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Abstract
In this paper we prove global existence and uniqueness for solutions of the
3-dimensional Navier-Stokes équations with small initial data in spaces which are
HY% in the i-th direction, &; + dy + 3 = %, —% <0 < % and in a space which is L?

1
in the first two directions and B3, in the third direction, where H and B denote
the usual homogeneous Sobolev and Besov spaces.

Résumé
Dans cet article on montre 'existence et 'unicité globale des solutions des
équations de Navier-Stokes tridimensionnelles pour des données initiales petites
dans des espaces qui sont H% dans la i°™¢ direction, &; + s + 03 = %, —% <0 < %
1

ou dans un espace qui est L? dans les deux premieres directions et B; , dans la
troisieme direction, ou H et B sont les espaces de Sobolev et de Besov homogenes
habituels.

Introduction

In this paper we study the problem of global existence and uniqueness for so-
lutions of the 3-dimensional Navier-Stokes equations. These equations are the
following;:

oU+U-VU-vAU = —-VP
(N-S) divU(t,-) = 0 forall t>0
U|t:0 — U().

Here, U(t, z) is a time-dependent three-dimensional vector-field.
The goal of this work is to solve these equations in the spaces

1 1 1
HOW2% 5+ 0y + 63 ==, —= <3 < =,
1+ 02 + 03 5" T 5
and in the space
HB"3



where the first space is H% in the i-th direction and the second space is L? in

the first two directions and Bé ; in the third direction, where H?, respectively
B; ,, denote the usual homogeneous Sobolev, respectively Besov, spaces. We are
using homogeneous spaces because they are more easy to handle in the case of
the Navier-Stokes equations and, in addition, they are larger than the classical
ones, so we obtain more general results.

By solving (N-S) in the space X we mean proving the global existence and
uniqueness of solutions for small initial data in X and the local existence and
uniqueness of solutions for arbitrary initial data in X.

The first paragraph is devoted to the study of the spaces H*°>%3 essentially
the proof of a product theorem in these spaces. A somewhat similar theorem was
proved by M. Sablé-Tougeron in [I0] for the Hormander spaces.

The second paragraph contains the resolution of (N-S) in

1 1 1
01,02,03 ) ) Ja= —. —— < O < —.
H , 01 + 02 + 03 5" T3 <5

The methods used here are inspired from a paper of J.-Y. Chemin and N. Lerner

(see [A]). The case when one of the §; equals i is important but it cannot be

studied through our results because H %(R) is not an algebra. This difficulty is
partially avoided by replacing H %(R) with Bi 1(R) which has the property to
cancel this critical case. And this is how we come to solve (N-S) in the space
HB*% during the third paragraph. The same method of replacing H® with Bj,
may be used in the resolution of general hyperbolic symmetric systems. These
systems can be solved in the space H*(RY), s > % + 1 but the case s = % +1

cannot be proved unless we replace H $+ with BQ% Tl(a short proof is given in the
Appendix).

Finally, the last paragraph makes a comparison between this article and the
results which are known. We shall see there that the space H B%0%3 is not imbed-

3
ded in any of the spaces introduced by H. Kozono and M. Yamazaki in [&], ./\/’p_,ql,;g,
provided that 1 < ¢ <p < %, p > 3. We are not able to prove an imbedding or
a nonimbedding if p > %. The space H°192% is also interesting if we remark, for
instance, that we allow negative values for ;.

The results of this article can be easily extended to an arbitrary dimension,
here we consider R? only for sake of simplicity. In fact, if we work in R?, we can
solve (N-S) in the spaces

d 1 1
01,02, ,04 ) K et ) =——1. —— < < =
H 9 1+ 2+ + d 2 9 2 (3 27

and in the space

(SIS

HBY "

where the first space is H% in the i-th direction and the second space is L? in the

Y

1
first n — 1 directions and B3 in the last one. For instance, we can solve the 2D
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Navier-Stokes equations with small initial data in H%™%, 0 < § < %, that is in a
space of functions which are not square-integrable.

1 Study of the anisotropic spaces and prelimi-
nary results

We work in R® and we denote by T = (1,79, 73) the variable in R3. If g =
(¢1,92,q3) € Z* and 5 = (s1, 52, 53) € R? then we define -5 = q151 + q252 + ¢353.
Also, if X = (A1, Az, A3) then we note X = | Aq|*|A\a]*2|As).
< o0
Lot }

Let
and /P be the analogous space for sequences. Also, when p = ¢ = r we shall note
PP = (P and LPPP = [P, If u is a function u : (0,7) x R® — C then we note

LP = [ropers — {u such that ||u/ .z & H||u(x1,x2,x3)||Lg§

2]
L5

def
lullze. oy = [llw(t, )| Lo o)

The order of integrations is important, as the following remark shows it:

Remark 1.1 Let (X1, 1), (Xo,pe) be two measure spaces , 1 < p < q and
f: X xY —R. Then

H”f(a x2)||LP(X17u1)HL‘I(X27M2) < HHf(l’l’ ')||Lq(X27M2)HLP(XLM)'

Indeed
1
p
st = (|, e )
L4(X2,p2) X1 LP (X2,u2)
1
p
< ([ o], an) = i,
Xi LP (X2,u2) LP(X1,p1)
The Holder and Young inequalities for the £7 spaces take the form:
1 1 1 .
1f9llz < [fllzzllgll = where o a Vie{1,23}
and
1 1 1 .
15 % gllew < 171 Nl e where 14 = = 2+~ Vi€ {1,2,3).

We can prove a variant of the Littlewood-Paley lemma for the £7 spaces:

3



Lemma 1.1 If
supp it C B(0,7A1, 70, 7As) = {€ € R such that |&1| < i, |&] < rhg, €] < rhs}

and a1 < by, as < by, a3 < by, @ = (aq, ag, a3) is a multi-indez, then

4 L1 o4l 1 .y 11
18%ull 5 < CAL T TIATT T AT T |y

Proof
Let ¢ € CP(R), ¢ equal to 1 near the ball of center 0 and radius r, g =
F (). Then
N SEPL S TP TN
and thus

u(@) = Mdes [ g(umn)g(ape)g(ays)ula — y) dy.

