Exercise 1. Introduction

Binomial coefficients

1. Let k,n be non negative integers. Give three definitions of $\binom{n}{k}$: an algebraic one, a combinatorial one, and its value.

Solution. The three definitions are

- (a) The coefficient in front of x^k in $(1+x)^n$ (or the coefficient in front of $a^k b^{n-k}$ in $(a+b)^n$).
- (b) The number of ways to choose k elements in a set of n elements.
- (c) Is equal to

$$\frac{n!}{k! \left(n-k\right)!}$$

2. Prove that $\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix}$.

Solution. We give three solutions

(a) Since $(a+b)^n = (b+a)^n$, $\binom{n}{k}$ is the coefficient in front of $a^k b^{n-k}$ in $(b+a)^n$ so it is the coefficient in front of $b^{n-k}a^k$ in $(b+a)^n$ so it is equal to

$$\left(\begin{array}{c}n\\n-k\end{array}\right).$$

(b) To choose k elements out of n is equivalent to discard n - k out of n.

(c) We have
$$\binom{n}{n-k} = \frac{n!}{(n-k)!(n-(n-k))!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$
.

3. Show that

$$\left(\begin{array}{c}n\\k\end{array}\right) + \left(\begin{array}{c}n\\k+1\end{array}\right) = \left(\begin{array}{c}n+1\\k+1\end{array}\right).$$

Solution. We give three solutions

- (a) $\binom{n+1}{k+1}$ is the coefficient in front of x^{k+1} in $(1+x)^{n+1}$. Yet, $(1+x)^{n+1} = (1+x)(1+x)^n = (1+x)(1+x)^n = (1+x)(1+x)^n$ = $(1+x)^n + x(1+x)^n$. Thus $\binom{n+1}{k+1}$ is the sum of the coefficient in front of x^{k+1} in $(1+x)^n$ and the coefficient in front of x^k in $(1+x)^n$.
- (b) Let us consider the integers $\{1, \dots, n+1\}$. In order to choose k+1 elements in $\{1, \dots, n+1\}$, either one choose n+1 and then we need to choose k elements in $\{1, \dots, n\}$ or one discards n+1 and then we need to choose k+1 elements in $\{1, \dots, n\}$.
- (c) We have

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!}$$
$$= \frac{n!}{(k+1)!(n-k)!}(k+1+n-k)$$
$$= \frac{(n+1)!}{(k+1)!(n-k)!} = \binom{n+1}{k+1}.$$

4. What is the value of $\sum_{k=0}^{n} \binom{n}{k}$?

Solution. We give two solutions

- (a) We have $\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} \mathbf{1}^{k} \mathbf{1}^{n-k} = (1+1)^{n} = 2^{n}.$
- (b) $\sum_{k=0}^{n} \binom{n}{k}$ counts the number of subsets in a set with *n* elements. One has to choose if each element is included or not, thus there are 2 possibilities per element of the set: $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.
- 5. Prove that

$$\sum_{\substack{k_1+k_2=k\\k_1,k_2\geq 0}} \binom{n_1}{k_1} \binom{n_2}{k_2} = \binom{n_1+n_2}{k}$$

Solution. We give two solutions

- (a) $\sum_{\substack{k_1+k_2=k\\k_1,k_2\geq 0}} \binom{n_1}{k_1} \binom{n_2}{k_2}$ is the coefficient of x^k in $(1+x)^{n_1} (1+x)^{n_2} = (1+x)^{n_1+n_2}$, so it is equal to $\binom{n_1+n_2}{k}$.
- (b) Let us consider the integers $\{1, \dots, n_1, \dots, n_1 + n_2\}$. In order to choose k elements in $\{1, \dots, n_1, \dots, n_1 + n_2\}$, one needs to choose k_1 , the number of elements to take from $\{1, \dots, n_1\}$ and k_2 the number of elements to take from $\{n_1, \dots, n_1 + n_2\}$ (and of course $k_1 + k_2 = k$) and then chose k_1 , elements in $\{1, \dots, n_1\}$ ($\begin{pmatrix} n_1 \\ k_1 \end{pmatrix}$ possibilities) and k_2 elements in $\{n_1, \dots, n_1 + n_2\}$ ($\begin{pmatrix} n_2 \\ k_2 \end{pmatrix}$ possibilities). This gives us the equality $\sum_{\substack{k_1+k_2=k \\ k_1,k_2\geq 0}} \binom{n_1}{k_1} \binom{n_2}{k_2} = \binom{n_1+n_2}{k}$.

Stirling approximation

1. Recall the Stirling approximation.

Solution. Stirling's formula is $n! = \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n} \left(1 + O\left(n^{-1}\right)\right)$.

