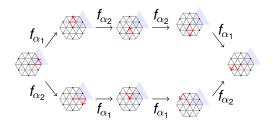
An Introduction to the Littelmann Path Model

LEONARD HARDIMAN



Motivation

Let:

- g be a finite dimentional semisimple complex Lie algebra
- h be a Cartan subalgebra of g
- R ⊆ h* be the set of positive simple roots of g (with respect to some choice of Weyl chamber)
- $\lambda \in \mathfrak{h}^*$ be a dominant weight
- V^λ be the unique irreducible representation of g with highest weight λ
- m is the Weyl group of g.

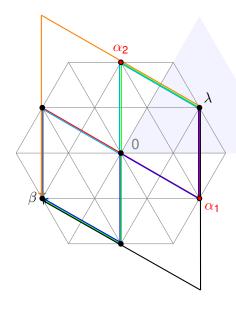
For $\alpha \in R$ let X_{α} be a non-zero element of $\mathfrak{g}_{-\alpha}$ and let v be a highest weight vector. Then

$$V^{\lambda} = \operatorname{span}(\{X_{lpha_1} \circ ... \circ X_{lpha_r}(v) \mid r \in \mathbb{N}, lpha_i \in R\})$$

and in particular, for any weight space V_{β} , we have

$$V_{\beta}^{\lambda} = \operatorname{span}\left(\left\{X_{\alpha_{1}} \circ ... \circ X_{\alpha_{r}}(v) \middle| r \in \mathbb{N}, \alpha_{i} \in \mathcal{R}, \lambda - \sum_{i} \alpha_{i} = \beta\right\}\right)$$

Illustration: Ajoint Representation of sl3



$$\begin{array}{l} \rightarrow: X_{\alpha_2} \circ X_{\alpha_1} \circ X_{\alpha_1} \circ X_{\alpha_2} \\ \rightarrow: X_{\alpha_1} \circ X_{\alpha_2} \circ X_{\alpha_1} \circ X_{\alpha_2} \\ \rightarrow: X_{\alpha_1} \circ X_{\alpha_2} \circ X_{\alpha_2} \circ X_{\alpha_1} \\ \rightarrow: X_{\alpha_2} \circ X_{\alpha_1} \circ X_{\alpha_2} \circ X_{\alpha_1} \\ \rightarrow: X_{\alpha_2} \circ X_{\alpha_2} \circ X_{\alpha_1} \circ X_{\alpha_1} \\ \rightarrow: X_{\alpha_1} \circ X_{\alpha_1} \circ X_{\alpha_2} \circ X_{\alpha_2} \end{array}$$

Which of the images (of *v*) are 0 and can we find a set of images that form a basis of V_{β}^{λ} ?

Motivation

The Weyl character formula does not solve this problem. Weyl's formula can be seen as a reformulation of Kostant's multiplicity formula which states that

$$\dim V_{\beta}^{\lambda} = \sum_{\mathfrak{w} \in \mathfrak{W}} (-1)^{\mathfrak{w}} P(\mathfrak{w}(\lambda + \rho) - (\beta + \rho))$$

where $P(\beta)$ is the number of ways to write β as a sum of positive roots.

The Littelmann path model sets out to find a character formula that *doesn't overcount* i.e. is not an alternating sum.

Path Operators

Let \mathbb{E} be a Euclidean space, let α be a vector in \mathbb{E} and let Π be the set of paths, $\pi : [0, 1] \to \mathbb{E}$ in \mathbb{E} such that $\pi(0) = 0$.

