
LATTICE MODELS SOLUTION SHEET 9 EPFL AUTUMN 2021

In this exercises sheet, when we talk about vertex percolation, we consider the vertex percolation on the triangular
lattice. Recall that the vertex percolation on the triangular lattice can be seen equivalently as a face percolation on
the hexagonal lattice : if you consider the dual graph of the triangular lattice, you get the hexagonal lattice, and
every vertex becomes a face.

Exercise 1. Duality

(1) Show that the probability in bond percolation at p = 1
2 on Z2 restricted to the rectangle [0, n] × [0;n + 1]

that there is a crossing from top to bottom is exactly 1
2 .

Solution. This is almost what you have seen in the lesson, except that one has to use the dual percolation.
Indeed, in the vertex percolation (or face percolation) you cannot have a black crossing from top to bottom
and a white crossing from left to right. But in the bound percolation, you CAN have a crossing from top to
bottom of black (labelled by 1/present/open) edges and a crossing from left to right of white edges (labelled
by 0/absent/closed).

What can prevent us from using open edges to go from the top to the bottom : there must be a lot of
closed edges that canot be used to go further down. These edges forms a sequence of closed edges going
from left to right were two consecutive edges are contained in a common squared face: this gives a path of
open edges in the dual percolation going from left to right. Thus we just saw that :
(a) either there exists a crossing from top to bottom of open edges
(b) or there exists a crossing from left to right of open edges in the dual percolation,
and the two events have no intersection.

But we saw that the dual percolation is a 1/2-percolation, and the graph is exactly the same as Z2

restricted to the rectangle [0, n] × [0;n + 1]. Using the symmetry of the square we deduce that the two
events have the same probability : the probability in bond percolation at p = 1

2 on Z2 restricted to the
rectangle [0, n]× [0;n+ 1] that there is a crossing from top to bottom is exactly 1

2 .

(2) Suppose we have a discretisation of a simply connected domain Ω with smooth boundary. Mark three distinct
points a, b, c on ∂Ω (in clockwise order). Using duality for the vertex percolation at p = 1

2 , show that the
probability that there is an open cluster which connects all three boundary segments [a, b] , [b, c] , [c, a] is 1

2 .
Hint : think about how we proved the first point... (but now in the context of vertex percolation)

Solution. We need to find two events E and F such that :
(a) E is the event that there is an open cluster connecting all three boundary segments [a, b] , [b, c] , [c, a],
(b) for any realisation of the percolation, either E or F happens,
(c) E ∩ F = ∅ ,
(d) P (E) = P (F) because of some symmetry property.
You should then think that maybe since we are considering the vertex percolation (and not the bond
percolation), we do not think about the dual graph, we will find F directly by considering the percolation
on the discretisation of Ω. Then thinking about the lesson (either black crossing up down of white crossing
left right), we should consider

F = there is a white cluster which connects all three boundary segments [a, b] [b, c] [c, a] .

And actually either E or F happens, and they can not happen at the same time by the following observation:
if there is no open cluster connecting all three boundary segments, then there is one segment, say [a, b],
for which all the clusters of open vertices connected to it do not touch both [b, c] and [c, a]. Considering
the outermost such open cluster C (relative to [a, b]), and assume without loss of generality that it doesn’t
connect to [c, a]. Then the white cluster bording it away from [a, b] must touch [a, b] and [b, c] (since so
does the cluster C) as well as the segment [c, a] (since otherwise C wouldn’t be outermost relative to [a, b]).
Besides, since we are considering the p = 1

2 case, we can flip all the white in black without changing the
probabilities : P (E) = P (F). Thus P (E) = 1

2 .

(3) In the same discretisation, prove that the two following events (in the vertex/face percolation) have the
same probability (black lines mean black connection, red lines mean white connection)

1



2

Figure 0.1. The events E1 and E2

Solution. Actually the two events are equal E1 = E2. Indeed, trivially E2 ⊂ E1. Now let us suppose
that there exists a crossing (i.e. we are in E1). Let us consider the rightmost black crossing : it defines a
right part of Ω, denoted by Ωr. In Ωr, either there exists a top-bottom black crossing or a left-right white
crossing. But we took the rightmost crossing : there can not exists a top-bottom black crossing ! Thus
there exists a left-right white crossing in Ωr: this proves that E1 ⊂ E2.

(4) For the vertex percolation at p = 1
2 on a plane, define events Ek, k = 1, . . . , 5 as in the figure below (solid

lines mean white connection, dashed lines mean black connection). Show that

P (E2) = P (E4) =
P (E1)− P (E5)

2
and P (E3) =

P (E1) + P (E5)
2

Hint: Prove that E1 = E2 ⊔ E3 and then E1 = E2 ⊔ E4 ⊔ E5.