R3
Differentiating and using Young’s inequality ends the proof.

Before introducing our functional spaces let us recall that the homogeneous
Besov spaces are defined to be the closure of compactly supported smooth func-
tions under the norm

def
Bpq —

2| Al

Ju

The need of taking the closure of compactly supported smooth functions comes
from the fact that the quantity above is only a semi-norm since the "norm” of
a polynomial vanishes. Another way of defining these homogeneous spaces is
to take equivalence classes of distributions modulo polynomials and to remark
that we obtain in that way a real norm. For further details on Besov spaces
(homogeneous or not) see [12].

Definition 1.1 We denote by H*'*>*% = H? the closure of compactly supported
smooth functions under the norm

def

def
‘u’51»32:53 -

luls =

1G]

2’

The space H*'**>*3 is a Banach space of distributions if sy < 1/2, so < 1/2
and s3 < 1/2.

We denote by ¢ a dyadical partition of unity in R, that is a smooth function

supported in the ring of center 0, small radius %, large radius % and such that



S gez W(279€) = 1 V€ # 0 (see [1], [6]). Define
A, =$(27'Dy),

Se= 2. Ay
p<q-1
Sﬁ = Sq1,q27q3 = 5’;13325337
Aﬁ = A!I1,¢I27Q3 = Aél Ai Agg,,
S¢ = Seqa
Ay = Syi1— S,

The following lemmas are easy to prove:

Lemma 1.2 Ifu € H?® then

[uls ~ 27 | Azull 12

02

Lemma 1.3 If up is a sequence of functions such that

1 1 1
supp iy C {2“ < lal <27, —27 < Gl <2, — 2% < 6] < wm}
ot ot ¥

and
|27 sl 2|, < o0,
then
=Y uy € Moo
p
and

(Ul aysp.55 < C |27 [l .

e’
If s; > 0 it is enough to assume that

1 1
supp iy C {I&I < 2P, =27 <G| <4272, —2P <G| < 72’”3}-
Y 8
If s1 > 0 and sy > 0 it is enough to assume that
1
supp 5 C {|§1| <27 |&of <272, 27 <G < 72,)3}‘
v

If s1 >0, s >0 and s3 > 0 it is enough to assume that

supp tp C {[§1] < 720, |Gof <4272, |&5] < 4272}



The next theorem studies the problem of products in the H?*23 spaces.

Theorem 1.1 Let u € H®, v € H' such that s; <
i€ {1,2,3}. Then

1 1
97 tz < 927 82+tl > 07

and

Proof We shall give a proof which imitates the argument for the classical Sobolev
spaces. This will be done by introducing 3-dimensional paraproduct operators.
We recall the definition of Bony’s decomposition:

ww = T(u,v) + R(u,v) + T(u,v),
where
T(u,v) = Z Sq—1u Agv,

R(u,v) Z Apul v,
lp—q|<1

T(u,v) = T(v,u)

(see [1], [6]). It is well-known that T : H*(R) x H'(R) — H*""2(R) is well-
defined and continous if s < % The same is true for R if s+t > 0. Here we use
the analogous of this decomposition:

ww = (T* + R* + TY(T? + R? + T*)(T% + R* + T°%)(u, v)

understood as the sum of 3% terms. The definition of each term is a straightfor-
ward extension of the classical paraproduct and remainder. The reader may

give the definition of each term; we give, for instance, the one of the term
T'R*T3(u,v) :

T'R*T%(u,v) Z >SN A u AL A LSS .
i=—1 p

We shall prove that each of the 3% operators we find is continuous
H§ % Hf N HE-&-E—(%,%»%)’

under weaker hypothesis than those given in the theorem. More precisely, the

conditions to assume are given by the composition of the term in the following

manner: if the term contains 7% then we have to assumme s; < % if the term



contains R’ then we have to assume s; +t; > 0; if the term contains T then we
have to assume ¢; < 3. For instance if we want the term T LR2T3 to be continous
then we have to assume that s; < %, So+ 1ty > 0,13 < % This term is the most
difficult to handle so we prove the assertion only on it. We have

TlRQT3 (u,v) Z Zw

i=—1 p

where .
w;’—)zsl A2 AS uAl Af,
Using several times the anisotropic form of Hélder’s inequality, the definition of

the operators S' and S? as well as the anisotropic Littlewood-Paley lemma (1))
one can show that

2— Zsps 1Y

a2
‘ L2 <27 Pll2,1,2
L 1 2 3 1 2
<22 HS A A u‘ 00,2,2 A APQ Z8103 1?}‘52200
2 1 A2 A3 2 3
S 2 ? HA A A ‘ 00,2,2 ApQ ZA [£2,2,00
r1<p1—2
1”3<p3 2 (11)
a2 L
22 4% ALl A2 A3 2 3
S 2 2 Z 2 ? ? A7’1 AP2APS AP2 1A
r1<p1—2
r3<p3—2

Let us introduce B
ag = 277 || Agul| .

and o
by = 27 | Agul]

Since s; < % and t3 < 3, inequality ([l.1) implies

i 2 5p1(L—s1—t1)9—p2(s2+t2) op3 (% —s3—t3)
|Aqug] . < c2Famiamomm2 27257557 gl 1Ep il -
2)
whence
g-(3+t—(5,%,3))
2 21272 Aq Bl 2

) (81t — 1) v (gr—pa) (8 +ta— L —o)(s
< Pl g)lismps)(sstts =) glaz—pe)(satia) ozl 110912 —imsllez - (1-3)
Since |p1 — q1] < 1,¢2 < pa, [ps — g3 < 1 we obtain

2D g T

S C Z Z Z 2(I2 ~P2){eatta) HapHe? ”bphpz 'Lp3||£2 :

i=—1 [p1—q1|<1 P2>q2
Ips—gs|<1



Taking the £2 = norm gives

)
)

|75 | AT BT, )|

2|p2
L eQ17Q3

1
SOY Y 2w D ol by il
i=—1p2>q2
Taking the 622 norm, applying Young’s inequality and using that so+to > 0 yields

1

LEOY

i=—1

235G | AT R w0

HaﬁHgglypg prl,pri,psl‘ﬁ

L2 P1,P3

o,
Finally, Holder’s inequality implies

|7 A AT BT, )

ol < Cllasllz 115l

that is B
|T1R2T3 (u,v) |§+E—(
This completes the proof.

