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Motivation
Let:
I g be a finite dimentional semisimple complex Lie algebra
I h be a Cartan subalgebra of g
I R ⊆ h∗ be the set of positive simple roots of g (with respect

to some choice of Weyl chamber)
I λ ∈ h∗ be a dominant weight
I Vλ be the unique irreducible representation of g with

highest weight λ
I W is the Weyl group of g.

For α ∈ R let Xα be a non-zero element of g−α and let v be a
highest weight vector. Then

Vλ = span({Xα1 ◦ ... ◦ Xαr (v) | r ∈ N, αi ∈ R})

and in particular, for any weight space Vβ, we have

Vλ
β = span

({
Xα1 ◦ ... ◦ Xαr (v)

∣∣∣∣∣r ∈ N, αi ∈ R, λ−
∑

i

αi = β

})



Illustration: Ajoint Representation of sl3

0

α2

λ

α1
β

→: Xα2 ◦ Xα1 ◦ Xα1 ◦ Xα2

→: Xα1 ◦ Xα2 ◦ Xα1 ◦ Xα2

→: Xα1 ◦ Xα2 ◦ Xα2 ◦ Xα1

→: Xα2 ◦ Xα1 ◦ Xα2 ◦ Xα1

→: Xα2 ◦ Xα2 ◦ Xα1 ◦ Xα1

→: Xα1 ◦ Xα1 ◦ Xα2 ◦ Xα2

Which of the images (of v )
are 0 and can we find a set
of images that form a
basis of Vλ

β ?



Motivation

The Weyl character formula does not solve this problem. Weyl’s
formula can be seen as a reformulation of Kostant’s multiplicity
formula which states that

dim Vλ
β =

∑
w∈W

(−1)wP(w(λ+ ρ)− (β + ρ))

where P(β) is the number of ways to write β as a sum of
positive roots.

The Littelmann path model sets out to find a character formula
that doesn’t overcount i.e. is not an alternating sum.



Path Operators

Let E be a Euclidean space, let α be a vector in E and let Π be
the set of paths, π : [0,1]→ E in E such that π(0) = 0.

We shall define a path operator, denoted fα, that reflects
intervals of π in the hyperplane orthogonal to α, so as to move
the endpoint of π by −α. However the operator should only
reflect intervals, π([t1, t2]), that satisfy

(π(t), α) = min
s∈[t ,1]

(π(s), α) ∀t ∈ [t1, t2]

If this is not possible the operator returns the special element θ
which is not a path and satisfies the abstract property
fα(θ) = θ ∀α.



Path Operators

Checking whether or not the endpoint of π can be moved by −α
through reflecting sections that satisfy the previously mentioned
condition comes down to checking that

(π(1), α)− min
t∈[0,1]

(π(t), α) ≥ ‖α‖
2

2

If this inequality holds then fα reflects any interval, π([t1, t2]),
that satisfies

(π(t), α) = min
s∈[t ,1]

(π(s), α) ∀t ∈ [t1, t2]

As soon as the path has been shifted by −α the operator stops
reflecting sections.



An Example of a Path Operator
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An Example of a Path Operator
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Path Operators

In an similar way one can define another path operator,
denoted eα that moves the endpoint by +α and can only reflect
intervals, π([t1, t2]), that satisfy

(π(t), α) = min
s∈[0,t]

(π(s), α) ∀t ∈ [t1, t2]

This operator also satisfies

eα ◦ fα(π) = π whenever fαπ 6= θ

and

fα ◦ eα(π) = π whenever eαπ 6= θ



The Littelmann Path Model

The Littelmann path model is constructed by setting

E = The root system of g equipped with the Killing form

and considering the, so called, root operators

{fα,eα | α ∈ R}

We also restrict our interest to the set, denoted Π, of piecewise
linear paths that start in 0 and end in an integral weight. Also,
for η an integral weight we denote by η the straight path that
starts at 0 and ends at η.



The Littelmann Path Model
Let B be a subset of Π. The character of such a subset is given
by

CharB :=
∑
ν∈B

eν(1) ∈ Z[ΛW ]

We note that if B ∪ {θ} is stable under the root operators then
CharB is stable under the Weyl group as

sαπ :=

{
f k
απ if k > 0
e−k
α π otherwise.

(where k = 2(π(1), α)/‖α‖2) satisfies

s2
α = id

and

sαπ(1) = w(π(1))

where w ∈W is the element of the Weyl group associated with
α.



The Path Character Formula
Let B ⊂ Π be such that B ∪ {θ} is stable under the root
operators. Then, from the Weyl character formula, one can
deduce the following:

Proposition
CharB =

∑
π∈B

ρ∗π∈Π+
0

Char Vπ(1)

where Π+
0 is set of elements of Π who’s images are contained in

the interior of the dominant Weyl chamber, Vπ(1) denotes the
irreducible representation of g with highest weight π(1) and ρ is
the half sum of the positive roots.
Let π ∈ Π be such that ρ ∗ π ∈ Π+

0 . Bearing in mind this
proposition we are interested in finding B ⊂ Π such that B ∪ {θ}
is stable under the root operators and

{η ∈ B | ρ ∗ η ∈ Π+
0 } = {π}



Fundamental Theorem of the Littelmann Path Model

For a given path π ∈ Π we consider the smallest set B ⊂ Π
such that π ∈ B and B ∪ {θ} is stable under the root operators.
We denote this set by Bπ.