We shall define a path operator, denoted f_{α} , that reflects intervals of π in the hyperplane orthogonal to α , so as to move the endpoint of π by $-\alpha$. However the operator should only reflect intervals, $\pi([t_1, t_2])$, that satisfy

$$(\pi(t), \alpha) = \min_{\boldsymbol{s} \in [t, 1]} (\pi(\boldsymbol{s}), \alpha) \quad \forall t \in [t_1, t_2]$$

If this is not possible the operator returns the special element θ which is not a path and satisfies the abstract property $f_{\alpha}(\theta) = \theta \quad \forall \alpha.$

Path Operators

Checking whether or not the endpoint of π can be moved by $-\alpha$ through reflecting sections that satisfy the previously mentioned condition comes down to checking that

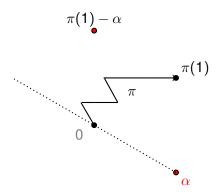
$$(\pi(1), \alpha) - \min_{t \in [0,1]} (\pi(t), \alpha) \ge \frac{\|\alpha\|^2}{2}$$

If this inequality holds then f_{α} reflects any interval, $\pi([t_1, t_2])$, that satisfies

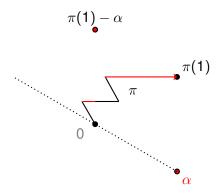
$$(\pi(t), \alpha) = \min_{\boldsymbol{s} \in [t, 1]} (\pi(\boldsymbol{s}), \alpha) \quad \forall t \in [t_1, t_2]$$

As soon as the path has been shifted by $-\alpha$ the operator stops reflecting sections.

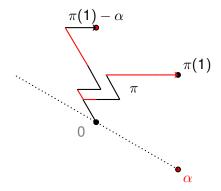
An Example of a Path Operator



An Example of a Path Operator



An Example of a Path Operator



Path Operators

In an similar way one can define another path operator, denoted e_{α} that moves the endpoint by $+\alpha$ and can only reflect intervals, $\pi([t_1, t_2])$, that satisfy

$$(\pi(t), \alpha) = \min_{\boldsymbol{s} \in [0, t]} (\pi(\boldsymbol{s}), \alpha) \quad \forall t \in [t_1, t_2]$$

This operator also satisfies

$$e_{lpha} \circ f_{lpha}(\pi) = \pi$$
 whenever $f_{lpha}\pi
eq heta$

and

$$f_{lpha} \circ oldsymbol{e}_{lpha}(\pi) = \pi \quad ext{whenever } oldsymbol{e}_{lpha} \pi
eq heta$$

The Littelmann Path Model

The Littelmann path model is constructed by setting

 $\mathbb{E}=\mbox{The root}$ system of \mathfrak{g} equipped with the Killing form

and considering the, so called, root operators

$$\{f_{\alpha}, \boldsymbol{e}_{\alpha} \mid \alpha \in \boldsymbol{R}\}$$

We also restrict our interest to the set, denoted Π , of piecewise linear paths that start in 0 and end in an integral weight. Also, for η an integral weight we denote by $\underline{\eta}$ the straight path that starts at 0 and ends at η .

The Littelmann Path Model

Let ${\mathbb B}$ be a subset of $\Pi.$ The character of such a subset is given by

$$\mathsf{Char}\,\mathbb{B}:=\sum_{\nu\in\mathbb{B}}e^{\nu(1)}\in\mathbb{Z}[\Lambda_W]$$

We note that if $\mathbb{B} \cup \{\theta\}$ is stable under the root operators then Char \mathbb{B} is stable under the Weyl group as

$$oldsymbol{s}_lpha\pi:=egin{cases} f^k_lpha\pi& ext{ if }k>0\ e^{-k}_lpha\pi& ext{ otherwise.} \end{cases}$$

(where $k = 2(\pi(1), \alpha) / \|\alpha\|^2$) satisfies

$$s_{\alpha}^{2} = \mathsf{id}$$

and

$$s_{\alpha}\pi(1) = \mathfrak{w}(\pi(1))$$

where $\mathfrak{w} \in \mathfrak{W}$ is the element of the Weyl group associated with α .

The Path Character Formula

Let $\mathbb{B} \subset \Pi$ be such that $\mathbb{B} \cup \{\theta\}$ is stable under the root operators. Then, from the Weyl character formula, one can deduce the following:

Proposition

$$\mathsf{Char}\,\mathbb{B} = \sum_{\substack{\pi\in\mathbb{B}\ \underline{
ho}^*\pi\in\Pi^+_0}}\mathsf{Char}\,V^{\pi(1)}$$

where Π_0^+ is set of elements of Π who's images are contained in the interior of the dominant Weyl chamber, $V^{\pi(1)}$ denotes the irreducible representation of g with highest weight $\pi(1)$ and ρ is the half sum of the positive roots.