) < Clulslvl.

111
2272

We shall now adjust this study to the case of the spaces HB®*%2% = HB®
defined as the closure of compactly supported smooth functions under the norm

[u| g = o

27 (| Agull

02,2,1°

Remark 1.2 In this definition, when we apply the (>*' norm, we first take the

0t norm and afterwards the others, but all the work we do is valid for the spaces
HB obtained by appling the (> norm in an arbitrary manner. We choosed this
order because, according to remark [I.1, this space is the largest.

Remark 1.3 For all real numbers sy, o, s3 the space H B® is strictly included into
the space H®. Moreover, HB?® is a Banach space of distributions for s; < 1/2,
S < 1/2 and s3 < 1/2.

The lemmas [.2 and [.3 will modify in an obvious way, only the product theorem
is relevant for the (N-S) equations.

Theorem 1.2 Let u € HB®, v € HB' such that s; <

i€ {1,2} and s3 < %, ts < %, s3+t3 > 0. Then

%, ti<%, s; +t; > 0,

w € HB¥ (333

and
< C|U|HB?

|UU|HB§+?7(%,%,%> V| g -

oo



Proof
The proof is almost identical to the preceding one, the modification, which

allows us to take into account the case s3 = % or 3 = 1 is that the classical

2 2
paraproduct 7" : B3, (R) x Bj ;(R) — B;J;t (R) is well-defined and continous if

s < % Hence, we shall prove that each of the 3* operators is continous under
the same assumptions as above, with the modification that if a paraproduct in
the third direction is involved, then we can allow s3 or t3, depending on the
paraproduct, to be equal to % The only problem in the proof is that at the end
we have to commute some norms which give raise to the wrong inequality. We

have to restart from inequality ([L.1])
i a2 T ’“3
forui, <2% 5 23

T3 <p3 2

AL N

p2—1

ALAZLAS L ]|A)

(1.4)
Recall that
ag = 277 || Aqul| 2
and )
by = 277 | Agoll..
We use that |p; — ¢1] < 1, |ps — ¢3| < 1 to rewrite the last inequality as

94 g-(5+t—( 5 % )5) HA_w_ < 02(52-1-152)((12—;02)

L2

x Z 2(7“1 —3121)(%—81)-|-(T3—2?3)(%—tB)CLTl’pQ’p3 bp17p2_i’7,3 (15)

r1<p1—2
r3<p3—2

Now we sum on ¢, p and g3 to obtain

ZQ@(M—(%,%,%)) HA?TlRQTB(“’”)Hp <C 21: S glet)@r)

i=—1p1—gi<1

p2>q2
_ 1_ o 1_ 4
DL DD DI L
r1<p1—2 p3 r3<pz—2
(s2+t2)(g2—p2) Z r1—=p1)( .
< O Z Z 2 2 ||aT1,P2,P3||£11J3 ||bp17p2—1,7"3||z;3
t==1|p1—q1]|<1 r1<p1—2
P2>q2
(s2+t2)(q2—p2) )
S C Z Z 2 ”aﬁ pz,p3||£1 ||bp17p2—z7ra||e;3

i==1|p1—q|<1
p2>q2

Since |p; — ¢1| < 1, applying Holdér’s inequality gives

WWH%%WATWWWMB%Q
3 qu

(1.6)

<C zl: Z 9(s2+t2)(g2—p2)

i=—1p2>q2

||ap17p27p3 Hz})g » H ||bp1,p2—i,p3 Hz]l)
p1

3] p2
2,



Using that g2 < po and applying Young’s inequality yields
|73 D) AT R w0,

<CZ

i=—1

£2,2,1

lampoally |, [1bmoncinl |
P1

D 1
1 épz

Finnaly, we apply Hélder’s inequality to obtain
|27 G2 | AT RT3 (u, )|

2llpen = < C lapy paps 221 110519205 [l 2,21 5

which implies

\T1R2T3(u,v)\HBm_(%,%,%) < Clulgpslv| g -

This completes the proof for T*R2T?.
Since the third variable plays a special role in the definition of the H B spaces,

we show how the same estimates can be modified for other terms. We consider
first the term T'R?R?. We have

T'R*R*(u,v) Z S,

7]__1 p
where
1 2 A3 1 A2 3
zf —S AL AS w AL A AT .
As above, we deduce the followmg inequalities
i L5 i
Hquﬁ L2 <22 “p £2.1,1
92 a3
L2449 2 A3 1 A2 3
<237 H p1— 1A A s U £00,2,2 A APQ ZAps JU’£222
L4+% 1 A2 A3 1 A2 3
<22 ’ HA A A ‘ﬁoo,2,2 A Apz 1AP3 —J ’52,2,2
r1<p1—2 (17)
243 1 2 A3 1 A2 3
§22 : Z 22 TlAPQA;Ds A APQ lAPB —J7 2"
r1<p1—2

Since |p; — ¢1| < 1, it follows that
9T (5+t— (3:33)) HA Z < (2(s2+t2)(a2—p2)+(s3+t3)(93—p3)

