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Exercise 1. General knowledge

(1)

Let h be a harmonic function on C. Prove that there exists a holomorphic function f such that h = R (f).
Hint : Prove that if f exists, f'(w) = 0;h—i0yh. Use the fact that a holomorphic function can be integrated.
Conclude.

Solution. We consider A a harmonic function on C. The strategy is to define f such that f(0) = h(0) by
finding an holomorphic function 0, f and setting

FE =00+ [o.f)a

where v is any path going from 0 to z, and where the integral is well defined by holomorphicity of 0, f.
If f is a holomorphic function with real part h and imaginary part g, then
2.0,f = 0xf —i0yf = (Oxh + 0yg) +i(0rg — Oyh)
Moreover if f is a holomorphic function it satisfies the Cauhy-Riemann equations or equivalently
0=2.0zf =0, f +i0yf = (Ozh — 0yg) + i (0zg + Oyh)

Thus

0.f = 0zh —i0yh
Hence we have a candidate for 0, f given by 0,h — i0yh.
With this definition 9, f is holomorphic since

1 ‘ ‘ 1 1
0:0-f = 5 (9x +0y) (uh — i0yh) = 5 (02h+ 92h) = 5Ah=0.

Thus f defined above is holomorphic as it is the integral of a holomorphic function.

Finally f has real part R(f) = h since f(0) = h(0) and 0,h = 0,R(f) and d,h = J,R(f). But the
holomorphicity of f implies that 0, f = 0, f = i0, f, hence we have 9, 2R(f) = R(0,f) = R(0.f) = Ozh and
similarly, 0,R(f) = R(0y f) = R(i0. f) = =3(0. f) = Oyh.

Let A = AU OA be a connected finite graph and let w = x e—> 1 — ... — T, be a non-self-interesecting

€2 €n
path in A such that w N dA = {x,} . Describe the set of paths I' = I'(w) in A such that if v € T' the loop
erased path obtained from v is w. What is the difference between paths in I' and trajectories of RW from
xo stopped at first visit in JA and such that the corresponding LERW is w?

Solution. Let w = 29 — 21 — ... — x, be a non-self-interesecting path. Any path ~ such that the loop
erased path obtained from < is w is of the form :

YiXo—>Top > Tl —>T1 T2 ... > Ty —> Tp
Lo el 01 e2

€n n

where /; is a loop in A\ {zo,...,z;—1} based at ;.

If w is a sample of the LERW from z( to x, € A stopped at first visit in JA, then the corresponding
random walk trajectory is of the form of v above with the additional constraints that ¢; is actually a loop
in A\ {zo,...,2;_1} and ¥, is the empty loop.

The Laplacian random walk (LARW) started at v is the law of a walk started at v whose first step consists
in choosing a neighbour w ~ v with probability
HA\{U} (U), 814)

wau HA\{”} (U), aA)
and if it already did k steps vy, ..., v, then the next step is to choose a neighbour w ~ v, with probability

Hav(o ..oy (0, 04)

wav HA\{Ulw-»Uk} (w’ 8A)

where we recall that H is the harmonic measure.

(a) Similarly to the previous question, characterize the set of paths I' ending on 9A such that if ¥ € T, the

loop erased path obtained from v begins with w = xg = 1 — ... = .
e1 e2 ek

1



Solution. A path v isin I" if it is of the form

YTy —>Tyo—>T1L—>T1 2Ty~ ... > Tk Y
Lo ey 01 ez ek ™

where ¢; is a loop in A\ {zg,...,x;—1} based at z; and 7 is a path from zj to any y € A which is in
A\ {zg,...,xx_1} except for the last point.

(b) Consider the next step that a LERW and a LARW have to take after doing k steps, and prove that
LERW and a LARW have the same law. Hint : in order to understand the first k steps of a LERW ~,
we need to consider the whole path ™ which finishes on A and such that the loop erased path associated
to m is . Use the previous question to describe the set of such 7.

Solution. We need only to consider the next step that a LERW w do after doing k steps x1,...,x,. The
probability that it goes to k41 is
1
P(wgt1 = Tpy1|wr =21, .. wp = xf) = p(y
(@ | ) P(wy =x1,...wp = xf) Z_ ()
Y LERW ()11, k+1)=(1,.- -, Thy1)

1
- P(wlz.’ljl,...wk:xk) Z p(PY)

Y Xo—>TO—T1>T1—>T2—>...Tk —> Tk41 Y
£o ey 21 eg €k+1 ™

where we have the same conditions as above for the loops and paths (in particular 7 only hits 9A at its
endpoint y and does not hit {xg,...,z;}) and where p (v) is the probability that the simple random walk
follows 7. Considering only the parts which depend on x4, and using the notation ~ to say that it is
proportional to (with the same constant for any xp.1), we have:

P(wpi1 = zppilor =21, ccop =)~ Y p() ~plamae) Y, p()~ Y p(Y)

T — Tk-*—l‘)y zk-f-l‘}y xk+1‘>y
ept+1 ™ B ™

where we recall that m goes fom x1 to y and only hits A at its endpoint y and does not hit {zo, ..., zx}.

