Exercise 1. Introduction

Binomial coefficients

1. Let k,n be non negative integers. Give three definitions of $\begin{pmatrix} n \\ h \end{pmatrix}$ k : an algebraic one, a combinatorial one, and its value.

Solution. The three definitions are

- (a) The coefficient in front of x^k in $(1+x)^n$ (or the coefficient in front of $a^k b^{n-k}$ in $(a+b)^n$).
- (b) The number of ways to choose k elements in a set of n elements.
- (c) Is equal to

$$
\frac{n!}{k!\,(n-k)!}
$$

2. Prove that
$$
\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix}
$$
.

Solution. We give three solutions

(a) Since $(a + b)^n = (b + a)^n$, $\begin{pmatrix} n \\ b \end{pmatrix}$ k is the coefficient in front of a^kb^{n-k} in $(b+a)^n$ so it is the coefficient in front of $b^{n-k}a^k$ in $(b+a)^n$ so it is equal to

$$
\left(\begin{array}{c}n\\n-k\end{array}\right).
$$

(b) To choose k elements out of n is equivalent to discard $n - k$ out of n.

(c) We have
$$
\binom{n}{n-k}
$$
 = $\frac{n!}{(n-k)!(n-(n-k))!}$ = $\frac{n!}{k!(n-k)!}$ = $\binom{n}{k}$.

3. Show that

$$
\left(\begin{array}{c} n \\ k \end{array}\right) + \left(\begin{array}{c} n \\ k+1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ k+1 \end{array}\right).
$$

Solution. We give three solutions

- (a) $\binom{n+1}{k+1}$ is the coefficient in front of x^{k+1} in $(1+x)^{n+1}$. Yet, $(1+x)^{n+1} = (1+x)(1+x)^n$ $=(1+x)^n+x(1+x)^n$. Thus $\begin{pmatrix} n+1 \\ k+1 \end{pmatrix}$ is the sum of the coefficient in front of x^{k+1} in $(1+x)^n$ and the coefficient in front of x^k in $(1+x)^n$.
- (b) Let us consider the integers $\{1, \dots, n+1\}$. In order to choose $k+1$ elements in $\{1, \dots, n+1\}$, either one choose $n+1$ and then we need to choose k elements in $\{1, \dots, n\}$ or one discards $n+1$ and then we need to choose $k + 1$ elements in $\{1, \dots, n\}$.
- (c) We have

$$
\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!}
$$

$$
= \frac{n!}{(k+1)!(n-k)!} (k+1+n-k)
$$

$$
= \frac{(n+1)!}{(k+1)!(n-k)!} = \binom{n+1}{k+1}.
$$

4. What is the value of $\sum_{k=0}^{n} \binom{n}{k}$ k $\big)$?

Solution. We give two solutions

- (a) We have $\sum_{k=0}^n \binom{n}{k}$ k $\bigg) = \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}$ k $\bigg(1^k1^{n-k}=(1+1)^n=2^n.$
- (b) $\sum_{k=0}^{n} \binom{n}{k}$ k counts the number of subsets in a set with n elements. One has to choose if each element is included or not, thus there are 2 possibilities per element of the set: $\sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix}$ k $\Big) = 2^n.$
- 5. Prove that

$$
\sum_{\substack{k_1+k_2=k \ k_1,k_2\geq 0}} \binom{n_1}{k_1} \binom{n_2}{k_2} = \binom{n_1+n_2}{k}
$$

Solution. We give two solutions

- (a) $\sum_{\substack{k_1+k_2=k \ k_1, k_2\geq 0}}$ $\binom{n_1}{n_2}$ k_1 \bigwedge n_2 k_2 is the coefficient of x^k in $(1+x)^{n_1}(1+x)^{n_2}=(1+x)^{n_1+n_2}$, so it is equal $\frac{1}{\log n}$ $\binom{n_1+n_2}{n_1}$ k .
- (b) Let us consider the integers $\{1, \dots, n_1, \dots, n_1 + n_2\}$. In order to choose k elements in $\{1, \dots, n_1, \dots, n_1 + n_2\}$. one needs to choose k_1 , the number of elements to take from $\{1, \dots, n_1\}$ and k_2 the number of elements to take from $\{n_1, \dots, n_1 + n_2\}$ (and of course $k_1 + k_2 = k$) and then chose k_1 , elements in $\{1, \cdots, n_1\}$ ($\binom{n_1}{k_1}$ k_1 possibilities) and k_2 elements in $\{n_1, \dots, n_1 + n_2\}$ ($\begin{pmatrix} n_2 \\ n_3 \end{pmatrix}$ $k₂$ possibilities). This gives us the equality $\sum_{\substack{k_1+k_2=k \ k_1,k_2\geq 0}}$ $\binom{n_1}{n_2}$ k_1 \bigwedge n_2 $k₂$ $= \begin{pmatrix} n_1 + n_2 \\ \frac{1}{n_1} \end{pmatrix}$ k .

