
LATTICE MODELS SOLUTION SHEET 10 EPFL AUTUMN 2021

We continue the study of the face percolation on hexagonal graph for p = 1
2 (it is the last exercise sheet on this

topic).

Exercise 1. Hurwitz’s theorem.
(1) Recall the argument principle seen in the lesson and a sketch of its proof.

Solution. If f is a holomorphic function in a simply connected open set Ω and if γ is a closed curve in Ω
on which f has no zeros, then

1

2iπ

˛
γ

f ′ (z)

f (z)− w
dz

is the number of solutions (with their multiplicity) of f (z) = w.
The proof goes as follows, we apply the Residue theorem :

1

2iπ

˛
γ

f ′ (z)

f (z)− w
dz =

∑
i

Res

(
f ′ (z)

f (z)− w
, zi

)
where zi are the solutions of f (z) = w. We have to compute the residue of f ′(z)

f(z)−w at zi. If zi is a solution
(with multiplicity m) of f (z) = w, this means that locally around zi,

f (z)− w = am (z − zi)
m
+ ...

with am ̸= 0. Hence
f ′ (x)

f (z)− w
=
mam (z − zi)

m−1
+ ...

am (z − zi)
m
+ ...

hence the residue is equal to m, the multiplicity of the solution. This allows us to conclude.

(2) Let us consider (fn)n∈N a sequence of holomorphic functions on a connected open set Ω converging uniformly
to a limit f on all compact subsets of Ω.
(a) Prove that f is holomorphic.

Solution. The holomorphicity of f can be checked locally, hence we can suppose that Ω is simply
connected. In this case, fn is holomorphic if and only if for any curve γ,

¸
γ
fn = 0. Any continuous

loop γ belongs to a compact subset of Ω and since the sequence converges uniformly on any compact
set then

¸
γ
fn →

¸
γ
f .

(b) Let us suppose that f has a zero of order m at z0 (i.e. f (0) (z0) = f (1) (z0) = . . . = f (m−1) (z0) = 0
and f (m) (z0) ̸= 0, where f (i) is the ith-derivative of f), show that for any ρ > 0 small enough, for
sufficiently large k ∈ N, fk has precisely m zeros in the disk D (z0, ρ) including multiplicity.

Solution. Let us suppose that f has a zero of order m at z0. Let us remark that this implies that f
is not identically equal to 0. Using the fact that zeros of holomorphic functions are isolated, we can
find ρ > 0 small enough such that f has no zero on D (z0, ρ) ∪ ∂D (z0, ρ) except z0. We can apply the
argument principle :

1

2iπ

˛
∂D(z0,ρ)

f ′ (z)

f (z)
dz

is equal to the number of zeros of f in D (z0, ρ). Using the fact that fn → f uniformly, there exists K ∈
N such that for k > K, fk does not vanish on ∂D (z0, ρ). Hence for k big enough, 1

2iπ

¸
∂D(z0,ρ)

f ′
k(z)

fk(z)
dz

is well defined and is the number of zeros of fk in the disk D (z0, ρ) including multiplicity. Using the
uniform convergence again of fn → f , we get:

1

2iπ

˛
∂D(z0,ρ)

f ′k (z)

fk (z)
dz → 1

2iπ

˛
∂D(z0,ρ)

f ′ (z)

f (z)
dz.

Since the r.h.s and the l.h.s. are in N, for k big enough, 1
2iπ

¸
∂D(z0,ρ)

f ′
k(z)

fk(z)
dz = 1

2iπ

¸
∂D(z0,ρ)

f ′(z)
f(z) dz.

This implies that for any ρ > 0 small enough, for sufficiently large k ∈ N, fk has precisely m zeros in
the disk D (z0, ρ) including multiplicity.

Remark. This is Hurwitz’s theorem.
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(3) Let (fn)n∈N be a sequence of holomorphic functions on a connected open set Ω converging uniformly to a
limit f on all compact subsets of Ω.
(a) Show that if each fn is non-zero everywhere, then f is either identically zero or is also nowhere zero.

Solution. Let us suppose that fn is non-zero everywhere, and let us suppose that f is not identically
zero. Then, if f (z0) = 0, then there exists m ∈ N such that z0 is a zero of f of order m. Using the
Hurwitz’s theorem, this implies that fk should have at least m zeros including multiplicity for k big
enough: this is not possible by assumption. Thus f is nowhere zero.

(b) Show that if each fn is injective, then f is either constant or is also injective.

Solution. Let us suppose that fn is injective, and let us suppose that f is not constant. Then let us
suppose that there exists two zeros of f (.)− ω, for ω ∈ C, using Hurwitz’s theorem, this implies that
fn (.)− ω has two zeros for n big enough: this is not possible by assumption. Thus f is injective.

Exercise 2. Hitting distribution

Consider the equilateral triangle T ⊂ C whose vertices are 0, e±πi/6. Get the hexagonal discretisation Tδ of T as
usual, and consider the critical face percolation on Tδ.

Let us color the complement of the triangle in the right half plane {ℜz > 0} \ Tδ black on the top side (positive
imaginary part) and white on the bottom (negative imaginary part). Each site percolation configuration gives us
an interface: the well-defined path defining the interface between the black colouring on the upper half plane and
the white colouring on the lower half plane (there can also be some islands of each signs above and below this
path). We would like to study the hitting distribution of this path on the right side

[
eπi/6, e−πi/6

]
: where does

the interface end? In terms of the percolation on Tδ, this corresponds to the distribution of the highest white face
W ∈

[
eπi/6, e−πi/6

]
connected to the bottom

[
0, e−πi/6

]
(if there is no such face, we set its location as e−πi/6).

