Exercise 1. Introduction

Binomial coefficients

- 1. Let k,n be non negative integers. Give three definitions of $\begin{pmatrix} n \\ h \end{pmatrix}$ k : an algebraic one, a combinatorial one, and its explicit value.
- 2. Prove that $\begin{pmatrix} n \\ n \end{pmatrix}$ k $=\begin{pmatrix} n \\ n \end{pmatrix}$ $n - k$.
- 3. Show that

$$
\left(\begin{array}{c} n \\ k \end{array}\right) + \left(\begin{array}{c} n \\ k+1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ k+1 \end{array}\right).
$$

- 4. What is the value of $\sum_{k=0}^{n} \binom{n}{k}$ k $\Big)$?
- 5. Prove that

$$
\sum_{\substack{k_1+k_2=k \ k_1,k_2\geq 0}} \binom{n_1}{k_1} \binom{n_2}{k_2} = \binom{n_1+n_2}{k}.
$$

Stirling approximation

- 1. Recall the Stirling approximation.
- 2. Show that

$$
\frac{1}{2^{2n}} \left(\begin{array}{c} 2n \\ n \end{array} \right) \sim \frac{1}{\sqrt{\pi n}},
$$

as $n \to \infty$, where $f(n) \sim g(n)$ means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$.

Probabilities

- 1. Let $A, B \subset (\Omega, \mathcal{A}, \mathbb{P})$, be two events. What does it means that they are independent?
- 2. What is the definition of the conditional probability $\mathbb{P}(A|B)$? What is the value of $\mathbb{P}(A|B)$ if A and B are independent ?
- 3. Let X be a non negative random variable. State and prove the Markov inequality.
- 4. Give the definition of a (discrete time) Markov process.
- 5. Let G be a general graph, explain what a simple random walk on G is.

Recall that a simple random walk on a graph is called recurrent if it returns to its starting point with probability 1, and transient otherwise. Recall that a simple random walk $(S_n)_{n\geq 0}$ on a connected graph G, starting from $v \in G$, is recurrent if and only if

$$
\sum_{n=0}^{\infty} \mathbb{P}\left(S_n = v\right) = \infty.
$$

Exercise 2. Recurrence/transience theorem for simple random walks on the square lattice \mathbb{Z}^d , $d \geq 1$. Let $(S_n^{(d)})$ be the simple random walk on \mathbb{Z}^d such that $S_0^{(d)} = 0$.

1. $d = 1$ Use Stirling's formula¹ to show that, in one dimension,

$$
\mathbb{P}\left(S_{2n}^{(1)}=0\right) \sim \frac{1}{\sqrt{\pi n}}.
$$

Deduce that $(S_n^{(1)})_{n\geq 0}$ is recurrent.

- **2.** $d = 2$ The goal is to prove that the simple random walk on \mathbb{Z}^2 is recurrent.
	- 1. By enumerating the different cases, show that

$$
\mathbb{P}\left(S_{2n}^{(2)}=0\right)=\left(\frac{1}{2^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)\right)^2.\tag{0.1}
$$

- 2. Observe that $\mathbb{P}\left(S_{2n}^{(2)}=0\right)$ is equal to $\mathbb{P}\left(S_{2n}^{(1)}=0\right) ^{2}$. Find a probabilistic proof of Equation (0.1).
- 3. Deduce from Equation (0.1) that $(S_n^{(2)})_{n\geq 0}$ is recurrent.

3. $d = 3$ By a simple enumeration argument, show that

$$
\mathbb{P}\left(S_{2n}^{(3)}=0\right)=\frac{1}{2^{2n}}\left(\begin{array}{c}2n\\n\end{array}\right)\sum_{\substack{j,k\geq 0\\j+k\leq n}}\left(\frac{n!}{3^nk!j!\,(n-k-j)!}\right)^2
$$

and deduce that a simple random walk on \mathbb{Z}^3 is transient.

4. $d \geq 3$ Prove that the previous results implies that $(S_n^{(d)})$ is transient for $d > 3$.

¹Stirling's formula is $n! = \sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}(1+O(n^{-1}))$.