
LATTICE MODELS SOLUTIONS SHEET 2 EPFL AUTUMN 2021

Recall that a simple random walk on a graph is called recurrent if it returns to the starting point with
probability 1, and transient otherwise.

Exercise 1. General knowledge
Let G be a general graph (hence locally finite for the scope of this course: every vertex has finite degree),

let v be a vertex of G and (Sn)n≥0 be a simple random walk starting at v. We denote by Pv the corresponding
probability measure.

1. Explain what a simple random walk on G is.

Solution. A Markov process which jumps at each time, independantly from the past, uniformly to one
of its neighbours.

2. Prove that (Sn)n≥0 is recurrent if and only if

∞∑
n=0

Pv (Sn = v) =∞.

Solution. We first prove that a simple random walk on G is recurrent if and only if the probability of
return to the origin is 1, i.e. if and only if the expected number of returns to the origin is ∞. If τnv is the
stopping time for the nth visit at v, we have

P (τnv <∞) = P
(
τnν <∞|τn−1ν <∞

)
P
(
τn−1ν <∞

)
= P

(
τ1ν <∞

)
P
(
τn−1ν <∞

)
,

where we used the Markov property in the last equality, hence by recurrence : P (τnv <∞) = P
(
τ1ν <∞

)
.n

If Nv is the number of visits at v, we also have the indentity

Nv =

∞∑
n=1

1{τnv <∞}

where 1{τnv <∞} = 1 if τnv <∞ holds and 0 if not. Therefore on the one hand we have

Ev (Nv) =
∞∑
n=1

P (Nv ≥ n) =
∞∑
n=1

P (τnv <∞) =

∞∑
n=1

P
(
τ1ν <∞

)n
=

P
(
τ1ν <∞

)
1− P (τ1ν <∞)

.

(In a shorter way, one can say that Nv is a geometric variable of parameter P
(
τ1v =∞

)
.)

And on the other hand we have

E (Nv) = E

[ ∞∑
k=0

1{Sn=v}

]
=

∞∑
n=0

Pv (Sn = v) .

This allows to conclude that
∑∞
n=0 Pv (Sn = v) =∞ if and only if P

(
τ1v <∞

)
= 1.

3. Let us suppose that G is connected and v, w are vertices of G.

(a) Show that the simple random walk on G is recurrent when started from v if and only if it is recurrent
when started from w.

Solution. Since G is connected (and locally finite), the probability that (Sn)n≥0 goes to w before
going back to v is strictly positive. Suppose Ek is the event that our walk started from v passes
through w during the k-th excursion from v before coming back the (k+1)-th time. By the Markov
property, Ek’s are independent and has the same non-zero probability. Therefore, an infinite number
of Ek happens: with probability 1 the walk from v passes through w infinitely many times.
Let us consider the random walk after it goes through w for the first time. Because of the previous
discussion, it visits w an infinite number of times, but it has also (by the Markov property) the same
law as the random walk which starts at w. So we conclude that the simple random walk on G is
recurrent when started from w.

1



Solution. Other solution : we know that there exists an integer k such that we can go from v to w
in k steps. Then for any n ≥ 2k, if we consider the paths which go from w to v in k steps, then do
n− 2k steps and come back to v then k steps to come back to w, we get:

Pw (Sn = w) ≥ Pw (Sk = v)Pv (Sn−2k = v)Pv (Sk = w)

which after summation gives :∑
n

Pw (Sn = w) ≥ Pw (Sk = v)
∑
n

Pv (Sn−2k = v)Pv (Sk = w) =∞

which allows to conclude.

(b) Show that if the simple random walk (Sn)n≥0 on G is recurrent when started from v, then for any

vertex w of G, Pv (∃n, Sn = w) = 1 and Pw
(
∃n, S̃n = v

)
= 1 where ( ˜Sn)n≥0 is a simple random

walk on G starting at w.

Solution. The first assertion was proven in the proof of the previous point 3.(a). For the second, by
the result of 3.(a), w is also recurrent, thus we can apply the first assertion and permuting the role
of v and w: this gives us the second assertion.

4. Show that a simple random walk on a finite graph is recurrent.

Solution. We can restict ourself to the case where G is finite and connected. The walk must be somewhere
in G at any time n thus

∑
v∈G 11 (Sn = v) = 1, and therefore∑

n∈N

∑
v∈G

11 (Sn = v) =∞.