(1) Recall Cardy’s theorem for the limit of the crossing probability in a general bounded simply connected
domain Ω.

Solution. It is in your lesson.

(2) Using Cardy’s formula, show that limδ→0 PTδ
[ℑ (W ) > h] = 1

2 − h for h ∈
[
− 1

2 ,
1
2

]
. Conclude that W

converges in distribution to the uniform variable on
[
e−iπ/6, eiπ/6

]
as δ → 0.

Solution. Let us remark that :

lim
δ→0

PTδ
[ℑ (W ) > h] = lim

δ→0
P

[
∃ white crossing from

[√
3

2
+ ih, eiπ/6

]
to

[
0, e−iπ/6

]]
Thus by Cardy’s formula, we have that :

lim
δ→0

PTδ
[ℑ (W ) > h] =

|eiπ/6 −
(√

3
2 + ih

)
|

1
=

1

2
− h.

This implies that ℑ (W ) is uniform in
[
− 1

2 ,
1
2

]
and thus, W is uniform on

[
e−iπ/6, eiπ/6

]
as δ → 0.

(3) Now consider the deformed triangle made out of two straight line segments from 0 to e±πi/3 and a third
segment connecting e±πi/3 through the parabola y2 = 9

4 − 3x between y = ±
√
3
2 . What is the hitting

distribution in this case?

Solution. Let us call T̃ the deformed triangle. Let us remark that

ψ : C → C
z → z2

sends T onto T̃ . Indeed, it is easy to see that the segments
[
0, eiπ/6

]
and

[
0, e−iπ/6

]
are sent on

[
0, eiπ/3

]
and

[
0, e−iπ/3

]
. Also if z =

√
3
2 + ih then ψ (z) = 3

4 − h2 +
√
3hi. Thus

ℑ(ψ (z))2 = 3h2 =
9

4
− 3ℜ (ψ (z))

which shows that the segment
[
e−iπ/6, eiπ/6

]
is sent onto the segment of parabola y2 = 9

4 − 3x between
y = ±

√
3
2 .
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Now, let us remark that Cardy’s formula tells us that the crossing probability is a conformal invariant.
This implies that the law of the hitting distribution is also conformally invariant, since

lim
δ→0

P
(
ℑ
(
W̃

)
> ℑ (z̃)

)
= lim

δ→0
P
(
∃ white crossing from

[(
1

3

(
9

4
− z̃2

)
+ iz̃

)
, eiπ/3

]
T̃

to
[
0, e−iπ/3

])
and we can then apply Cardy’s theorem. Let us denote by W̃ the hitting point for the deformed triangle
T̃ : the conformal invariance tells us that W̃ and ψ(W ) have the same law. Thus for z̃ in the segment of T̃
connecting e±πi/3,

lim
δ→0

P
(
ℑ
(
W̃

)
> ℑ (z̃)

)
= lim

δ→0
P
(
ℑ (ψ(W )) > ℑ

(
ψ(

√
3/2 + ih)

))
where we defined h by the relation z̃ = ψ(

√
3/2 + ih) and thus :

lim
δ→0

P
(
ℑ
(
W̃

)
> ℑ (z̃)

)
= lim

δ→0
P
(
ℑ (ψ(W )) > ℑ

(
ψ(

√
3/2 + ih)

))
= lim

δ→0
P
(
ℑ (W ) > ℑ

(√
3/2 + ih

)
= h

)
=

1

2
− h

Now let us remark that we have already seen that ℑ(ψ (z)) =
√
3ℑ (z) thus h = ℑ

(
ψ−1 (z̃)

)
= 1√

3
ℑ (z).

This implies that

lim
δ→0

P
(
ℑ
(
W̃

)
> ℑ (z̃)

)
=

1

2
− 1√

3
ℑ (z) .

This implies that ℑ
(
W̃

)
is uniform between

[
−

√
3
2 ,

√
3
2

]
, and thus

W̃ ∼ 1

3

(
9

4
− U2

)
+ iU

where U ∼ Unif
([

−
√
3
2 ,

√
3
2

])
.

Exercise 3. Crossing probability
Using the notations from Exercise 2 of last exercise sheet, we have seen that there exists C,α > 0 such that

pr,R ≤ C
( r
R

)α

.

Prove that there exists c, β > 0 such that

c
( r
R

)β

≤ pr,R

Solution. We need to prove that the probability is not too low : we need to prove that there exists an event E
which happens with a probability which is bounded by below by c

(
r
R

)β such that if this event happens then the
event r ⇝ R happens.

The solution is given by the drawing given below : we impose that there exists ∼ log
(
R
r

)
black circles in some

maximal concentric family of (squared-shape) annuli of similar ratio (ratio 3/1), and we impose that there exists a
top-bottom crossing in the vertical rectangle which upper side is the bottom of the square Ai, and which bottom
side belongs to the bottom of the square Ai+2 : this gives again ∼ log

(
R
r

)
crossings. Using FKG inequality, the

probability of this events is bigger than the product of the probability of each crossing. Since we consider crossing
events in similar shapes, we can lower bound each probability by a constant p > 0 (RSW inequalities) which allows
us to have a lower bound ∼ p2 log(R

r ) and gives us the lower bound c
(
r
R

)β ≤ pr,R with c, β > 0.



4