But the last expression melﬁyp (7) is precisely Ha\ {z,.....2} (Th41,0A) , hence

P(wk+1 = xk+1|w1 =T1,..-Wp = .Z‘k) ~ HA\{zo,...,zk} (l‘k_;,_l, 814) .

This allows us to conclude.

Exercise 2. New proof of Wilson’s theorem & New proof of Kirchhoff’s theorem.
Let us consider a finite connected graph G with n + 1 vertices. We will allow us to use generalizations (to any
finite connected graph) of the results proven last week.

(1) Show that under Wilson’s algorithm, the probability of obtaining a spanning tree T' by starting at the root
vertex vp = x then visiting the other vertices in the order vy, ... v, is
Ga, (v1,v1) Ga, (v2,v2)  Ga, , (Un,vn)
deg (v1) deg(v2) ~  deg(vn)
where A; = V (G) \ {vo,...,v;} and G4 stands for the Green function for A. Hint : simply consider the
first branch of the tree, and consider the probability that a loop erased random walk gives this branch.

Solution. We only need to consider the first branch of the tree, the rest is done similarly. Thus we
need to understand the probability that a LERW stopped when hitting vy is equal to w = v — ... —

el €r—1
v = vg. We have seen that the set I' of paths of the simple random walk whose loop erasure gives w is

I'=2L,, (G\{vo}) .11 €-Lo,+1 (G\ {vo,v1,...,v;}) where the product denotes the concatenation of paths
and L, (A) is the set of loops in A based at v. Thus

P(LERW (y) =w) =Y p(7)
yel

where p () is the probability that the simple random walk follows 7, and the 4 on the Lh.s. is a simple
random walk. Using the description of I' and the multiplicativity of p:

P(LERW (7) = w) = > )] pler) > p(l2) ] ...p(ex1) > P ()

Zleﬁvl (G\{’Uo}) EQGL‘W2(G\{’UQ,’U1}) Zkellvk (G\{'uo,vl,...,vk_l})



Recall that

Z p (1) = GV(G)\{UQ} (v1,v1)
€Ly (G\{vo})

> p (L)

L €Ly, (G\{vo,v1,...,v5-1})

Gv(G)\{vo,v1,vn_1} (Vs Vi) -

Besides, p (ey) is the probability that a simple random walk starting at vy goes to vgy; after one step : it
is equal to m. Thus, we get the desired result:

G G G ., Uk
P(LERW(’}/):W): Ao (1}1,1}1) Ay (U27U2) Ar-1 (Uk Uk)
deg (v1) deg (v2) deg (vy)
By running the rest of Wilson’s algorithm, we get the formula for the probability of obtaining a spanning
tree T' by starting at the root vertex vy = x then visiting the other vertices in the order vy,...v, :

GAo (’Ul,’U1) GA1 (UQaUQ) GAn—l (Unavn)
deg(vi)  deg(v2) ~~°  deg(vy)

(2) Prove Wilson’s theorem, i.e. Wilson’s algorithm samples uniform spanning trees.

Solution. Recall that in the Wilson’s algorithm, we have considered an order on the vertices and the
algorithm follows this order when it has to pick a new starting point for the LERW. Given that this order
is denoted by vy, ..., v, (and vg is the root) we just proved that :

GAO (vla 1)1) GAl (’UQ; UQ) GAn—l (Un; Un)
deg (v1)  deg(vz) =~ deg(vn)

But for an other tree T”, it will also visit all the vertices of G but in an other order : vi,...,v},. Using the
(generalization) of the result of exercise 2 last week we get:

P (Wilson’s algo samples T') =

Ga, (v1,v1) Ga, (v2,v2)  Ga,_, (Un,vn)
deg(v1)  deg(vz) ~  deg(vn)
GA}, (v, 1) GA’1 (vg,v3) GAQL,l (U5 v)
deg (vy)  deg(vp) deg (v7,)

= P (Wilson’s algo samples T")

P (Wilson’s algo samples T')

This proves that Wilson’s algorithm samples a uniform spanning tree.

(3) Prove Kirchhoff’s theorem, i.e

# {spanning trees of G} = H deg (v;) det (Aél) ,
i=1

where Ag is the Laplace operator on G.

Solution. If we have a finite set 2, and if P is the uniform probability, for any w € 2,

1

= Za

Thus, since Wilson’s algorithm samples a uniform spanning tree, and since we know P (Wilson algo samples T),
we get that

P (w)

1
(Wilson algo samples T')

# {spanning trees of G} = P

which is equal to

n n -1
] deg (v:) (H Gag_y (vi, Ui)) :
=1 =1



By the results of last week, and using the same notations, the latter expression is equal to

f[l deg (v;) det (Aél)

which allows to conclude.