(r1—p1)(3—s1) ) )
X Z 2 2 Qry p2.,psOpy pa—ips—j-
r1<p1—2

Now we sum on ¢, 7, p and g3 to obtain

1
ZQQ G+t—(3.2.1) HA TIRZRS(U v HL2 <C Z Z 9(s2+t2)(92—p2)

t,j==1|p1—q1|<1
P2>q2

X Z 2(“71’1)(%781)2 Z 2(83+t3)(qgﬁp3)am7p27p3bp1,p2—i,p3—j

r1<p1—2 q3 p3>q3

10



Applying Young’s inequality gives
+t
Z Z 2(soHta) (3= pg)an,m,psbphm —ips—i < Cll@ry o psOpy po— upa”gl

q3 p3>q3

<C Har1,p2,p3|le;3 prl,pri,p3||ezl73

It follows that

> 27 Gaa)) | AT R2 R (u, )|, < C Z S olett)(ep)
a3 L i=—1|ps g1\<1
p2>q2

— 1_
X Z 2(7”1 pl)(2 «1) Harl,p2,1ﬂ3|’€},3 ” P1,p2— l,PS”Zl S C Z Z 2(52+t2)(Q2 ~P2)

r1<p1—2 i=—1|p1—q1|<1
P2>q2

Harl,pz,p3|’£;3 531 ”bpl,pzfi,p:aHg;S .

Since |p; — ¢1| < 1, applying Holdér’s inequality gives

LQ

HH2§~(§+t %%%>HA T R2R3(u, v)‘ .
a3

2
ZQI

||ap1,p2,p3 ||e1

<C Z Z 9 (s2-+t2)(g2—p2)

i=—1p2>q2

il | -
101 P1
This inequality is similar to ([[.§), so we can continue likewise to obtain the result
on T'R?R3. N

Finally, we give the proof for the term T'T?R3. As above we have

T1T2R3 (u,v) Z Zap,

i=—1 p

where

= S) A2 AD wALS2 AR .

p p3—1

As above, we deduce the following inequalities

a3
‘ Pllr2 — <2 Pl|r2,2,1
3 2 3 3
< 2% H A2 NS uH b1 S 1880 o
a3
< 2% HN A2, A3 AL AZAS v
L£00,2,2 p3—1 [2,00,2
r1<p1—2
ro<pa—1 (18)
a3 Tl T'2
= + = 1 2 3 2 3
<2% Y 23t E AL AL AL | ||a),A%A8 o .
r1<p1—2
ro<p2—1

11



Since |p1 — ¢1| < 1 and |ps — ¢o| < 1 it follows that

97 (5+1—(5.3:3)) HA?}% < (C2(s3+13)(a3—p3) Z o (r1=p1)(5—s1)+(r2—p2) (3 —t2)

L2
r1<p1—2
r3<p3—2

X Gy py psOpyra ps—i-

Now we sum on 7, p and ¢3 to obtain

3 97 5+t (5.3.3)) HA§T1T2R3(U, v)
4

LQ

Sci S Y ameeG e p(ht)

i=—1|p1—q1|<1r1<p1—2
[p2—q2|<17T2<p2—2

(s3+t3)(g3—ps3) A
X E : E : 2 Qry p2,p3Op1 ra ps—i
q3 p3>q3

Applying Young’s inequality gives

§ : § : (s3+t3)(g3—p3) ) )
2 a?"hpz,psbpl,m,p?ﬁl S C ‘|a’7‘1’p27p3bp177'27p3*7fH£1173
q3 P3>qs3

<C Haﬁ,pz,p:sng;)s ||bp177”27p3||£%)3 .

It follows that

L2

Z 97 (5+t=(3,33)) HA6T1T2R3(U7 v)
a3

<C Z Z 2(7’1*Pl)(%*81)+(T2*p2)(%*t2)

[p1—q1|<1r1<p1—2
|p2—q2|§1 ro<p2—1

X ”an,pz,psHe;l)?’ prlﬂ'Q:pSHZzl)S

<C

|p1—q1|<1
[p2—q2|<1

||(1r1,p27p3||£]103 531 ||bp1,r27p3|‘£%)3 622'

2

Using again that |[p; — ¢1| < 1, |p2 — ¢2| < 1 and taking the e oo

norm yields

< Cllagll ez 1105l 221

02.2,1 —

295G AT T2 B, 0)

L2

that is

T T R? (u, U)\HB@,;_(%,%,%) < Clulgps|v] gt

This completes the proof.
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2 Resolution of (N-S) in the H**2*3 spaces

Let —1 < & < 3,1 € {1,2,3}, 61 + 0 + 65 = 5. Then there exist nonnegative

numbers aq, as, ag such that

1 1
0<dita<y Vie{l,23}anda +ay+a3= (2.1)

0

(one can choose a; = ; — %). We shall prove the following theorems:

Theorem 2.1 (global existence and uniqueness) There exists C > 0 such
that if divug = 0, ug € H° and |ulz < Cv then the (N-S) equations have a unique
solution in ~ B

L*(]0, 00 H**™) N L*(]0, 00[; H°).

Moreover, the solution satisfies u € C([0, 00[; Hg).

Theorem 2.2 (local existence and uniqueness) If divuy = 0 and ug € HO
then a time T >0 and a unique solution of (N-S) on [0,T] exist so that

we L0, T[; H**™) nc(o, T[; HO).

The uniqueness is proved at the end. The global existence is proved in the same
time with the local existence. In fact, we shall prove a better result valid for the
space Hp defined as the closure of compactly supported smooth functions under
the norm

def
lulls =

290

LA(L2) |2

Theorem 2.3 Let divug =0 and ug € HO. Then there exist T >0 and a solution
of (N-S) on [0,T] which verifies u € Hr.