2. Show that

$$\frac{1}{2^{2n}} \left(\begin{array}{c} 2n \\ n \end{array} \right) \sim \frac{1}{\sqrt{\pi n}},$$

as $n \to \infty$.

Solution. This is a simple computation.

Probabilities

1. Let $A, B \subset (\Omega, \mathcal{A}, \mathbb{P})$, be two events. What does it means that they are independent?

Solution. It means that $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

2. What is the definition of the conditional probability $\mathbb{P}(A|B)$? What is the value of $\mathbb{P}(A|B)$ if A and B are independent ?

Solution. We have $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ which is equal to $\mathbb{P}(A)$ if A and B are independent.

3. Let X be a non negative random variable. State and prove the Markov inequality.

Solution. The Markov inequality is the fact that for any $a \ge 0$,

$$\mathbb{P}\left(X \ge a\right) \le \frac{\mathbb{E}\left(X\right)}{a}$$

The proof goes as follows: $a \mathbb{1}_{X \ge a} \le X$ since X is non negative and computing the expectation, one gets the inequality.

4. Give the definition of a (discrete time) Markov process.

Solution. A random process $(X_n)_{n \in \mathbb{N}}$ such that for any $n \in \mathbb{N}$, any $m \in \mathbb{N}$, any (x_1, \dots, x_{n+m}) ,

$$\mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid (X_1, \cdots, X_n) = (x_1, \cdots, x_n)\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right) = \mathbb{P}\left((X_{n+1} = x_{n+1}, \cdots, X_{n+m} = x_{n+m}) \mid X_n = x_{n+1}, \cdots, x_n\right)$$

5. Let G be a general graph, explain what a simple random walk on G is.

Solution. A Markov process which jumps at each time, independently from the past, uniformly to one of its neighbours.

Recall that a simple random walk on a graph is called *recurrent* if it returns to the starting point with probability 1, and *transient* otherwise. Recall that a simple random walk $(S_n)_{n\geq 0}$ on a connected graph G, starting from $v \in G$, is recurrent if and only if

$$\sum_{n=0}^{\infty} \mathbb{P}\left(S_n = v\right) = \infty. \tag{0.1}$$

Remark. In the course you saw that a simple random walk $(S_n)_{n\geq\infty}$ is recurrent if and only if $\mathbb{E}[N_d] = \infty$ where N_d is the number of visits at the starting point v. The relation with the statement above is obtained using the relation $N_d = \sum_{n=0}^{\infty} \mathbf{1}_{\{S_n = v\}}$, and using the linearity of the expectation:

$$\mathbb{E}[N_d] = \sum_{n=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{S_n=v\}}] = \sum_{n=0}^{\infty} \mathbb{P}\left(S_n=v\right).$$

Exercise 2. Recurrence/transience theorem for simple random walks on the square lattice \mathbb{Z}^d , $d \ge 1$. Let $\left(S_n^{(d)}\right)_{n\geq 0}$ be the simple random walk on \mathbb{Z}^d such that $S_0^{(d)} = 0$.

1. d = 1 Use Stirling's formula¹ to show that, in one dimension,

$$\mathbb{P}\left(S_{2n}^{(1)}=0\right)\sim\frac{1}{\sqrt{\pi n}}.$$

Deduce that $(S_n^{(1)})_{n>0}$ is recurrent.

Solution. In order for the simple random walk on \mathbb{Z} to come back to 0 in 2n steps, it must make n positive steps and n negative steps. Thus among the 2^n possible walks (at each step, the walk has 2 choices), the number of walks coming back to the origin in 2n steps is equal to the number of ways to choose n positive steps in the 2n total steps. So

$$\mathbb{P}\left(S_{2n}^{(1)} = 0\right) = \frac{1}{2^{2n}} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n!)^2 2^{2n}}$$

Using Stirling's formula on the factorials immediately gives the result. The recurrence property follows from (0.1).

2. d = 2 The goal is to prove that the simple random walk on \mathbb{Z}^2 is recurrent.

1. By enumerating the different cases, show that

$$\mathbb{P}\left(S_{2n}^{(2)}=0\right) = \left(\frac{1}{2^{2n}} \left(\begin{array}{c}2n\\n\end{array}\right)\right)^2.$$
(0.2)

Solution. Among the 4^{2n} possible walks (4 choices at each step), the number of walks coming back to the origin in 2n steps can be obtained by

$$\begin{cases} \text{choosing } 2j \text{ steps in the } x \text{ direction} & \begin{pmatrix} 2n \\ 2j \end{pmatrix} \\ \text{choosing } j \text{ positive steps among these } 2j \text{ steps} & \begin{pmatrix} 2j \\ 2j \\ j \end{pmatrix} \\ \text{choosing } n-j \text{ positive steps among the } 2(n-j) & \begin{pmatrix} 2(n-j) \\ n-j \end{pmatrix} \\ \text{remaining steps (in } y \text{ direction)} \end{cases}$$

¹Stirling's formula is $n! = \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n} \left(1 + O(n^{-1}) \right)$.

