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Exercise 1. Let X be a finite state space and P be the transition matrix of a Markov chain on X. Suppose that
P is reversible with respect to a probability measure π on X, i.e., it satisfies the “detailed balance” equation

π (x)P (x, y) = π (y)P (y, x) for all x, y ∈ X.

Prove that the distribution is stationary for the Markov chain : let (Yn)n∈N be a Markov chain associated with P
(i.e. P(Yn = yn| (Yi)n−1

i=0 = (yi)
n−1
i=1 ) = P (yn−1, yn) ), if the law of Y0 is π then for any n ∈ N, the law of Yn is also π.

Solution. Let us suppose that P is reversible with respect to a probability measure π on X. Then π (x)P (x, y) =
π (y)P (y, x) for all x, y ∈ X, and we can sum on x:∑

x

π (x)P (x, y) =
∑
x

π (y)P (y, x) = π (y)

since
∑
x P (y, x) = 1. Thus ∑

x

π (x)P (x, y) = π (y)

Let us remark that the left hand side is P (Y1 = y) when the law of Y0 is π and the right hand side is P (Y0 = y) .
Thus we just proved that P (Y1 = y) = P (Y0 = y) if f the law of Y0 is π. By induction and using the Markov
Property, we conclude that for any n ∈ N, the law of Yn is also π.

Exercise 2. Consider the Ising configurations σ : Ω→ {−1, 1} on a finite connected subset Ω of the square lattice
Z2. This is the probability measure

π (σ) =
1

Z
e−βH(σ)

where H (σ) = −
∑
i∼j σiσj and the partition function is given by Z = Z (β) :=

∑
σ e
−βH(σ). What are the resulting

measures on the state space {±1}Ω in the following limits?
1. β → 0,
2. β →∞,
3. β → −∞ (the anti-ferromagnetic limit).
Hint : e−βH(σ) penalizes configurations with high energy, i.e. with high H (σ). Also, notice how transformations

of the form H → H+ c, where c is a constant, don’t affect the measure : π(σ) = πH(σ).

Solution. Let us consider the different limiting regimes :
(1) β → 0: in this case, for any σ, e−βH(σ) → 1 and thus Z → 2Ω. Therefore π converges to the uniform

measure on the state space.
(2) β → +∞: this case is more tricky since e−βH(σ) → 1H(σ)>0 · 0 +1H(σ)<0 ·∞+1H(σ)=0. Let us also remark

that if there is any σ such that H (σ) < 0 then Z →∞, whereas if all σ satisfy H (σ) > 0 then Z → 0. All
this implies that one has to deal either with fractions like 0

0 or ∞∞ . Let us remark as well that if H (σ) ≥ 0 for
all σ and there exist some configurations with 0 energy, then it is easy to see that the measure π converges
to the uniform measure on the configurations of energy 0. It would therfore be nice if we could shift the
energy by a constant, but this is possible ! Let us remark that if H̃ = H+ c with c = R, then

ZH̃ =
∑
σ

e−βH̃(σ) =
∑
σ

e−β(H(σ)+c) = e−βcZH

and thus

πH̃ (σ) :=
1

ZH̃
e−βH̃(σ) = e−βH(σ)e−βceβc

1

ZH
=

1

ZH
e−βH(σ) = πH (σ) .

This proves that H + c defines the same probability on the configurations. Thus, we can consider, instead
of H, the hamiltonian H−minσ (H (σ)) =: H̃ which satisfies that :
(a) for any configuration H̃ (σ) ≥ 0,
(b) there exist configurations such that H̃ (σ) = 0, called the ground states, which are the two configurations

such that σx = 1 or σx = −1 ∀x.
In particular, this proves that when β → +∞, the measure converges to the uniform measure on the
two ground states.
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(3) β → −∞: we can do a similar trick by considering H −maxσ (H (σ)) and we can check that the measure
converges to the uniform measure on the configurations with maximal energy which are those such that
x ∼ y implies σx 6= σy (there are again two such configurations)

Exercise 3. The partition function Z = Z(β) of the Ising model at inverse temperature β on a finite connected
subset Ωδ of the square lattice δZ2 can be exploited to calculate physical quantities in the model.

(1) Show that the average energy 〈H〉 is given by:

〈H〉 :=
1

Z

∑
σ

H (σ) exp (−βH (σ)) = − ∂

∂β
lnZ.

