Classifying Conformal Field Theories

Leonard Hardiman

String Theory

String theory replaces the *point-like particles* of particle physics with one-dimensional objects called *strings*.

Topological Quantum Field Theories

Setting X_1 ∼ X_2 if X_1 is topologically equivalent to X_2 would lead us towards a *topological quantum field theory*.

Conformal Quantum Field Theories

Setting (X_1, g_1) ∼ (X_2, g_2) if (X_1, g_1) is conformally equivalent to (*X*2, *g*2) leads us towards a *conformal field theory*.

Segal's Category

$$
Obj(C) = \left\{ \underline{n} := \bigsqcup_{n} S_{1} \mid n \in \mathbb{N} \right\}
$$

$$
\underline{n} = \underbrace{OOOOOOOOOOOO}}{n}
$$

 $\text{Hom}(\underline{n}, \underline{m}) = \{ [X] \mid \begin{matrix} X \text{ is a Rimannian Manifold with } n \text{ incoming} \\ \text{boundary and } m \text{ outgoing boundaries.} \end{matrix} \}$

Definition of a Conformal Field Theory

Let *H* ∈ **VECT** be a Hilbert space. Then a conformal field theory on *H* is a monoidal functor

 $U: \mathcal{C} \rightarrow \mathsf{VECT}$

that sends 1 to *H* (and satisfies certain other axioms).

Remark

The fact that U is monoidal implies $U(\underline{n}) = H^{\otimes n}$. Therefore $X \in$ Hom $(\underline{n}, \underline{m})$ is sent onto a linear map from $H^{\otimes n}$ to $H^{\otimes m}$.

An important question in the field is the classification of possible conformal field theories. In other words how much data do we need to construct such a functor?

The answer can be summed up via the following mnemonic:

Donut Pants

Pants (i.e. Trousers)

All elements in Hom(*n*, *m*) can be cut up into *pairs of pants*.

Pants (i.e. Trousers)

Under our functor U a pair of pants (equipped with a conformal structure) is sent onto a linear map $H \otimes H \rightarrow H$. The Hilbert space *H* is therefore equipped with an infinite sequence of inner products, this gives rise to a V.O.A.

Donuts (i.e. Glueing)

Modularity of the Partition Function

Conformal structures on the torus are parametrized by $\tau \in \mathbb{C}^+$ /PSL₂(\mathbb{Z}).

and Z is a *modular* function (i.e. invariant under the action of $PSL_2(\mathbb{Z})$).

WZW Models

WZW Models

WZW Models

Where g is an affine algebra. We therefore get a representation of $\mathfrak{g} \oplus \bar{\mathfrak{g}}$. Any such representation is a direct sum of irreducible representations. When we take the trace of this representation we get the character, which will be the sum of the characters of the irreducibles.

$$
\mathcal{Z}(\tau) = \sum_{\lambda,\mu} M_{\lambda\mu} H_{\lambda} \otimes \overline{H_{\mu}}, \qquad M_{\lambda\mu} \in \mathbb{Z}^{\geq 0}
$$

Modularity in WZW models

The partition function

$$
\mathcal{Z}(\tau) = \sum_{\lambda,\mu} M_{\lambda\mu} H_{\lambda} \otimes \overline{H_{\mu}}, \qquad M_{\lambda\mu} \in \mathbb{Z}^{\geq 0}
$$

is completely determined by the integer matrix $M = (M_{\lambda\mu})$.

For every affine algebra g there exists matrices *S* and *T* such that

Z modular ⇐⇒ *M* commutes with *S* and *T*.

Therefore the problem of classifying WZW models has been reduced to the purely algebraic problem of finding integer matrices that commute with *S* and *T*! Such matrices are called physical invariants.

The CIZ Classicafation

Physical invariants of WZW models for which $g = 5\sqrt{2}$ were classified by Cappelli, Itzykson and Zuber in 1987.

Their classification had an **A-D-E** meta-pattern!

The goal is to understand why this occurs. Current research is focused around the fact that $TL(-[2]_q)$ is a subcategory in $Rep(\overline{\mathfrak{sl}_2})$ and representations of **TL**($-[2]_q$) that generate rational conformal theories are classified by **A-D-E**.