Stirling approximation

1. Recall the Stirling approximation.

Solution. Stirling's formula is $n! = \sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}(1+O(n^{-1}))$.

2. Show that

$$
\frac{1}{2^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)\sim \frac{1}{\sqrt{\pi n}},
$$

as $n \to \infty$.

Solution. This is a simple computation.

Probabilities

1. Let $A, B \subset (\Omega, \mathcal{A}, \mathbb{P})$, be two events. What does it means that they are independent?

Solution. It means that $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$.

2. What is the definition of the conditional probability $\mathbb{P}(A|B)$? What is the value of $\mathbb{P}(A|B)$ if A and B are independent ?

Solution. We have $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ which is equal to $\mathbb{P}(A)$ if A and B are independent.

3. Let X be a non negative random variable. State and prove the Markov inequality.

Solution. The Markov inequality is the fact that for any $a \geq 0$.

$$
\mathbb{P}\left(X \ge a\right) \le \frac{\mathbb{E}\left(X\right)}{a}.
$$

The proof goes as follows: $a\mathbb{1}_{X>a} \leq X$ since X is non negative and computing the expectation, one gets the inequality.

4. Give the definition of a (discrete time) Markov process.

Solution. A random process $(X_n)_{n\in\mathbb{N}}$ such that for any $n \in \mathbb{N}$, any $m \in \mathbb{N}$, any (x_1, \dots, x_{n+m}) ,

$$
\mathbb{P}((X_{n+1}=x_{n+1},\cdots,X_{n+m}=x_{n+m})|(X_1,\cdots,X_n)=(x_1,\cdots,x_n))=\mathbb{P}((X_{n+1}=x_{n+1},\cdots,X_{n+m}=x_{n+m})|X_n=x_n
$$

5. Let G be a general graph, explain what a simple random walk on G is.

Solution. A Markov process which jumps at each time, independently from the past, uniformly to one of its neighbours.

Recall that a simple random walk on a graph is called *recurrent* if it returns to the starting point with probability 1, and transient otherwise. Recall that a simple random walk $(S_n)_{n>0}$ on a connected graph G, starting from $v \in G$, is recurrent if and only if

$$
\sum_{n=0}^{\infty} \mathbb{P}\left(S_n = v\right) = \infty. \tag{0.1}
$$

Remark. In the course you saw that a simple random walk $(S_n)_{n\geq\infty}$ is recurrent if and only if $\mathbb{E}[N_d] = \infty$ where N_d is the number of visits at the starting point v. The relation with the statement above is obtained using the relation $N_d = \sum_{n=0}^{\infty} \mathbf{1}_{\{S_n=v\}}$, and using the linearity of the expectation:

$$
\mathbb{E}[N_d] = \sum_{n=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{S_n=v\}}] = \sum_{n=0}^{\infty} \mathbb{P}(S_n = v).
$$

Exercise 2. Recurrence/transience theorem for simple random walks on the square lattice \mathbb{Z}^d , $d \geq 1$. Let $(S_n^{(d)})$ be the simple random walk on \mathbb{Z}^d such that $S_0^{(d)} = 0$.

1. $d = 1$ Use Stirling's formula¹ to show that, in one dimension,

$$
\mathbb{P}\left(S_{2n}^{(1)}=0\right) \sim \frac{1}{\sqrt{\pi n}}.
$$

Deduce that $(S_n^{(1)})_{n\geq 0}$ is recurrent.

Solution. In order for the simple random walk on $\mathbb Z$ to come back to 0 in 2n steps, it must make n positive steps and n negative steps. Thus among the $2ⁿ$ possible walks (at each step, the walk has 2 choices), the number of walks coming back to the origin in $2n$ steps is equal to the number of ways to choose *n* positive steps in the $2n$ total steps. So

$$
\mathbb{P}\left(S_{2n}^{(1)}=0\right)=\frac{1}{2^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)=\frac{(2n)!}{(n!)^2\,2^{2n}}.
$$

Using Stirling's formula on the factorials immediately gives the result. The recurrence property follows from (0.1).