Solution. It is a simple computation :

− ∂

∂β
lnZ = −∂βZ

Z
= − 1

Z

∑
σ

∂βe
−βH(σ) =

1

Z

∑
σ

H (σ) exp (−βH (σ)) = 〈H〉 .

(2) The entropy of a probability (p (σ))σ:Ωδ→{−1,1} is given by :

S := −〈ln (p)〉 = −E (ln (p)) = −
∑
σ

p (σ) ln (p (σ)) ,

Show that for the Ising model, Sβ is given by

Sβ = lnZ − β ∂

∂β
lnZ = −β2 ∂

∂β

(
1

β
lnZ

)
.

Solution. Let us compute the entropy:

Sβ = −
∑
σ

p (σ) ln (p (σ)) = −
∑
σ

e−βH(σ)

Z
ln

(
e−βH(σ)

Z

)
hence

Sβ = β
∑
σ

H(σ)
e−βH(σ)

Z
+
∑
σ

e−βH(σ)

Z
ln (Z)

or using the fact that Z =
∑
σ e
−βH(σ), we get Sβ = β 〈H〉 + ln (Z). Using the first question, this can be

expressed as

Sβ = ln (Z)− β ∂

∂β
lnZ.

A simple computation allow us to write

ln (Z)− β ∂

∂β
lnZ = β2

[
ln (Z)− β ∂

∂β lnZ

β2

]
= −β2 ∂

∂β

(
1

β
lnZ

)
hence

Sβ = −β2 ∂

∂β

(
1

β
lnZ

)
.

(3) We can define the free energy as F = −T lnZ, with T = 1
β being the temperature of the system. Show that

Sβ = −∂F
∂T

.

And that 〈H〉, also called the internal energy of the system, is equal to :

〈H〉 = F + TS.

Remark. The former equation says that the total energy is split into two parts, the TS part, linked to the
entropy of the system (quantifying how much it is disordered) and the second part F , the free energy, which
is the maximum amount of non-expansion work that can be extracted from the thermodynamically closed
system at fixed temperature (and pressure).

Solution. Using the chain rule, since ∂T
∂β = − 1

β2 = −T 2, we get that

Sβ = −β2 ∂

∂β

(
1

β
lnZ

)
= β2 ∂T

∂β

∂

∂T

(
− 1

β
lnZ

)
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is equal to

Sβ = − ∂

∂T
(−T lnZ) = −∂F

∂T
.

hence the result. By expanding, we see that:

Sβ = lnZ + T
∂

∂T
lnZ

hence
TSβ = −F + T 2 ∂

∂T
lnZ.

Since T 2 ∂
∂T lnZ = −∂β lnZ = 〈H〉 we get the formula:

〈H〉 = F + TSβ .

(4) Let us now assume + boundary conditions and recall the GKS inequality

〈σAσB〉δ,+β ≥ 〈σA〉δ,+β 〈σB〉δ,+β
where A,B are sets of vertices, and we used the notation E+

Ωδ
[−] = 〈−〉δ,+β and σA =

∏
x∈A σx. Using the

GKS inequality, show that
∂βE+

Ωδ
[σA] ≥ 0.

Solution. Let us first observe that
1

Z

∑
σ

H(σ)e−βH(σ) = − 1

Z

∑
σ

e−βH(σ)
∑
x∼y

σxσy = −
∑
x∼y
〈σxσy〉δ,+β .

Hence the result follows from the following computation, where the last inequality is a consequence of the
GKS inequality:

∂β 〈σA〉δ,+β = ∂β

(
1

Z

∑
σ

σAe
−βH(σ)

)

= −∂βZ
Z2

∑
σ

σAe
−βH(σ) − β

Z

∑
σ

σAH(σ)e−βH(σ)

= β

∑
σH(σ)e−βH(σ)

Z
·
∑
σ σAe

−βH(σ)

Z
− β

∑
σ σAH(σ)e−βH(σ)

Z

= −β
∑
x∼y
〈σxσy〉δ,+β 〈σA〉δ,+β + β

∑
x∼y
〈σAσxσy〉δ,+β = β

∑
x∼y

(
〈σAσxσy〉δ,+β − 〈σxσy〉δ,+β 〈σA〉δ,+β

)
≥ 0.