Thus, the number of such walks is equal to

$$\begin{split} \sum_{j=0}^{n} \binom{2n}{2j} \binom{2j}{j} \binom{2(n-j)}{n-j} &= \sum_{j=0}^{n} \frac{(2n)!}{(2j)! (2n-2j)!} \frac{(2j)!}{j!j!} \frac{(2(n-j))!}{(n-j)! (n-j)!} \\ &= \frac{(2n)!}{n!n!} \sum_{j=0}^{n} \frac{n!n!}{j!j! (n-j)! (n-j)!} \\ &= \frac{(2n)!}{n!n!} \sum_{j=0}^{n} \binom{n}{j} \binom{n}{n-j} \end{split}$$

The last sum is equal to $\frac{(2n)!}{n!n!}$. Indeed either one can see that this is the coefficient of x^n in $(1+x)^n (1+x)^n$ which is equal also to the coefficient of x^n in $(1+x)^{2n}$, or one can use the following combinatorial proof: in order to pick n elements in a bag of 2n elements, I split the bag in 2 smaller bags of equal size n (in an arbitrary way) and then I pick j elements in the first bag and n-j in the second bag.

Thus $\mathbb{P}\left(S_{2n}^{(2)}=0\right) = \left(\frac{1}{2^{2n}}\frac{(2n)!}{n!n!}\right)^2$, which is what we needed to prove.

1. Observe that $\mathbb{P}\left(S_{2n}^{(2)}=0\right)$ is equal to $\mathbb{P}\left(S_{2n}^{(1)}=0\right)^2$. Find a probabilistic proof of Equation (0.2). **Solution.** The intuition behind the equality

$$\mathbb{P}\left(S_{2n}^{(2)}=0\right)=\mathbb{P}\left(S_{2n}^{(1)}=0\right)^2$$

is that one can represent $(S_n^{(2)})_{n\geq 0}$ using two independent uni-dimensional random walks. Beginning at the origin, suppose at every step we do SRW in the x and y directions independently. Then we will move diagonally in \mathbb{Z}^2 , and the resulting law of the walk in the rotated diagonal lattice is precisely that of a 2 dimensional simple random walk. Then we return to the origin in 2n steps if and only if the independent 1 dimensional SRWs both come back to zero, so we get the square of the one dimensional estimate.

Equivalently, one could have considered the projection of $S_k = (X_k, Y_k)$ on the x and y axis. The projection X_k is clearly not a simple random walk since it stays sometimes at the same place. Yet $X_k + Y_k$ and $X_k - Y_k$ are two processes which always either increase or decrease by 1. Besides $\{S_k = 0\} = \{X_k + Y_k = 0 \text{ and } X_k - Y_k = 0\}$. At last, it is easy to see that $X_k + Y_k$ and $X_k - Y_k$ are two independent random walks (consider the way $(X_k + Y_k, X_k - Y_k)$ moves from time k to time k + 1).

2. Deduce from Equation (0.2) that $(S_n^{(2)})_{n>0}$ is recurrent.

Solution. From the part 1. we deduce that $\mathbb{P}\left(S_{2n}^{(2)}=0\right) \sim \frac{1}{\pi n}$. The recurrence property follows from (0.2).

3. d = 3 By a simple enumeration argument, show that

$$\mathbb{P}\left(S_{2n}^{(3)}=0\right) = \frac{1}{2^{2n}} \left(\begin{array}{c} 2n\\ n \end{array}\right) \sum_{j,k\geq 0\atop j+k\leq n} \left(\frac{n!}{3^n k! j! (n-k-j)!}\right)^2$$

and deduce that a simple random walk on \mathbb{Z}^3 is transient.

