Classifying Conformal Field Theories

Leonard Hardiman

String Theory

String theory replaces the *point-like particles* of particle physics with one-dimensional objects called *strings*.

Quantum Field Theory	String Theory
•	\bigcirc

Topological Quantum Field Theories

Setting $X_1 \sim X_2$ if X_1 is topologically equivalent to X_2 would lead us towards a *topological quantum field theory*.

Conformal Quantum Field Theories

Setting $(X_1, g_1) \sim (X_2, g_2)$ if (X_1, g_1) is conformally equivalent to (X_2, g_2) leads us towards a *conformal field theory*.

Segal's Category

$$\mathsf{Obj}(\mathcal{C}) = \left\{ \underline{n} := \bigsqcup_{n} S_{1} \mid n \in \mathbb{N} \right\}$$
$$\underline{n} = \underbrace{\bigcirc \bigcirc \bigcirc \ldots \bigcirc}_{n} \ldots \bigcirc$$

 $\operatorname{Hom}(\underline{n},\underline{m}) = \{[X] \mid \overset{X \text{ is a Rimannian Manifold with } n \text{ incoming} \}$

Definition of a Conformal Field Theory

Let $H \in$ **VECT** be a Hilbert space. Then a conformal field theory on *H* is a monoidal functor

 $\mathcal{U}:\mathcal{C}\to \textbf{VECT}$

that sends $\underline{1}$ to H (and satisfies certain other axioms).

Remark

The fact that \mathcal{U} is monoidal implies $\mathcal{U}(\underline{n}) = H^{\otimes n}$. Therefore $X \in \text{Hom}(\underline{n},\underline{m})$ is sent onto a linear map from $H^{\otimes n}$ to $H^{\otimes m}$.

An important question in the field is the classification of possible conformal field theories. In other words how much data do we need to construct such a functor?

The answer can be summed up via the following mnemonic: **Donut Pants**

Pants (i.e. Trousers)

All elements in $Hom(\underline{n}, \underline{m})$ can be cut up into *pairs of pants*.

Pants (i.e. Trousers)

Under our functor \mathcal{U} a pair of pants (equipped with a conformal structure) is sent onto a linear map $H \otimes H \rightarrow H$. The Hilbert space H is therefore equipped with an infinite sequence of inner products, this gives rise to a V.O.A.

Donuts (i.e. Glueing)

Modularity of the Partition Function

Conformal structures on the torus are parametrized by $\tau \in \mathbb{C}^+/\mathsf{PSL}_2(\mathbb{Z}).$

and \mathcal{Z} is a *modular* function (i.e. invariant under the action of $PSL_2(\mathbb{Z})$).

WZW Models

WZW Models

WZW Models

Where \mathfrak{g} is an affine algebra. We therefore get a representation of $\mathfrak{g} \oplus \overline{\mathfrak{g}}$. Any such representation is a direct sum of irreducible representations. When we take the trace of this representation we get the character, which will be the sum of the characters of the irreducibles.

$$\mathcal{Z}(au) = \sum_{\lambda,\mu} M_{\lambda\mu} \ H_{\lambda} \otimes \overline{H_{\mu}}, \qquad M_{\lambda\mu} \in \mathbb{Z}^{\geq 0}$$

Modularity in WZW models

The partition function

$$\mathcal{Z}(au) = \sum_{\lambda,\mu} M_{\lambda\mu} \ H_{\lambda} \otimes \overline{H_{\mu}}, \qquad M_{\lambda\mu} \in \mathbb{Z}^{\geq 0}$$

is completely determined by the integer matrix $M = (M_{\lambda\mu})$.

For every affine algebra ${\mathfrak g}$ there exists matrices S and ${\mathcal T}$ such that

 \mathcal{Z} modular \iff *M* commutes with *S* and *T*.

Therefore the problem of classifying WZW models has been reduced to the purely algebraic problem of finding integer matrices that commute with S and T! Such matrices are called physical invariants.

The CIZ Classicafation

Physical invariants of WZW models for which $\mathfrak{g} = \widehat{\mathfrak{sl}_2}$ were classified by Cappelli, Itzykson and Zuber in 1987.

Their classification had an A-D-E meta-pattern!

The goal is to understand why this occurs. Current research is focused around the fact that $TL(-[2]_q)$ is a subcategory in $Rep(\widehat{\mathfrak{sl}_2})$ and representations of $TL(-[2]_q)$ that generate rational conformal theories are classified by **A-D-E**.