
LATTICE MODELS SOLUTION SHEET 13 EPFL AUTUMN 2021

Exercise 1. High-temperature expansion and positive correlations

(1) Recall the high-temperature expansion of the Ising model.

Solution. The high-temperature expansion for the partition function and the insertion of two spins is :∑
σ

e−βH(σ) = (coshβ)
|E|

2|V |
∑
E∈C

(tanhβ)
|E|

∑
σxσye

−βH(σ) = (coshβ)
|E|

2|V |
∑
E∈Cx,y

(tanhβ)
|E|

where C and Cx,y are respectively the collection of edge sets such that every vertex is incident to an even
number of edges / every vertex is incident to an even number of edges except for x and y which are incident
to an odd number of edges (i.e. C is the set of set of loops and C is the set of set of loops with a path x→ y)
.

(2) Consider the Ising model on a �nite connected graph G without a boundary (i.e. with free boundary
conditions). Show that for any inverse temperature β ∈]0,∞[, we have

∀x, y ∈ G, E [σxσy] > 0.

Solution. We have that E[σxσy] =
∑
σxσye

−βH(σ)∑
σ e
−βH(σ) =

∑
E∈Cx,y (tanh β)

|E|∑
E∈C(tanh β)

|E| > 0 since every term in
∑
E∈Cx,y (tanhβ)

|E|

and
∑
E∈C (tanhβ)

|E|
are positive.

Exercise 2. Kramers-Wannier duality

Consider the Ising model on the lattice V = Z2 ∩ Ω with edge set E at the self-dual inverse temperature
βc = 1

2 ln
(
1 +
√

2
)
with free boundary conditions, where Ω is a bounded, connected open subset of the plane. Fix

two neighbouring vertices x and y ∈ V in the lattice, connected by the edge e = {x, y} ∈ E. Write C ⊂ 2E for
the collection of subsets E ⊂E such that every vertex is incident to an even (possibly zero) number of edges in E
(informally, E is a set of loops formed by elements of E). Similarly, write Cx,y for the collection of Ex,y such that
every vertex except for x, y is incident to an even number of edges in Ex,y, while x and y are both incident to an
odd number of edges in Ex,y. Write

Z (C) =
∑
E∈C

exp (−2βc |E|) =
∑
E∈C

(tanhβc)
|E|
, Z (Cx,y) =

∑
Ex,y∈Cx,y

exp (−2βc |Ex,y|) .

(1) Express the spin correlation Efree [σxσy] of two neighbouring vertices x, y in terms of Z (C) and Z (Cx,y).

Solution. The spin correlation Efree [σxσy] =
∑
σ σxσye

−βH(σ)∑
σ e
−βH(σ) , and using the high-temperature expansion

this gives :

Efree [σxσy] =
Z(Cx,y)

Z(C)

(2) Recall Kramers-Wannier duality.

Solution. The Kramers-Wannier duality can be formulated starting from an Ising model with free boundary
conditions (although it can be formulated also with more general boundary conditions) at arbitrary inverse
temperature β on the graph G = (V,E). The duality consists in obtaining an Ising model with + boundary
conditions at inverse temperature β∗ on the dual graph G∗ = (V ∗, E∗), where
(a) the parameter β∗ satis�es the relations

exp(−2β∗) = tanh(β) ⇐⇒ sinh(β∗) sinh(β) = 1,

which in particular implies that β∗(β) is decreasing in β and β∗(β) = β ⇐⇒ β = βc := 1
2 ln(
√

2+1),

(b) V ∗ is the set of faces of G (squares in Z2 ∩ Ω of side length 1) and E∗ is the set of dual edges (pairs
of faces sharing an edge in E).

Now the idea is simply to consider the high temperature expansion of the partition function Z of the
Ising model on G as the low temperature expansion of the partition function Z∗ of its dual model on G∗

using the observation that each element E ∈ C obtained in the high temperature expansion of Z corresponds

uniquely to the boundaries of the sign clusters of a spin con�guration σ∗ ∈ {±1}V
∗,+

on the dual graph G∗
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with + boundary conditions, such that the number of neighboring spins in σ∗ with opposite signs equal to
|E|. Hence we have that

Z = 2|V | cosh(β)|E|
∑
E∈C

tanh(β)|E| = cst
∑
E∈C

exp(−2β∗) = cst · Z∗,

where cst is a constant (i.e. it only depends on G), hence Z and Z∗de�ne the same probability measure on

C ∼= {±1}V
∗,+

.

Remark. At critical inverse temperature βc if one deals appropriately with the boundary conditions (e.g.
chosing periodic boundary conditions) and if one takes Ω groing to the full square lattice Z2 we have that
the dual model has the same limiting law as the original model (assuming also that this limiting law is well
de�ned), hence we sometimes call the critical Ising model �self-dual�.