Remark 2.1 We have Hy — L*(]0, T[; H**7).
Indeed, from remark [.] we infer

27 1 Agull 2

1ull L go,rpem) = ’

< HH?E'M)AW

02 L4

L3.(L?) 2
= [lulla,-

Proof of theorem
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We approach uy with the sequence uj = S,ug, where S, is the classical S,
in R®. Let u, be the local regular solution of (N-S) with initial data uj (for the
existence of u,, see [6], [I1]). For each n we apply Az at (N-S) and we multiply
by Agu, to obtain:

d
AUz + V[V AGuA | < O| < Ag(unVun) | Agun > |
= C| < Az(div(u, ® uy))|Agun, > (2.2)
The localization of the Fourier transform of Azu,, enables us to say that

2 2 2
IV Agun 72 = 1018qun 172 + 10287172 + |05 Ag1a |72
> C4% || Agu, |12, + C4% || Agu, |13, + C4% || Agu,||3
= C(47 + 4% + 49) || Agu, |32

Moreover, we have from Theorem [L.1 that if u,, € H**®, then u,®u, € HX+%7(3:3:3).
Thus we can write

div (u, ® uy,) Z wj,

where
|w1|23+25,(%7%7%) < Clup, ® “n|2§+2af(%,%,é) < C|un|§+a7

(W2 l55425-(3,3,1) < Cltn @ tnlygy05- (1 1,1y < Clunlf, 5,
|w3|23+25,(1 L3 < Cluy ®Un|23+2a (3,11 < C|un|§+a'

It follows that

27272 2’2’2
| < Ag(un Vun)| Aquy >| < € (277CHG22) 4 977 CF(3:2)

12 PG g Aqua | 2 a2,

97-(20+2a—(%,1.1)) | A || 12 97 (20+2a—(5,5.3)) | Agws|| L2

q
ALy |wal5540q 4

7272)

L 2O Ayl

|wslo540a—(1,1,2)

s0 [lag(7)||,2 < 3 V7. Using this in (2.9) leads to

d
Tl Anllze + Cr(4® +4% +4%) | Agu, 1.
<C (275.(2&2@(3,%,%)) 4+ 9@ (25+2a—(3,5:3)) 4 2%-(2&254%,%,3)))

aq’un’&pHA unHL2
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By Gronwall’s lemma we have

[Azun ()| L2 < || Aqugl|r2 exp(=Cr (4" + 4% + 4%)t)
_I_ C (2 Q(26+2a (27272)) _I_ 2 (26+2a (27272)) + 2 q (26"’_2@ (%7%7%)))

t
x /0 exp(—Cr(A® + 4% +42)(t — 7)) ag(7) Jua (1) 2,5 dr. (2.3)
Taking the L*(0,7) norm and using Young’s inequality gives

1 AGun(E)l] 3 12y < OV 5 (4% + 4% 4+ 4%) 75 | Agug]| 2

X <1 —exp(—CvT((4" 4+ 4 + 4q3)))> !
+C (2—5.(2&25—(%,%,%)) 4+ 9@ (20+2a—(3,5,3)) 4 2—§~(2S+2a—(%,%,g)))

X |lexp(—=C (4" + 4% 4 4%)(-))[| 4 $ o) Haq‘un‘(H,a”Lz (0,7)

N

< OVTH(Am 447 + 4%) | Agug | 12(1 — exp(—CvT (A7 + 47 + 47)))
—i—C’u’% (275-(254&67(%,%,%)) 49 7-(20+-2a— (5,5,5))+275~(25+257(%,%,g)))

_3
X (4 + 4% +49) 75 ||aglu,[3, o[l 20,0
Young’s inequality along with relation (2.1]) imply

27a — 9q101992429G303 < 2&122(11 + 2a222q2 + 2a322q3 < (4q1 4% 4 4(13)

2q1(1——(a1+61))2q2(3 H (a2+52))2qs(3 2 (a3+33))

2 1 2 1 2

1—- 01))2" + (= — = 02))22 + (= — = 03))2%

<( 3(a1+ 1) (3 3(a2+ 2)) (3 3(a3+ 3))
2 + 2(12 + 21137

and two similar inequalities. Therefore

(47 + 4 +4q3)*i < 9-da

276'(234’267(%7%7%)) (2(]1 + 2(]2 + 2q3> % 275'(23+267(%7%7%))

% 9~ 5(@((1.3.5)-3@+39)) _ 9-7@+d)

2_6'(234_26_(%7%7%)) (2‘11 + QQ2 + 2q3) % 2_6'(25+26_(%=%7%))

% 2~ 3(T((3:.1,3)-3@+8)) _ 9-a-@+d)

)
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2*6'(234&5*(%,%,%)) <2q1 4942 4 2q3)—% < 97 g-(26+2a—(3,3.2))
w 9-3(@((5,3.0)-3@+9)) _ 9—7@+d)
It follows that

27D || Agun| g 2y < Cv 427 A 2
1
x (1 exp(-Cor(an + 47+ 49))) 4O Haglun ol (24)

Taking the ¢? norm gives
1

litnll e < vt ||27%) Agu| 2 (1 — exp(—CuT (4% + 4% + 4%))) !

£2
+ Cv i |Jun(7)

<UL (T) + Ov™ i ||,

HL4 ]0 T 'H5+a (25)

where

Fu(T) = C |27 | Agquiy | 12(1 — exp(—CVT (4% + 4% 4 4%)) )

e’
We shall need to have f,(7") small. In order to obtain that, we use Lebesgue’s
dominated convergence theorem. The particular form of u( implies

|Aqug ||z < [[AgSnuol|r2 < [|ShAgquol|r2 < ||Aguol| 2
and the estimate
290 || Agu || 12 (1 — exp(—CrT (4% 4 4% 4 4%)))7 < 279|| Agug| 12

fulfills the domination requirement since the right side is an ¢ sequence that is
independent of T" and n. As for the pointwise convergence, for fixed § one has

27| Aqug |32 (1 — exp(—CrT (A" + 47 + 47)))3
<Jugl5(1 — exp(—CvT (4" + 4% + 49)))1 I=20 ¢,

So, by Lebesgue, %irr%) fu(T) = 0 uniformly with respect to n. We choose T small

enough such that f,(7T) <
follows that

ic» where C' is the constant from inequality (2.5). It

3
V4 3
lwnllerr < 57 + OV lJunllz,
We deduce that |[u,|/z, <% ”4 if we take into account that ||uy,| g, is continuous
in T, ||un|lg, =0 and



This allows us to take the limit and to find the existence of the solution on [0, T'].