Let $\pi \in \Pi$ be such that $\underline{\rho} * \pi \in \Pi_0^+$. Bearing in mind this proposition we are interested in finding $\mathbb{B} \subset \Pi$ such that $\mathbb{B} \cup \{\theta\}$ is stable under the root operators and

$$\{\eta \in \mathbb{B} \mid \underline{\rho} * \eta \in \mathsf{\Pi}_{\mathsf{0}}^+\} = \{\pi\}$$

Fundamental Theorem of the Littelmann Path Model

For a given path $\pi \in \Pi$ we consider the smallest set $\mathbb{B} \subset \Pi$ such that $\pi \in \mathbb{B}$ and $\mathbb{B} \cup \{\theta\}$ is stable under the root operators. We denote this set by \mathbb{B}_{π} .

Theorem Let $\pi \in \Pi$ be such that $\underline{\rho} * \pi \in \Pi_0^+$. Then

$$\{\eta \in \mathbb{B}_{\pi} \mid \underline{\rho} * \eta \in \Pi_{\mathbf{0}}^+\} = \{\pi\}$$

Combining this with the path character formula gives:

Corollary Let $\pi \in \Pi$ be such that $\underline{\rho} * \pi \in \Pi_0^+$. Then

Char
$$V^{\pi(1)} = \operatorname{Char} \mathbb{B}_{\pi}$$

Remarks on the Fundamental Theorem

• When we evalute our character at a weight $\beta \in \mathfrak{h}^*$,

$$\operatorname{Char} \mathbb{B}_{\pi}(eta) = \sum_{\substack{\eta \in \mathbb{B}_{\pi} \\ \eta(1) = eta}} 1$$

we get a *non-alternating* sum.

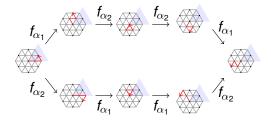
For a given dominant weight λ, for every π ∈ Π such that <u>ρ</u> * π ∈ Π₀⁺ and π(1) = λ, we have an (*a priori*) new combinatorial model for V.

What do these models have in common?

The Littelmann Graphs

Let $\pi \in \Pi$ be such that $\underline{\rho} * \pi \in \Pi_0^+$. We construct the *Littelmann* graph of π , denoted \mathcal{G}_{π} , in the following way:

- The vertices of \mathcal{G}_{π} are the elements of \mathbb{B}_{π} .
- We draw an arrow with colour α between η, η' ∈ B_π if f_α(η) = η'.



Theorem

Let $\pi_1, \pi_2 \in \Pi$ be such that $\underline{\rho} * \pi_1, \underline{\rho} * \pi_2 \in \Pi_0^+$ and $\pi_1(1) = \pi_2(1)$. Then

$$\mathcal{G}_{\pi_1} \cong \mathcal{G}_{\pi_2}$$

Generalized Littelwood-Richardson Rule

Let λ and μ be dominant weights and let π_1 and π_2 be such that $\underline{\rho} * \pi_1, \underline{\rho} * \pi_2 \in \Pi_0^+$ and $\pi_1(1) = \lambda$ and $\pi_2(1) = \mu$. We have

Char
$$V^{\lambda} \otimes V^{\mu}$$

= Char $V^{\pi_1(1)} \otimes V^{\pi_2(1)}$
= Char $V^{\pi_1(1)}$ Char $V^{\pi_2(1)}$
= Char \mathbb{B}_{π_1} Char \mathbb{B}_{π_2}
= Char $\mathbb{B}_{\pi_1} * \mathbb{B}_{\pi_2}$
= $\sum_{\substack{\eta \in \mathbb{B}_{\pi_2} \\ \rho * \pi_1 * \eta \in \Pi_0^+}} \text{Char } V^{\lambda + \eta(1)}$

Therefore

$$oldsymbol{V}^\lambda\otimesoldsymbol{V}^\mu\congigoplus_{\eta\in\mathbb{B}_{\pi_2}}{\displaystyleigoplus_{
ho*\pi_1*\eta\in\Pi_0^+}}oldsymbol{V}^{\lambda+\eta(1)}$$

Young Tableaux Theory

One can hope that any reasonable indexing set for a basis of *V* is in natural bijection with \mathbb{B}_{π} for some choice of π .