- **2.** $d = 2$ The goal is to prove that the simple random walk on \mathbb{Z}^2 is recurrent.
	- 1. By enumerating the different cases, show that

$$
\mathbb{P}\left(S_{2n}^{(2)}=0\right)=\left(\frac{1}{2^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)\right)^2.
$$
\n(0.2)

Solution. Among the 4^{2n} possible walks (4 choices at each step), the number of walks coming back to the origin in $2n$ steps can be obtained by

$$
\begin{cases}\n\text{choosing 2j steps in the } x \text{ direction} & \begin{pmatrix} 2n \\ 2j \\ 2j \end{pmatrix} \\
\text{choosing } j \text{ positive steps among these } 2j \text{ steps} & \begin{pmatrix} 2j \\ 2j \\ j \end{pmatrix} \\
\text{choosing } n - j \text{ positive steps among the } 2(n - j) & \begin{pmatrix} 2(n - j) \\ n - j \end{pmatrix} \\
\text{remaining steps (in } y \text{ direction)}\n\end{cases}
$$

¹Stirling's formula is $n! = \sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}(1+O(n^{-1}))$.

Thus, the number of such walks is equal to

$$
\sum_{j=0}^{n} {2n \choose 2j} {2j \choose j} {2(n-j) \choose n-j} = \sum_{j=0}^{n} \frac{(2n)!}{(2j)!(2n-2j)!} \frac{(2j)!}{j!j!} \frac{(2(n-j))!}{(n-j)!(n-j)!}
$$

$$
= \frac{(2n)!}{n!n!} \sum_{j=0}^{n} \frac{n!n!}{j!j!(n-j)!(n-j)!}
$$

$$
= \frac{(2n)!}{n!n!} \sum_{j=0}^{n} {n \choose j} {n \choose n-j}
$$

The last sum is equal to $\frac{(2n)!}{n!n!}$. Indeed either one can see that this is the coefficient of x^n in $(1+x)^n (1+x)^n$ which is equal also to the coefficient of x^n in $(1+x)^{2n}$, or one can use the following combinatorial proof: in order to pick n elements in a bag of $2n$ elements, I split the bag in 2 smaller bags of equal size n (in an arbitrary way) and then I pick j elements in the first bag and $n - j$ in the second bag.

Thus $\mathbb{P}\left(S_{2n}^{(2)}=0\right)=\left(\frac{1}{2^{2n}}\frac{(2n)!}{n!n!}\right)$ $\left(\frac{(2n)!}{n!n!}\right)^2$, which is what we needed to prove.

1. Observe that $\mathbb{P}\left(S_{2n}^{(2)}=0\right)$ is equal to $\mathbb{P}\left(S_{2n}^{(1)}=0\right) ^{2}$. Find a probabilistic proof of Equation (0.2). Solution. The intuition behind the equality

$$
\mathbb{P}\left(S_{2n}^{(2)} = 0\right) = \mathbb{P}\left(S_{2n}^{(1)} = 0\right)^2
$$

is that one can represent $(S_n^{(2)})_{n\geq 0}$ using two independent uni-dimensional random walks. Beginning at the origin, suppose at every step we do SRW in the x and y directions independently. Then we will move diagonally in \mathbb{Z}^2 , and the resulting law of the walk in the rotated diagonal lattice is precisely that of a 2 dimensional simple random walk. Then we return to the origin in $2n$ steps if and only if the independent 1 dimensional SRWs both come back to zero, so we get the square of the one dimensional estimate.

Equivalently, one could have considered the projection of $S_k = (X_k, Y_k)$ on the x and y axis. The projection X_k is clearly not a simple random walk since it stays sometimes at the same place. Yet $X_k + Y_k$ and $X_k - Y_k$ are two processes which always either increase or decrease by 1. Besides ${S_k = 0} = {X_k + Y_k = 0$ and $X_k - Y_k = 0}$. At last, it is easy to see that $X_k + Y_k$ and $X_k - Y_k$ are two independent random walks (consider the way $(X_k + Y_k, X_k - Y_k)$ moves from time k to time $k + 1$.

2. Deduce from Equation (0.2) that $(S_n^{(2)})_{n\geq 0}$ is recurrent.

Solution. From the part 1. we deduce that $\mathbb{P}\left(S_{2n}^{(2)}=0\right) \sim \frac{1}{\pi n}$. The recurrence property follows from (0.2) .

3. $d = 3$ By a simple enumeration argument, show that

$$
\mathbb{P}\left(S_{2n}^{(3)}=0\right)=\frac{1}{2^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)\sum_{\substack{j,k\geq 0\\j+k\leq n}}\left(\frac{n!}{3^nk!j!\,(n-k-j)!}\right)^2
$$

and deduce that a simple random walk on \mathbb{Z}^3 is transient.