Proof of the global existence
We start again from inequality (B.5) and we estimate f,,(t) < Clugls. We find

in the same way the existence of a solution in L*(]0, oo[; H°*%). Next we prove
that such a solution belongs to L>(]0, co[; H?).

We start again from inequality (B.3), we apply the L* norm and making
similar computations we find

G0 a0 _1
270 || Agu]| e 1) < C27° || Aquoll 2 + Cv 2 |aglul?,, pon. (26
Taking the ¢? norm yields
_1 2
[l e ooy < [0ls + Cv % (ull o sorism) (2.7)

Finally, the continuity in time follows from Lebesgue’s dominated convergence
theorem since the map ¢ — ||Aguy,||,. is continous and the domination require-
ment is given in relations (B.6) and (B.7).

Let us now prove the uniqueness.

Theorem 2.4 (uniqueness) Let u; and uy be two solutions of (N-S) which be-
long to the space L*(J0, T[; HO*®)NC([0, T[; H°) with the same initial data in H°.
Then u; = us.

Proof
We subtract the equations verified by u; and us to obtain:

O(uy —ug) — vA(uy — ug) + uy - V(ug — ug) + (ug — ug)Vug = V(p1 — pa2).
The same computations as in theorem P.3 yield
Jur = u2HL4(]07t[;HE+a) < Cllus — u2”L4(]07t[;H3+6)

X (g go.gagomy + 102l oo gpom ) -

Thus, if ¢ is small enough, we have

1
Jur — U2HL4(]0¢[;HE+E) < 5”“1 - u2”L4(]0’t[;HE+a)7

so we get local uniqueness that is global uniqueness, since the map ¢ — |lu; —

u2||L4(]07t[;HE+a) 1s continous.

17



3 Resolution of (N-5) in the H B*1*2% spaces

Let us introduce the spaces HBr, s, .55 = HDBrps defined as the closure of
compactly supported smooth functions under the norm

def

HQagAaU

||u||HBT,p,§ LE.(L2) ]| 2,21 .

As for the H? spaces we shall prove a theorem of global existence and uniqueness
and a local existence and uniqueness one. Let a and b be two positive real numbers
such that a + b = 3.

Theorem 3.1 (global existence and uniqueness) There exists C > 0 such
that if divug = 0, uy € HB*%2 and |ul , po0.y < Cv then the (N-5) equations
have a unique global solution which belongs to

1

HB 41 NL7(]0,00[; HB""2) N ([0, 00[; HB*2).

Theorem 3.2 (local existence and uniqueness) If divug =0 andug € H BY0.3
then there exist T >0 and a unique solution of (N-S) on [0, T]| which belongs to
HBTA,CL,b,% N C([O, T[’ HB0,0,%).

Remark 3.1 We have HBy,,, 1 — L*(]0,00[; HB*"2).

Indeed, remark [T implies

a3
HUHL“(}O,OO[;HB“’b’%) - HHququH ’ HAEUHLZ 22104
< HHqua—l-ng—i-%g ||A§u||[,2 L4221

- ||u||HBT,4,a,b%'

We first prove

Lemma 3.1 Let s; < %, i < %, si+t; > 0Vie {12} s3< %, tz3 < %,
sz +t3 >0 and p,q > 1,7‘2% > 1. Then
HUU‘|HBT7T7§+;7(%%7%) < HUHHBT,p,E ’UHHBT,q’;'

18



Proof

We shall copy the proof of theorem [[.2 and prove this lemma for each of the
27 terms of the Littlewood-Paley decomposition. Let us take, for instance, the
T'R?T? term. We start again from inequality (@)

HA@U}%@ ’ 72 ; 2T21+ 7"1A1202A23u(t)‘ A12°2 1A3 ( )‘LQ'
rZhs 2

Taking the L"(0,7") norm and applying Holder’s inequality gives

; _2 r1+r3 1 2 3 1 2 3
HAawﬁ(t ‘Lr (L?) <27 Z 27 ArlApzApsu( LE(L2) ‘A APQ ’A ( )‘ Li(L2) "
r1<p1—2 !
r3<p3—2
If we define o
Aa = 2(]'5 HAEUHU%(LQ)
and

Ba = QQ't ||AEU’||L%(L2) y

it follows that

< (090 (s1=5)+(s2+2) (g2—p2) +a3(ts—3)

PG A
L;(L2) -

1 1
ri(z—s1)+r3(5—t3) )
X E: AR 27 Ar paps Bpr pa—isrs

r1<p1—2

r3<p3—2
This inequality is entirely similar to ([[.L§) so the proof continues in exactly the
same way we did after that inequality.

Proof of the local existence
It is obvious that if § = (0,0, %) and a; = a,as = b,a3 = 0 then hypoth-

esis (R.1) is verified excepted for the condition d3 + az < 4. This is precisely

where we use that Bé 1(R) is an algebra. Hence, we can follow the same line of
proof as in theorem P.3, replacing the ¢? norms by the ¢>?! norms and the H?®
spaces with the HB?® spaces. There is one fact which doesn’t allow us to give
an identical proof: the deduction of inequality (B.§) from inequality (B.4) which
is not possible because the switch of the L? and ¢! norms yields an inequality
in the opposite sens of the wanted one. To avoid that we have to give up the
estimate

IAg(uVu)l,e < € (273G 1) 4 9 aeea-( 4D

42~ q-(26+2a— (% % %))) aq|u|21
2
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and to use, for the deduction of inequality (E.5), lemma B.1. As in theorem P.3
we find the following inequality:

d
T Agunllzz + Cv(4% + 4% + 4%) | Aqua||z2 < || Aq(unVun)|| 2 [ Agen]l 2.

Gronwall’s lemma implies

[Azun ()] 22 < [|Agugl| 2 exp(=Cr (4" + 4% + 4%)t)
+ C (exp(—Cr(A? 4 4% +4%)(-)) # (|| Ag(n(-) Vit () 12) ) (2).