Yet,
∑
n∈N

∑
v∈G 11 (Sn = v) =

∑
v∈G

∑
n∈N 11Sn=v =

∑
v∈GNv = ∞, where Nv is the number of visits

to v. Since G is finite, there exists w such that Nw = ∞ with a positive probability. If we consider
the random walk conditionned to visit w (which is possible since we know that Nw = ∞ and therefore
P (∃n, Sn = w) > 0), the law of the walk after the first visit to w is the simple random walk which starts
at w. It visits w infinitely many times as the simple random walk is recurrent when started from w and
because of the part 3. the simple random walk is recurrent when started from any vertex of G.

5. Show that a simple random walk (Sn)n≥0 on Zd is recurrent if and only if

∞∑
n=0

P~0
(
S2n = ~0

)
=∞.

Solution. This is due to the fact that for any integer n,
∑d
i=0 S

i
n has the same parity as n. Thus Sk = ~0

can be true only if k ∈ 2N. One concludes using the point 2.

Exercise 2. Universality of the recurrence for random walks on Z
Consider a random walk on Z defined using identically independant jumps : Sn = Z1 + · · · + Zn (Zi are

i.i.d. Z-valued random variables). Let us suppose that Z1 satisfies E (|Z1|) <∞.

1. Prove that if E (Z1) 6= 0 then Sn is transient.

2. What is the derivative of φ (t) = E
(
eitZ1

)
at 0 ? Give the Taylor expansion of φ (t) at 0 at order 1.

3. Using the previous point, prove that if Z1 is symmetric (−Z1 has the same law as Z1) then Sn is recurrent.
Hint: use the derivation using the Fourier transform as seen in the lesson.

Solution.

1. Without loss of generality, suppose E (Z1) = µ > 0. By the law of large numbers Snn
a.s.→ E (Z1). Therefore,

∀ε > 0,

P (∃N > 0,∀n > N,Sn < n(µ− ε)) ≥ P
(
∃N > 0,∀n > N,

∣∣∣∣Snn − µ
∣∣∣∣ < ε

)
= 1

Therefore, taking ε = µ
2 gives P

(
∃N > 0,∀n > N,Sn <

nµ
2

)
= 1. Hence Sn almost surely only visits any

integer finitely many times.
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2. Using the derivation under the integral (which holds because E (|Z1|) <∞) we have φ′ (0) = iE (Z1) and
so the Taylor expansion is

φ (x) = 1 + ixE (Z1) + o (x) .

3. For this question, we refer to the lesson for the whole solution. Let P1 be the law of the jumps of Sn (thus
the law of Z1). Using the lesson, we know that

(a) in order to show that Sn is recurrent, we prove that
∑
k r

kP (Xk = 0) −→
r→1
∞,

(b)
∑
k r

kP (Xk = 0) =
∑
k r

kF−1 (F (Pk)) (0), where Pk (·) = P (Sk = ·), and F and F−1 are respec-
tively the Fourier and the inverse fourier transform,

(c) P̂k = ˆP ?k1 =
(
P̂1

)k
where f̂ = F (f),

(d) P̂1 (ξ) = F (P (Z1 = ·)) (ξ) =
∑
n e

inξP (Z1 = n) = E
(
eiZ1ξ

)
(e) thus

∑
k r

kP (Xk = 0) = 1
2π

∫ π
−π
∑
k r

kE
(
eiξZ1

)k
= 1

2π

∫ π
−π

1

1−rE(eiξZ1)
dξ.

(f) As
∑
k r

kP (Xk = 0) is real we automatically have 1
2π

∫ π
−π

1

1−rE(eiξZ1)
dξ ∈ R . Furthermore, as Z1 is

symmetric, the intergrand E
(
eiξZ1

)
∈ R. Therefore the dampening factor r does imply convergence,

justifying the previous swapping of the intergral and sum.

(g) The only possibility for the divergence of this integral (as r → 1) is when E
(
eiξZ1

)
= 1, that is when

ξ = 0. Actually, we only need to understand the nature of the integral :

1

2π

∫ π

−π

1

1− E (eiξZ1)
dξ.

Let us remark that E
(
eiξZ1

)
≤ 1 thus the integrand is positive : we only need to consider the integral

1

2π

∫ π

0

1

1− E (eiξZ1)
dξ.

Using Point 2 of this exercise, this integral is of the form

1

2π

∫ π

0

1

1− 1− iξE (Z1) + o (ξ)
dξ =

1

2π

∫ π

0

1

o (ξ)
dξ

where we recall that the integrand is positive. This allows us to conclude : there exists ε > 0 such
that for any ξ ≤ ε, 0 ≤ o (ξ) ≤ ξ thus 1

o(ξ) ≥
1
ξ on [0, ε] and thus

1

2π

∫ π

0

1

o (ξ)
dξ ≥ 1

2π

∫ ε

0

1

ξ
=∞.
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