Theorem
Let π ∈ Π be such that ρ ∗ π ∈ Π+

0 . Then

{η ∈ Bπ | ρ ∗ η ∈ Π+
0 } = {π}

Combining this with the path character formula gives:

Corollary
Let π ∈ Π be such that ρ ∗ π ∈ Π+

0 . Then

Char Vπ(1) = CharBπ



Remarks on the Fundamental Theorem

I When we evalute our character at a weight β ∈ h∗,

CharBπ(β) =
∑
η∈Bπ

η(1)=β

1

we get a non-alternating sum.
I For a given dominant weight λ, for every π ∈ Π such that
ρ ∗ π ∈ Π+

0 and π(1) = λ, we have an (a priori) new
combinatorial model for V .

What do these models have in common?



The Littelmann Graphs
Let π ∈ Π be such that ρ ∗ π ∈ Π+

0 . We construct the Littelmann
graph of π, denoted Gπ, in the following way:
I The vertices of Gπ are the elements of Bπ.
I We draw an arrow with colour α between η, η′ ∈ Bπ if

fα(η) = η′.
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Theorem
Let π1, π2 ∈ Π be such that ρ ∗ π1, ρ ∗ π2 ∈ Π+

0 and
π1(1) = π2(1). Then

Gπ1
∼= Gπ2



Generalized Littelwood-Richardson Rule
Let λ and µ be dominant weights and let π1 and π2 be such that
ρ ∗ π1, ρ ∗ π2 ∈ Π+

0 and π1(1) = λ and π2(1) = µ. We have

Char Vλ ⊗ Vµ

= Char Vπ1(1) ⊗ Vπ2(1)

= Char Vπ1(1) Char Vπ2(1)

= CharBπ1 CharBπ2

= CharBπ1 ∗ Bπ2

=
∑
η∈Bπ2

ρ∗π1∗η∈Π+
0

Char Vλ+η(1)

Therefore

Vλ ⊗ Vµ ∼=
⊕
η∈Bπ2

ρ∗π1∗η∈Π+
0

Vλ+η(1)



Young Tableaux Theory
One can hope that any reasonable indexing set for a basis of V
is in natural bijection with Bπ for some choice of π.

To illustrate this we now demonstrate how the Littelmann path
model recovers Young tableaux theory. In this context
g = sln(C) and h = {x ∈ g | X diagonal}.

We start by considering an identification between certain paths
in h∗ and Young tableaux. Let Li ∈ h∗ be the projection of a
diagonal matrix onto it’s i th entry. For a given tableau T let
(i1, ..., iN) be the entries of the boxes, where we read the entries
columnise (from top to bottom, right to left). We associate to T
the path πT := Li1 ∗ ... ∗ Lin .

1 3 2 2 1
1 1 3 3
2 1

∼ L1 ∗ L2 ∗ L3 ∗ L2 ∗ L3 ∗ L3 ∗ L1 ∗ L1 ∗ L1 ∗ L1 ∗ L2



Young Tableaux Theory
Let p = (a1, ...,an) be a partition and let T0 be the Young
tableau of shape p having only 1’s as entry in the first row, 2’s in
the second row etc. Then πT0 satisfies ρ ∗ πT0 ∈ Π+

0 and
therefore

CharBπT0
= Char VπT0 (1) = Char V p

One can then check that

BπT0
= {πT | T semistandard Young tableau of shape p}
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END



Defining Properties of the Root Operators

The root operators satisfy the following properties (under the
assumption that their image is not θ):
(A) ∀π ∈ Π, eαπ, fαπ ∈ Π

(B) ∀π ∈ Π, eαπ(1) = π(1) + α and fαπ(1) = π(1)− α.
(C) eα and fα preserve length
(D) ∀π ∈ Π,∀k ∈ Z, k · eα(π) = ek

α(k · π) and
k · fα(π) = f k

α (k · π)

(E) Let π be in Π, let n be maximal such that f n
α(π) 6= θ and let

m be maximal such that em
α (π) 6= θ. Then n −m = 2 (π(1),α)

(α,α)

(F) eα and fα are continuous



Fundamental Property of Root Operators
The following can be considered the fundamental property of
the root operators:
(G) Let π := π1 ∗ ... ∗ πr be such that πi ∈ Π and set

a0 = 0 and ai := (π1 ∗ ... ∗ πi(1), α) ∀i ≥ 1

Let i0 be minimal such that ai0 is minimal and let i1 be
maximal such that ai1 is minimal. Then

eαπ =

{
θ if i0 = 0
π1 ∗ ... ∗ eαπi0 ∗ ... ∗ πr else

and

fαπ =

{
θ if i1 = r
π1 ∗ ... ∗ fαπi1+1 ∗ ... ∗ πr else

Proposition
If {f ′α,e′α | α ∈ R} is a set of maps Π→ Π ∪ θ that satisfies
properties (A) to (G) then fα = f ′α and eα = e′α ∀α ∈ R.