Taking the L*(0,7) norm and using Young’s inequality gives

||A§un(t)||L%(L2) < Cr a(49 4+ 4% 4+ 4qs)—i||A§ug||Lz

% (1= exp(—CoT((n + 47+ 4)))

+ Cll exp(=Cr(A™ + 4% + %) (Dl 4 7 1850 Vetn) | g 12
< CI/_i(ZJL(h + 4% 4 4q3)_% |Agug || L2 (1 — exp(=CvT (4% + 4% + 4(13)))i
+ OV (4% 4+ 4% 4 4%) 1 || Ag(u, V)

Iz e -
Again by Young’s inequality we have
(4111 + 492 + 4(13)*& § 2%32*5'(075:%).
It follows that
=, a l
20(02) "Aﬁun(t)|’L%(L2)
1
< Cv 1% Agu | 12 (1 — exp(—CUT(4% + 4% 4 4%))) '
+ Oy (47 4% 4+ 4%) 782802 | Ag(u, V) o 2 - (3.1)
Now we use the lemma B to deduce that
||A§(unVun) ||L2T(L2) == ”Agdlv (un & Un) ||L2T(L2)
< Ceg (2—@(%—%,%—%%) 19T (20-3.20-3.3) | 2_5.(2(1_%,21;—%,—%)) wn]| 5 7
T,4,0,b,%

where ||cg|| 2. = 1. Young’s inequality implies
(4(11 _'_4q2 +4(13)*%25'(075:%)2*5'(2“*%:%*%7%) <1

(49 4 492 _I_4q3)—%26'(%1)7%)2—6'(%—%721)—%7%) <1
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(40 4 4% 4 4q3>—%26~(a,b7%)2—6'(%—%1%—%7—%) <1.
Hence inequality (B.1]) may be written as
g-(a.b. L —1,43 n
T [ Aguall s ) < Cv12% | Agul

1

X (1 —exp(=CvT (4" +4% + 4q3))> v iegllunllyp

T
T.4,a,b,%

Taking the ¢*>%! norm gives

lunllus,,,,, <C ||2q73||AEUo||L2 (1= exp(-Cvran + 47 1 4m)) )

T,4,a,b,% —

£2.2,1

+ Cllun ()55

T,4,a,b,%

< gu(T) + Cllunliip

)
T,4,0,b,%

where

gn(t) = C ’ 2% | Aguto|| 2 (1 _ exp(—C’yT(Zlql L4y 4%))) !

£2,2,1

We conclude as in theorem R.3. The fact that u € C([0, T[; HB%%2) is proved as
in the case of H® spaces.

Proof of the global existence
Same proof as above by estimating

The uniqueness theorem is also similar to the one of the case H®.

Theorem 3.3 (uniqueness) Let uy and uy be two solutions of (N-S) which be-
long to HBr 4 o1 NC([0, T[; HB"%2) with the same initial data in HB*%=. Then
Uy = Usg.

Proof
Making the same computations as in theorem P.4), replacing the £ norms with
the ¢2%! norms and using lemma B.1] as shown above we find:

< Cllu — U2||HBt (lurll s + lwallus

Jur — ua]
1 2 HBtA,a,b,% - ,4,a,b,%

t,4,a,b,% t4,a,b,% )

We conclude as in theorem P-4.
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4 Some imbeddings and nonimbeddings

In this section we prove some imbeddings and some nonimbeddings which are used

to compare the results from the previous sections with the results already known.

. -1+2 "
We recall that one can solve (N-S) in the spaces Hz, Bpoo *,2 < p < 00 (see [7],

8], [@], [9]) and it seems very difficult to do it in C=* (Jlul|p;, < (12 | Al 1o,
and C~' = B! ). It is also proved by H. Kozono and M. Yamazaki in []] that

3
one can solve (N-S) in the homogeneous spaces Nifgoo, 1 < ¢ < p < 00, p > 3,

where ./\/;iq’r is defined to be the closure of the compactly supported smooth

functions under the norm:

. 3_3
2% sup sup R» "¢ ||Ajul| pa(B 2o, 7))
zg€R3 R>0

iy

p,q,T | Y

o

where B(zg, R) denotes the closed ball in R? with center zy and radius R. Let

us remark that By, = W7p7r. We can prove the following proposition:

Proposition 4.1 i) If §; + dy + 03 = %, —% < 9 < % Ve {1,2,3} and

then

P> T s,
5 —1+3 -1
H’ — Bpoo© — C7°.
iiJHY O N L2 ¢ O
3_1
ii)If 1 < g <p <32 p>3, then HB*%: ¢ NiPyoo hence HBY03 ¢
—14-3
Bp,ojp V2<p<oo.
w)HB%s — C71,

Property i) shows that H? solutions of (N-S) were already constructed by
M. Cannone [2], F. Planchon [d] and H. Kozono, M. Yamazaki [8]. Property
i1) suggests that the space HOO3 s very interesting as space of initial data;
unfortunately we cannot include it in our results. Finally, property iii) shows that
H B3 is not included in the space considered by H. Kozono and M. Yamazaki at
least for some p and ¢; it implies that it is not included in any of the spaces used
by M. Cannone and F. Planchon. The author doesn’t know if the non-imbedding
of 1) still holds for the other values of p and ¢ .