Solution. There exists $\frac{1}{6^{2n}}$ different paths that the random walk can follow during the first 2n steps (it has 3 choices at each step). We need to compute the number of paths of length $2n$ in \mathbb{Z}^3 which begin and come back to 0. We need to choose :

 $\left(2k \text{ times (among the } 2n\right)$ at which the path will go in the x direction $\left(2n\right)$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $2k$ \setminus 2j times (among the 2n – 2k left) at which the path will go in the y direction $\begin{pmatrix} 2n-2k \ 2n-2k \end{pmatrix}$ $2j$ k times (among the 2k) at which the path will go "up" in the x direction $\begin{pmatrix} 2k \end{pmatrix}$ k \setminus j times (among the 2j) at which the path will go "up" in the y direction $\left(\begin{array}{c} 2j \end{array} \right)$ j \setminus $n-k-j$ times (among the $2(n-k-j)$) at which the path will go "up" $\left(2n-2k-2j\right)$ $n-k-j$ in the z direction

This gives a number of paths equal to:

$$
\sum_{\substack{j,k\geq 0\\j/k\leq n}} \binom{2n}{2k} \binom{2n-2k}{2j} \binom{2k}{k} \binom{2j}{j} \binom{2n-2k-2j}{n-k-j},
$$

 \setminus

 \setminus

which after a little massage gives

$$
\left(\begin{array}{c} 2n \\ n \end{array}\right) \sum_{\substack{j,k\geq 0 \\ j/k \leq n}} \left(\frac{n!}{k!j!\,(n-k-j)!}\right)^2,
$$

and thus

$$
\mathbb{P}\left(S_{2n}^{(3)}=0\right)=\frac{1}{6^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)\sum_{\substack{j,k\geq 0\\j/k\leq n}}\left(\frac{n!}{k!j!\,(n-k-j)!}\right)^2=\frac{1}{2^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)\sum_{\substack{j,k\geq 0\\j/k\leq n}}\left(\frac{n!}{3^nk!j!\,(n-k-j)!}\right)^2.
$$

For the assertion about the transience of the random walk, we need to show that $\sum_n \mathbb{P}\left(S_{2n}^{(3)}=0\right)<\infty$: we need to give an upper bound on $\mathbb{P}\left(S_{2n}^{(3)}=0\right)$ which is summable. The first part $\frac{1}{2^{2n}}\left(\begin{array}{c}2n\ n\end{array}\right)$ n was already studied it is $O\left(\frac{1}{\sqrt{n}}\right)$. It remains to bound $\sum_{\substack{j,k\geq 0 \\ j\neq k\leq n}}$ $\left(\frac{n!}{3^n k!j!(n-k-j)!}\right)^2$ and in particular $\frac{n!}{k!j!(n-k-j)!}$. Let us remark that if $a < b$ then $a!b! \ge (a+1)!(b-1)!$ since it is equivalent to $b \ge a+1$. Thus $a!b!c!$ decreases when the distance between any two of a; b; c decreases. We conclude that $\frac{n!}{k!j!(n-k-j)!}$ is maximized among the cases where j,k , $n-j-k$ are of order $n/3$. Thus $\frac{n!}{3^n k! j! (n-k-j)!} \leq O\left(3^{-n} \frac{n!}{(\lfloor n/3 \rfloor!)^3}\right) = O\left(n^{-1}\right)$ using Stirling formula.

Now :

$$
\mathbb{P}\left(S_{2n}^{(3)}=0\right) \le \frac{c}{n^{3/2}} \sum_{\substack{j,k \ge 0 \\ j+k \le n}} \frac{n!}{3^n k! j! \, (n-k-j)!} = \frac{c}{n^{3/2}}
$$

since the sum of the multinomial coefficients is precisely 3^n . This allows us to conclude about the transience of the random walk in dimension 3.

Remark. Let us remark that the brutal majoration which would consist in majoring $\left(\frac{n!}{3^n k! j!(n-k-j)!}\right)^2$ by $O(n^{-2})$ and the sum by the number of elements (of order $(O(n^2))$) times $O(n^{-2})$ would have given us a majoration $\mathbb{P}\left(S_{2n}^{(3)} = 0 \right) \le \frac{c}{n^{1/2}}$ and would have not helped us.

4. $d \geq 3$ Prove that it follows from the previous results that \mathbb{Z}^d is transient for $d > 3$.

Solution. Given an SRW on \mathbb{Z}^d for $d > 3$, consider its projection S_n to the first three coordinates. This has a law of a Markov random walk on \mathbb{Z}^3 started at the origin which at every step can move to one of its 6 neighbours with probability $\frac{1}{2d}$, or stay at the same point with probability $1-\frac{6}{2d}$. But one obtains a SRW in \mathbb{Z}^3 by disregarding the steps where the first three coordinates do not move. So our SRW on \mathbb{Z}^d does not return to zero in its first three coordinates infinitely often, let alone to the origin.