EXERCISE SHEET 12

For exercises 1, 2 and 3, we consider the Ising model with + boundary conditions on the square lattice inside the open unit disc $\mathbb{D} \subset \mathbb{R}^2$. We denote by \mathbb{D}_{δ} the discretisation $\mathbb{D} \cap \delta \mathbb{Z}^2$.

Exercise 1. Low-temperature expansion

(1) Recall the partition function of the Ising model on \mathbb{D}_{δ} with + boundary conditions:

$$Z_{\mathbb{D}_{\delta},+} = \sum_{\sigma \in \{\pm 1\}^{\mathbb{D}_{\delta},+}} e^{\beta \sum_{xy \in \mathcal{E}} \sigma_x \sigma_y}.$$

Express Z using the low-temperature expansion, i.e. expand Z using the relation

$$e^{\beta\sigma_x\sigma_y} = e^{\beta} \left(\delta_{\sigma_x\sigma_y=1} + e^{-2\beta} \delta_{\sigma_x\sigma_y=-1} \right)$$

- (2) What is the expectation of a spin at a given site in terms of the low-temperature expansion ?
- (3) Show that there is $\beta > 0$ such that

$$\lim \inf_{\delta \to 0} \mathbb{E}^{\beta}_{\mathbb{D}_{\delta},+} \left(\sigma_{(0,0)} \right) \ge 0.99$$

Hint: We are looking at large β , hence you can use the previous question to obtain a lower bound on $\mathbb{E}^{\beta}_{\mathbb{D}_{\delta,+}}(\sigma_{(0,0)})$.

Additional hint if needed: $\mathbb{E}_{\mathbb{D}_{\delta},+}^{\beta}(\sigma_{(0,0)}) \geq 1 - 2\mathbb{P}(N > 0)$ is big because $\mathbb{P}(N > 0)$ is small, where N is the number of loops in the low temperature expansion which surrounds 0. It remains to count how many loops of size l surround (0,0).

Exercise 2. Coupling and stochastic domination

- (1) Recall the Markov Chain for the Ising model that you have seen in class (the Glauber dynamics).
- (2) Consider the following Heat Bath Dynamics :
 - (a) Pick a vertex x at random,
 - (b) Sample the spin σ_x at random by giving probability

$$\mathbb{P}\left(\sigma_x=1\right) = \frac{e^{-\beta \mathcal{H}\left(\sigma^+\right)}}{e^{-\beta \mathcal{H}\left(\sigma^+\right)} + e^{-\beta \mathcal{H}\left(\sigma^-\right)}}$$

where σ^+ and σ^- denote the configuration σ with the spin σ_x forced to be +1 and -1 respectively. Prove that the Ising measure is the invariant probability measure of this dynamics. *Hint* : check the detailed balance equation.

(3) There is a partial ordering between spin configurations $\sigma \in \{\pm 1\}^{\mathbb{D}_{\delta}}$: $\sigma \leq \sigma'$ if $\sigma_a \leq \sigma'_a$ for all $a \in \mathbb{D}_{\delta}$. Suppose that we start the chain at a common temperature $\beta > 0$ on two starting configurations $\sigma^0 \leq \sigma'^0$. Show that we can couple the two dynamics such that this ordering is preserved at each step of the Markov Chain, that is

$$\sigma^{n} \leq \sigma^{'n}$$

for all the time steps $n \in \mathbb{N}$.

Exercise 3. Monotonicity property for the boundary conditions

Show that if $\mathfrak{b}_1, \mathfrak{b}_2 \in \{\pm 1\}^{\partial \mathbb{D}_\delta}$ are boundary conditions such that $\mathfrak{b}_1 \leq \mathfrak{b}_2$ (which means that for any element x of the boundary $\mathfrak{b}_1(x) \leq \mathfrak{b}_2(x)$). Then the corresponding Ising measures satisfy:

$$\mathbb{E}^{\beta}_{\mathbb{D}_{\delta};\mathfrak{b}_{1}}\left(\sigma_{a}\right) \leq \mathbb{E}^{\beta}_{\mathbb{D}_{\delta};\mathfrak{b}_{2}}\left(\sigma_{a}\right)$$

for any $a \in \mathbb{D}_{\delta}$. *Hint* : Use the Markov chain dynamics seen in the previous exercise; the boundary spins remain unchanged.