Solution. Let us follow the steps proposed in the hint :

(1) Let us prove that E1 = E2 ⊔ E3: in order to do so, we use the same argument as in the previous question.
Indeed, we consider the right most black top-bottom crossing : it defines Ωr a right part of Ω. In Ωr either
there exists a black left-right crossing or a white top-bottom crossing (this proves the first equality in the
hints). Now in the case that there exists a white top-bottom crossing, this white top-bottom crossing defines
a new right part of Ω, denoted by Ωr. In Ω, either there exists a top-bottom black crossing, or a left-right
white crossing. Yet since we considered at the begining the right most black top-bottom crossing, the first
case can not occur : this proves the second equality given in the hint. Putting everything together, this
proves that E1 = E2 ⊔ E3.

(2) Let us prove that E1 = E2 ⊔ E4 ⊔ E5. Let us remark that E3 = E4 ⊔ E5 since in the left part, either there
is a white crossing from up to bottom, of there is a white crossing from left to right : this is exactly what
represent E4 and E5.

(3) Let us remark that by self-duality argument (ie we exchange black and white), P (E2) = P (E4).
(4) Thus P (E1) = P (E2) + P (E4) + P (E5) = 2P (E2) + P (E5) : this implies that

P (E2) =
P (E1)− P (E5)

2

and since P (E1) = P (E2) + P (E3) , we have that

P (E3) = P (E1)− P (E2) = P (E1)−
P (E1)− P (E5)

2
=

P (E1) + P (E5)
2

which allows us to conclude.
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Exercise 2. Arzela-Ascoli theorem
We will use the same notation as in the lectures :

H1
δ (z) = P 1

2
(a black path disconnects {a1, z} from {a2, a3})

where we consider the vertex percolation at p = 1
2 on the triangular graph Ωδ, and a1, a2, a3 are anti-clockwise

ordered points on the boundary ∂Ω (and z is here the middle of a face since, in the lesson, z is a vertex of the
hexagonal lattice). You have seen in the lesson how to deduce the following Hölder estimate:

|H1
δ (x)−H1

δ (y) | ≤ CdΩδ
(x, y)

α
,

where dΩδ
is calculated by taking the length of the shortest path between x and y in Ωδ. Our goal is to use this

estimate to extract a limit for
(
H1

δ

)
δ
. For this, we extend the discrete function H1

δ defined on faces of Ωδ to a
continuous function defined on Ω ∪ ∂Ω by piecewise linear interpolation.

(1) Recall Arzela-Ascoli theorem.

Solution. We will only give the version we need for the exercise : let (fn)n∈N defined on a compact subset Ω
of R2. If this sequence is uniformly bounded and equicontinuous, then there exists a subsequence (fkn

)n∈N
that converges uniformly.

(2) Show that
(
H1

δ

)
δ

is uniformly bounded. Hint : this can be done using the estimate above, but it makes more
sense to go back to the definition.

Solution. Let us remark that H1
δ is a probability (to be more precise, it is a probability on the vertices of

the hexagonal lattice) : it is thus bounded between 0 and 1.

(3) Show that the above Hölder estimate implies that the family
(
H1

δ

)
δ

is equicontinuous.

Solution. It is a well known fact that any family of functions which are Hölder continuous with a constant
which does not depend on the function is equicontinuous. Yet, there are two small points which have to be
tackled :
(a) we are considering functions which are piecewise linear interpolation, but the Hölder inequality was

proven for x and y on the vertices of dual hexagonal lattice (i.e. on the faces of the triangle graph).
(b) In the Hölder estimate, we used the distance dΩ which is the length of the shortest path between x

and y in Ω and not the usual distance.

Remark. Which linear interpolation do we use ? In some sense we do not care, the only important
thing is that the value of H1

δ on the vertices of the hexagonal dual lattice stay the same. For exemple,
each vertex v of the triangular lattice is a face f of the dual hexagonal dual lattice : we define the value
on this vertex as the mean of the values on the vertices of f in the hexagonal latice. If you consider
the dual vertices and the vertices of the triangular graph, you see that the domain is now discretized
by a smaller triangular lattice and we know the values of the function Hδ

1 on each vertex : we can
now linear interpolate in each small triangle.

Solution. Yet, the goal of the lecture is not to be too technical : for the first point, if you can control
a function at a lot of points you control its linear interpolation. For the second point let us remark that
given a fixed x, dΩ (x, y) → 0 as |y − x| → 0 : thus for any vertex x of the hexagonal graph, you can find a
neighbourhood of x such that dΩ (x, y) is small on this neighbourhood, and thus a neighbourhood of x such
that for any vertices y of the hexagonal graph |H1

δ (x)−H1
δ (y) | is (uniformly in δ) small.

(4) Deduce that we can extract a limit in
(
H1

δ

)
δ
.

Solution. The family is equicontinuous and thus we can extract a limit using Arzela-Ascoli.


