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Exercise 1. Neumann boundary conditions and Dirichlet boundary conditions
Let us consider the square A = [|1, n|]× [|1,m|] in Z2, and its boundary ∂A which is the set of vertices in Z2 \A

adjacent to a vertex of A. We define the normal derivative at y ∈ ∂A as :

∂nf (y) = f (x)− f (y) ,

where x is the unique neighbour of y in A. We denote by ∂A, ∂A|, ∂A and |∂A the 4 parts of the boundary,
respectively the lower horizontal, the right most vertical, the upper horizontal and the left-most vertical parts of
∂A.

(1) Prove that the problem 
∆f (x) = 0 in A
f (y) = 0 on ∂A
f (y) = 1 on ∂A
∂nf (y) = 0 on ∂A| ∪ |∂A

has a unique solution if any.
(2) Let us consider the simple random walk on A∪∂A (x ∈ A and y ∈ ∂A are linked by an edge if y is adjacent

to x in Z2, two points of ∂A are not linked by an edge). Is τ∂A∪∂A, the hitting time for ∂A ∪ ∂A, finite
almost surely ?

(3) Give an explicit formulation of the unique solution of the discrete PDE in terms of random walks. What is
the difference with the pure Dirichlet conditions ?

Remark. We used a mix of conditions in order to have a finite stopping time. Yet, one can solve the Neumann prob-
lem with pure Neumann boundary conditions. In this case, the boundary conditions must satisfy some additional
conditions for a solution to exist, and the solution is unique only up to a constant. This is slightly more technical.
(Section 6.7 of https://www.math.uchicago.edu/~lawler/srwbook.pdf)

Remark. Actually we considered a rectangle for simplicity, but one can do the same with any discretisation of any
domain Ω with 4 points marked on the boundary in counterclockwise order a, b, c and d and with Dirichlet boundary
conditions on [a, b], [c, d] and Neumann conditions on [b, c], [d, e]. Then the solution would be the imaginary part
of the discretisation of the conformal mapping which sends the domain Ω to a rectangle [0, L]× [0, i] (for some L)
which sends a, b, c, d to the corners of the rectangle.

Exercise 2. Green’s function represented with determinants

The goal of this exercise is to prove that if x1, · · · , xn ∈ A and Ak = A \ {x1, · · · , xk} then
GA (x1, x1)GA1

(x2, x2) · · ·GAn−1
(xn, xn)

is independant of the order of x1, . . . , xn.

Remark. For this exercise sheet, we will consider :

∆f (x) = f (x)− 1

deg (x)

∑
y∼x

f (y)

in order to avoid minus signs (this is the opposite of the definition in the lesson).

(1) Recall that we can consider ∆ to be a linear operator ∆A : RA → RA, where RA is the space of real
functions on A ∪ ∂A such that f|∂A = 0. Show that :

GA (x, x) =
det ∆A\{x}

det ∆A
.

Hint. Think about Cramer’s rule for describing inverse matrices.
(2) If x1, · · · , xn ∈ A and Ak = A \ {x1, · · · , xk}, give the value of

GA (x1, x1)GA1
(x2, x2) · · ·GAn−1

(xn, xn)

and prove that it is independent of the order of x1, · · · , xn.

Exercise 3. Determinant of Laplacian and uniform spanning trees : Kirchhoff’s theorem
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Remark. If M is a matrix, we denote by M i,j the matrix obtained by deleting the i-th row and j-column of
M . We also denote by M i,. the matrix obtained by deleting only the i-th row of M . The cofactor deti,j M is
(−1)

i+j
detM i,j .

Let G be a connected graph with n vertices and m edges (here an edge is a couple of vertices, in particular, we
do not consider the case where two vertices are related by two or more edges). Recall that a spanning tree of G is
a connected subgraph of G with no loop and which covers all vertices of G. Let us give a unique number between 1
and n to each vertex and a unique number between 1 and m to each edge. For this exercise, we denote by ∆̃G the
matrix defined by:

∆̃G(i, j) = δi,j deg (i) + (δi,j − 1) δj∼i,

where 1 ≤ i, j ≤ n denote vertices of G and deg(i) is the degree of i.
We will prove Kirchhoff’s theorem :

Kirchhoff’s theorem : # {spanning trees of G} = deti,j
(

∆̃G

)
Actually, we will only show that # {spanning trees of G} = det1,1

(
∆̃G

)
, the general case can be deduced using

elementary linear algebra arguments.
(1) Let the n ×m incidence matrix E such that the only non zero elements are given by the following: if the

k-th edge goes between i and j and i < j then Eik = 1 and Ejk = −1. Show that ∆̃G = EEt, where Et is
the transpose of E.

(2) Show that ∆̃1,1
G = E1,.

(
E1,.

)t
.

(3) Prove that m ≥ n− 1 i.e. the matrix E1,. has a horizontal shape more than a vertical shape.
(4) Recall the Cauchy-Binet formula which says that if A and B are two matrices of size l × k and k × l then

det (AB) =
∑

S⊂[k],#S=l

det
(
A[l],S

)
det
(
BS,[l]

)
where [k] = {1, . . . , k}, AS,[k] is the matrix obtained by chosing the rows in S and the columns in [k]. Use
this formula to show that

det ∆̃1,1
G =

∑
S⊂[m],#S=n−1

det
((
E1,·)

[n−1],S

)2
.

(5) What represents a choice of S ⊂ [m] in the original graph G ? We want to show that S forms a span-
ning tree of G if and only if det

((
E1,·)

[n−1],S

)
= ±1, and if it does not form a spanning tree then

det
((
E1,·)

[n−1],S

)
= 0.

(a) Show that if S is not a spanning tree, then there exists a cycle in S.
(b) Show that if S is not a spanning tree then det

((
E1,·)

[n−1],S

)
= 0.

(c) Let us suppose that S is a spanning tree. Consider the vertex 1 and an edge e in S connected to 1 and
to a vertex i. Prove that

det
((
E1,·)

[n−1],S

)
= ±det

((
E1,·)

[n−1]\{i−1},S\{e}

)
.

(d) Conclude that if S is a spanning tree, then det
((
E1,·)

[n−1],S

)
= ±1.

(6) Prove Kirchhoff’s theorem.
(7) How do you write the number # {spanning trees of G} using the Laplacian ∆G ?


