms κG,X : F(GX)→ F(XG) which are natural in G and X and
satisfy κGH,X = κH,XG ◦ κG,HX .



The Tube Category
Equivalence of Representations with Z(C)

Z(C) is a category with objects (F, τ) where F ∈ C and τ : (–⊗F)→ (F⊗ –) is
a half-braiding i.e. satis�es:

τGH = (τG ⊗ idH) ◦ (idG⊗τH).

κGH,X = κH,XG ◦ κG,HX

As C is fusion the Yoneda embedding F 7→ F] is an equivalence. This
induces an equivalence (F, τ) 7→ (F], τ ]) between Z(C) and Z(RC) where

τ ] : (–⊗F)] → (F ⊗ –)].

= =

F] ◦ (G⊗ –) F] ◦ (–⊗G)

κG,X : F](GX)→ F](XG)

An object in Z(C) = Z(RC) is an object in RC together with together with
isomorphisms κG,X as above, i.e. an object in RT C.



The Tube Category
Equivalence of Representations with Z(C)

Z(C) is a category with objects (F, τ) where F ∈ C and τ : (–⊗F)→ (F⊗ –) is
a half-braiding i.e. satis�es:

τ ]GH = (τG ⊗ idH)] ◦ (idG⊗τH)].

κGH,X = κH,XG ◦ κG,HX

As C is fusion the Yoneda embedding F 7→ F] is an equivalence. This
induces an equivalence (F, τ) 7→ (F], τ ]) between Z(C) and Z(RC) where

τ ]G∨ : (G∨ ⊗ F)] → (F ⊗ G∨)].

= =

F] ◦ (G⊗ –) F] ◦ (–⊗G)

κG,X : F](GX)→ F](XG)

An object in Z(C) = Z(RC) is an object in RC together with together with
isomorphisms κG,X as above, i.e. an object in RT C.



Extending the Trace
Construction

LetM : C → D be a monoidal, pivotal functor. We consider
the (contravariant) trace ofM i.e. the object in RC given by

TrM : C → Vect

X 7→ HomD(M(X), 1D)

To extend TrM to a representation of T C, which we denote
TM, we have to specify the value of TM on the cG,X
morphisms. Setting

TM

( X

X

G

G G

G )
:

XG

α 7→

GX

α

de�nes a unique object in RT C (where the blue colour
denotes evaluation underM).



Extending the Trace
The Associated Modular Invariant

LetM : C → End(B) be a module category which induces a pivotal structure
on its full image. We may extend TrM to a representation of the tube
category TM.

TM ∈ RT C = Z(C)= C � C̄

when C is modular. TM’s irreducible multiplicities therefore give an
integer Irr(C)× Irr(C)-matrix Z(TM). As T C admits a complete set of
primitive idempotents these multiplicities may also be obtained by
evaluating TM on these idempotents.

Z(TM)IJ = dim Im TM
(
εJI

)
where

εJI =
1

d(C)

⊕
S
d(S)

I
JS

S
∈ EndT C(XY).



Extending the Trace
Prior Approches to Relating Module Categories and Modular Invariants

• α-induction (1998) — Böckenhauer, Evans, Kawahigashizk
? Stated and proved within an operator algebraic
framework [BE98].

• Full Centre Construction (2006) — Runkel, Fjelstad, Fuchs,
Schweigert
? Any module category may be realised (non uniquely) as

M : C → End(Mod-A)

X 7→ –⊗X

where A is an algebra object in C.

? The full centre of A is an object in Z(C). Under certain
assumptions on A its full centre will be a modular
invariant [RFFS07].



Motivating Example
Decategori�cation of the Module Category

We start by recalling the A-D-E pattern appearing in the
classi�cation of ŝu(2) modular invariants.

MQ : C → End(B) where B = Mod-Q0

 

R1 : KC(C)→ End(KC(B))

where K(C) denotes the Grothendieck ring of C and KC(C)

denotes K(C)⊗Z C.

The A-D-E pattern describes how the diagonal entries to the
modular invariant encode the weights of R1.

The TM construction reveals another
representation of KC(C)!



The Tube Category
Recovering the (complexi�ed) Grothendieck Ring

EndT C(1) and KC(C) are canonically isomorphic algebras.

• EndT C(1) =
⊕

S End(S) =
⊕

SC
• composition in EndT C(1) corresponds to the tensor
product in KC(C).

J

◦

I

=

I
J

We therefore obtain another representation of KC(C),

R2 : KC(C)→ End(TM(1))

Theorem. R1 and R2 are isomorphic representations of KC(C).



Motivating Example
The Conclusion

As T C admits a complete set of primitive idempotents, KC(C) = EndT C(1)

is a semisimple commutative algebra generated by the primitive
idempotents of 1:

1I :=
1

d(I)d(C)

∑
S
d(S)

S

S
I for I ∈ Irr(C).

Therefore the weight spaces of R2 are given by TM(1I) for I ∈ Irr(C).
However, (1, 1I) and (II∨, εI∨I ) are isomorphic idempotent objects in the
Karoubi envelope and so the diagonal entries to the modular invariant are
precisely TM(1I) for I ∈ Irr(C)i.e. the dimension of the corresponding
weight space.
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