To illustrate this we now demonstrate how the Littelmann path model recovers Young tableaux theory. In this context $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ and $\mathfrak{h} = \{x \in \mathfrak{g} \mid X \text{ diagonal}\}.$

We start by considering an identification between certain paths in \mathfrak{h}^* and Young tableaux. Let $L_i \in \mathfrak{h}^*$ be the projection of a diagonal matrix onto it's *i*th entry. For a given tableau \mathbb{T} let $(i_1, ..., i_N)$ be the entries of the boxes, where we read the entries columnise (from top to bottom, right to left). We associate to \mathbb{T} the path $\pi_{\mathbb{T}} := \underline{L_{i_1}} * ... * \underline{L_{i_n}}$.

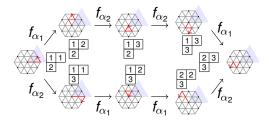
Young Tableaux Theory

Let $p = (a_1, ..., a_n)$ be a partition and let \mathbb{T}_0 be the Young tableau of shape p having only 1's as entry in the first row, 2's in the second row etc. Then $\pi_{\mathbb{T}_0}$ satisfies $\underline{\rho} * \pi_{\mathbb{T}_0} \in \Pi_0^+$ and therefore

$$\operatorname{Char} \mathbb{B}_{\pi_{\mathbb{T}_0}} = \operatorname{Char} V^{\pi_{\mathbb{T}_0}(1)} = \operatorname{Char} V^p$$

One can then check that

 $\mathbb{B}_{\pi_{\mathbb{T}_0}} = \{\pi_{\mathbb{T}} \mid \mathbb{T} \text{ semistandard Young tableau of shape } p\}$



END

Defining Properties of the Root Operators

The root operators satisfy the following properties (under the assumption that their image is not θ):

(E) Let π be in Π , let n be maximal such that $f_{\alpha}^{n}(\pi) \neq \theta$ and let m be maximal such that $e_{\alpha}^{m}(\pi) \neq \theta$. Then $n - m = 2\frac{(\pi(1),\alpha)}{(\alpha,\alpha)}$

(F) e_{α} and f_{α} are continuous

Fundamental Property of Root Operators

The following can be considered the fundamental property of the root operators:

(G) Let $\pi := \pi_1 * ... * \pi_r$ be such that $\pi_i \in \Pi$ and set

$$a_0 = 0$$
 and $a_i := (\pi_1 * ... * \pi_i(1), \alpha) \quad \forall i \ge 1$

Let i_0 be minimal such that a_{i_0} is minimal and let i_1 be maximal such that a_{i_1} is minimal. Then

$$\boldsymbol{e}_{\alpha}\pi = \begin{cases} \theta & \text{if } i_0 = 0\\ \pi_1 * \dots * \boldsymbol{e}_{\alpha}\pi_{i_0} * \dots * \pi_r & \text{else} \end{cases}$$

and

$$f_{\alpha}\pi = \begin{cases} \theta & \text{if } i_1 = r \\ \pi_1 * \dots * f_{\alpha}\pi_{i_1+1} * \dots * \pi_r & \text{else} \end{cases}$$

Proposition

If $\{f'_{\alpha}, e'_{\alpha} \mid \alpha \in R\}$ is a set of maps $\Pi \to \Pi \cup \theta$ that satisfies properties (A) to (G) then $f_{\alpha} = f'_{\alpha}$ and $e_{\alpha} = e'_{\alpha} \quad \forall \alpha \in R$.