(3) Now, write C = Ce∪C−e where Ce is the collection of E ∈ C with e ∈ E and C−e = C\Ce, then accordingly
decompose the sum Z = Z (C−e) + Z (Ce) . By Kramers-Wannier duality, we have a dual Ising model on
the faces of the lattice with plus boundary conditions. Suppose the two faces separated by e are denoted
f1,f2. Recall the low-temperature expansion: what are the probabilities

P+ [σf1 = σf2 ] , P+ [σf1 6= σf2 ]

in terms of Z (C) ,Z (Ce) ,Z (C−e) ? What is E+ [σf1σf2 ] ?

Solution. In the low-temperature expansion, we put an edge between two spins if and only if they disagree.

Thus, we must put an edge between f1 and f2 if and only if σf1 6= σf2 . Thus P+ [σf1 = σf2 ] = Z(C−e)
Z(C) and

P+ [σf1 6= σf2 ] = Z(Ce)
Z(C) . Now the value of E+ [σf1σf2 ] is given by

E+ [σf1σf2 ] = P+ [σf1 = σf2 ]− P+ [σf1 6= σf2 ] =
Z(C−e)

Z(C)
− Z(Ce)

Z(C)
.

(4) Note that there is a bijection from C to Cx,y : given E ∈ Ce, E\{e} ∈ Cx,y, and give E ∈ C−e, E∪{e} ∈ Cx,y.
This also means there is a one-to-one correspondence between the terms of Z (C) = Z (Ce) + Z (C−e) and
Z (Cx,y) . Express Z (Cx,y) in terms of Z (Ce) and Z (C−e).

Solution. We have

Z(Cx,y) =
∑

Ex,y∈Cx,y

exp (−2βc |Ex,y|)

=
∑
E∈C−e

exp (−2βc |E ∪ {e}|) +
∑
E∈Ce

exp (−2βc |E \ {e}|)

=
∑
E∈C−e

e−2βc exp (−2βc |E|) +
∑
E∈Ce

e+2βc exp (−2βc |E|)

which gives

Z(Cx,y) = e2βcZ(Ce) + e−2βcZ(C−e).

(5) We know that, as we take bigger and bigger Ω ∈ R2 , Efree (σxσy) and E+ (σf1σf2) both tend to a single
positive number µ. Compute µ by using above results.

Solution. We showed that

Efree [σxσy] =
Z(Cx,y)

Z(C)
= e2βc

Z(Ce)

Z(C)
+ e−2βc

Z(C−e)

Z(C)

and

E+ [σf1σf2 ] =
Z(C−e)

Z(C)
− Z(Ce)

Z(C)
.

Let us suppose that Efree (σxσy) = E+ [σf1σf2 ] we get the equation

Z(C−e)

Z(C)
− Z(Ce)

Z(C)
= e2βc

Z(Ce)

Z(C)
+ e−2βc

Z(C−e)

Z(C)
.

Let us remark that we also have
Z(C−e)

Z(C)
+
Z(Ce)

Z(C)
= 1.
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This results in a system of two equations with two unknowns, which solution is Z(C−e)
Z(C) = 2+

√
2

4 and
Z(Ce)
Z(C) = 2−

√
2

4 . Hence we obtain

µ =
Z(C−e)

Z(C)
− Z(Ce)

Z(C)
=

√
2

2
.

Exercise 3. β → 0 and boundary conditions

Consider the Ising model on the lattice Z2 ∩ [0, N ] 2. We impose respectively plus and minus spins on the
boundary vertices {−1}× [0, N ]∪ [0, N ]×{N + 1} and {N + 1}× [0, N ]∪ [0, N ]×{−1}. Describe the β →∞ limit
of the model.

Hint : in a previous exercises sheet, you already studied the β → ∞ limit of an Ising model with free boundary

conditions. Use the low temperature expansion to study the limit, and use a combinatorial argument to count

the number of con�gurations which remain as β → ∞ in order to compute the probabilities of the remaining

con�gurations.

Solution. We have already seen that the β → ∞ limit of this model is given by the uniform measure on the
con�gurations with lowest energy (Exercise 2 Sheet 11). We just have to understand what are these con�gurations
and how many they are. In order to do so, we consider the low temperature expansion : we draw edges separating
opposite spins and we get a representation of the spin con�gurations as edge sets E ∈ 2E

∗
(where E∗ is the set

of edges in the dual). The energy is given by 2|E|, and for any con�guration, we see a path from the left-bottom
corner to the right-top corner and some loops. For any lowest energy con�guration there will not be a loop since it
would only add more energy.

Thus we have the following combinatorial problem : if we have a square subdivided into N2 equal squares (N
rows and columns), how many shortest length edge-paths are there from the left-bottom corner to the right-top
corner ? Starting from the left-bottom corner, we either go up or right by one edge : we need to do N up moves

and N right moves. So there are

(
2N
N

)
such paths; a corresponding spin con�guration has plus spins above the

path and minus below.

As β →∞, Ising probabilities are uniformly distributed across the

(
2N
N

)
such con�gurations.