Solution. There exists $\frac{1}{6^{2n}}$ different paths that the random walk can follow during the first 2n steps (it has 3 choices at each step). We need to compute the number of paths of length 2n in \mathbb{Z}^3 which begin and come back to 0. We need to choose :

 $\begin{cases} 2k \text{ times (among the } 2n) \text{ at which the path will go in the } x \text{ direction} & \begin{pmatrix} 2n \\ 2k \end{pmatrix} \\ 2j \text{ times (among the } 2n - 2k \text{ left) at which the path will go in the } y \text{ direction} & \begin{pmatrix} 2n \\ 2k \end{pmatrix} \\ 2n - 2k \\ 2j \end{pmatrix} \\ k \text{ times (among the } 2k) \text{ at which the path will go "up" in the } x \text{ direction} & \begin{pmatrix} 2n \\ 2k \end{pmatrix} \\ k \end{pmatrix} \\ j \text{ times (among the } 2j) \text{ at which the path will go "up" in the } y \text{ direction} & \begin{pmatrix} 2j \\ 2j \end{pmatrix} \\ j \end{pmatrix} \\ n - k - j \text{ times (among the } 2(n - k - j)) \text{ at which the path will go "up"} & \begin{pmatrix} 2n \\ 2k \end{pmatrix} \\ j \end{pmatrix} \\ n - k - j \text{ times (among the } 2(n - k - j)) \text{ at which the path will go "up"} \end{cases}$

This gives a number of paths equal to:

$$\sum_{j,k\geq 0\atop j/k\leq n} \binom{2n}{2k} \binom{2n-2k}{2j} \binom{2k}{k} \binom{2j}{j} \binom{2n-2k-2j}{n-k-j},$$

which after a little massage gives

$$\binom{2n}{n} \sum_{\substack{j,k \ge 0\\j/k \le n}} \left(\frac{n!}{k!j!(n-k-j)!}\right)^2,$$

and thus

$$\mathbb{P}\left(S_{2n}^{(3)}=0\right) = \frac{1}{6^{2n}} \left(\begin{array}{c}2n\\n\end{array}\right) \sum_{j,k \ge 0 \atop j/k \le n} \left(\frac{n!}{k!j!(n-k-j)!}\right)^2 = \frac{1}{2^{2n}} \left(\begin{array}{c}2n\\n\end{array}\right) \sum_{j,k \ge 0 \atop j/k \le n} \left(\frac{n!}{3^nk!j!(n-k-j)!}\right)^2.$$

For the assertion about the transience of the random walk, we need to show that $\sum_{n} \mathbb{P}\left(S_{2n}^{(3)}=0\right) < \infty$: we need to give an upper bound on $\mathbb{P}\left(S_{2n}^{(3)}=0\right)$ which is summable. The first part $\frac{1}{2^{2n}}\begin{pmatrix}2n\\n\end{pmatrix}$ was already studied it is $O\left(\frac{1}{\sqrt{n}}\right)$. It remains to bound $\sum_{\substack{j,k\geq 0\\j/k\leq n}} \left(\frac{n!}{3^nk!j!(n-k-j)!}\right)^2$ and in particular $\frac{n!}{k!j!(n-k-j)!}$. Let us remark that if a < b then $a!b! \ge (a+1)!(b-1)!$ since it is equivalent to $b \ge a+1$. Thus a!b!c! decreases when the distance between any two of a; b; c decreases. We conclude that $\frac{n!}{k!j!(n-k-j)!}$ is maximized among the cases where j,k, n-j-k are of order n/3. Thus $\frac{n!}{3^nk!j!(n-k-j)!} \le O\left(3^{-n}\frac{n!}{(\lfloor n/3 \rfloor!)^3}\right) = O\left(n^{-1}\right)$ using Stirling formula.

$$\mathbb{P}\left(S_{2n}^{(3)} = 0\right) \leq \frac{c}{n^{3/2}} \sum_{j,k \geq 0 \atop j+k \leq n} \frac{n!}{3^n k! j! \left(n-k-j\right)!} = \frac{c}{n^{3/2}}$$

since the sum of the multinomial coefficients is precisely 3^n . This allows us to conclude about the transience of the random walk in dimension 3.

Remark. Let us remark that the brutal majoration which would consist in majoring $\left(\frac{n!}{3^n k! j! (n-k-j)!}\right)^2$ by $O\left(n^{-2}\right)$ and the sum by the number of elements (of order $(O(n^2))$) times $O\left(n^{-2}\right)$ would have given us a majoration $\mathbb{P}\left(S_{2n}^{(3)}=0\right) \leq \frac{c}{n^{1/2}}$ and would have not helped us.

4. $d \ge 3$ Prove that it follows from the previous results that \mathbb{Z}^d is transient for d > 3.

Solution. Given an SRW on \mathbb{Z}^d for d > 3, consider its projection S_n to the first three coordinates. This has a law of a Markov random walk on \mathbb{Z}^3 started at the origin which at every step can move to one of its 6 neighbours with probability $\frac{1}{2d}$, or stay at the same point with probability $1 - \frac{6}{2d}$. But one obtains a SRW in \mathbb{Z}^3 by disregarding the steps where the first three coordinates do not move. So our SRW on \mathbb{Z}^d does not return to zero in its first three coordinates infinitely often, let alone to the origin.