Proof of proposition @.7]

i) First we remark that if s < 0, then we can replace A; with S; in the
definition of the By ., space. By lemma [[.1 we have

_143 _143
210 | Squll, < €277 3T || Agull,

q1<¢,92<q
3<q
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< 021-1H) 3 9a(z—3)+a(z-5)+s(3-3) [N

q1<4,92<¢
3<q

< CQq(*lJr%) Z 2(11(%*%*51)+q2(%*%*52)+(I3(%*%*53)

q1<¢,92<q
a3<q

x (2@5 ||Aqu||L2)
< C2Q(—1+%) Z 2!11(%—%—51)+qz(%—%—52)+<13(%—i—53)|u|g

q1<¢,q2<¢q
q3<q

As % — zl? —§; > 0 for any i € {1,2,3}, one deduces

Z 2Q1(%*%*51)+(I2(%*%*52)+QS(%*%*53) < 02(1(%7%761762753) _ C2Q(1*%)_

q1<¢,92<q
3<q

Hence [[ul| ;s < Cluls and the first imbedding is proved. In order to obtain the
By,
second imbédding it is enough to apply the classical Littlewood-Paley inequality:

3q
HAquHLoo <27 HAqu”Lpa

to multiply by 277 and to take the upper bound on g.

i) As H*02 N L2 and C~! are distribution spaces, the closed graph theorem
shows that it is enough to prove HO0z N L2 % C~1. Assume by absurd that
HO03 N [2 < C~1. Then

271 ||Squ||Loo < O”“HH Vq.

00,32
We choose u = f ® g where f : R> — C, g : R — C. It is obvious that

Squ = Sof ® S,g and ||u| 00,312 = 1/ llz2 llgll 3 where in S, f, S is the 2D S,
and in S,g, S, is the 1D §;. Hence

27 [Sa Nl oo 115091l oo < C N 2 Mgl 3 ¥ (4.1)

For each fixed ¢ we use the function f,(z) = fo(2%), where f; is chosen with
suppfo sufficiently small to get Sqfq = fq, that gives [|Sofoll;e = Ifallie =
| foll e and || fgll ;2 = 279 || fol| ;2 since we work in two dimensions. Therefore, it
comes from relation (f.1])

1S9l < Clgll3.
that is H2(R) C L> which is false.

33
iii) As above we assume by absurd that H BOO N0 and we remark
that if s < 0, then we can replace A; with S; in the definition of the norm of the
space N¢

p7q7oo :
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Again, we choose u = f ® g where f : R?> — C, ¢g: R — C. It is not difficult
to see that the norm

3_3
sup sup R» "4 || f ® gl Lo(B(wo,R))
zg€R3 R>0

is equivalent to the norm

3_3
xig% i&% Ry ||f||Lq(BQ(x6,R))”gHLq(Bl(xS,R))

where B! and B? denote the one-dimensional, respectively two-dimensional balls.
This is done by including a cube of size R into the ball B(x, R), applying Fubini’s
theorem, then including balls of radius ’—; into the one-dimensional and the two-
dimensional cubes of size R and finally taking the upper bound on R.
It follows that
2j(—1+%)

3_3 .
sup sup R~ |[S; f || za(p2(ay, r) 1939 o @i, ryy < C N fll2 Mgl 5 ¥ 4,
zg€R3 R>0 Bz,l

where the constant C' does not depend on j. Choosing xy = 0 yields

S 3 3_3 .
2/( H”)ZUPORP |15 fllLacs20,8) 1959 | LacBro,r)) < C || f]] 12 ||9HB v 4,
>

1
2
2,1

Now we fix j and we choose f;(z) = fo(27z), the same example as above. We
also choose ¢ to be a function whose Fourier transform is a compactly supported
smooth function. This implies that S;f; = f; and S;g = ¢ for j large enough.
Moreover, we have that

_2
15; fill Lacsz0,r)) = | fill Lacsz0,r)) = 27 7 [ foll La(B2 (020 R))
and .
1fill 2 =277 || foll = -
It follows that, for j large enough, we have

3

(3_2 3
21 q)sup R~ || foll Las2 (020 ry) 19l La(1(0,R)) < C' Il foll 12 ”gHB% )
R>0 3,

1

which implies

(3 _2 3_3 . .
206 q)%uPORP "I foll cag20,myllgll amromy < Clifollz gl 3+ V5 > Jo-
>

1
2
2,1

Taking the limit on j — oo gives a contradiction.
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iv) We write

27 |Squll e <277 3 [[Aqull

q1<q,92<q
3<q

<270 S 2%FEEE || Al

q91<4,92<q
q3<q

<2713 9%+%
q

1<q
42<q

a3
272 [|[Agul| -

1
£a4

< [2% 1agull,.

[oo,oo,l

< [2% 1agull,

02,2,1
= ||u||HB0,07% ‘

This completes the proof.

One could ask whether the divergence free condition has an influence on the
choice of the spaces where we can take the initial data or not. The answer is
negative because, if we look to the proofs above, we see that the scalar coun-
terexamples f we deduce have the property that 0;f and O,f are again good
counterexamples (differentiating fy only diminishes the support of its Fourier
transform), so we can take as initial data ug = (02f, =01 f, 0).

Appendix

In this paragraph we show how a general d-dimensional hyperbolic symmetric

d
system can be solved in B;P (R%). By general hyperbolic symmetric system we
mean a system of the form:

(5] AU +AW)-VU = 0
U|t=0 = UOJ

where A(U) = (A4;(U))1<j<a and, for all j, A;(U) is a symmetric smooth globally
Lipschitz matrix and U is a time dependent vector field in R¢.

d
Proposition Assume that Uy € L* N B;IQ. Then there exist a time T and a

d
unique solution of (S) on [0,T] in the space L>(]0,T]; BQIIQ). Moreover, there
exists a constant C' > 0 such that the mazimal time existence of such a solution

may be bounded from below by T > ———
1ol ;g

2,1
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Proof
da
The proof relies on the fact that B3, is imbedded in L> and on the following
estimate:

da
Lemma For all vector fields U in B;jz there exists a sequence (¢q)qen Such that

—a(d
|< AJAU) - VU)|AU >| < 0277 e, [|AU]| 1UN eg VU o
2,1
where Zcq =1.
q

This lemma is well-known in the case of the Sobolev spaces and the extension
to the Besov spaces is simple. Decomposing the product A(U) - VU in the usual
sum of two paraproducts and a remainder, using the classical product theorem
for Besov spaces, we see that the only term where a critical case appears is

< Aq(TA(U)VU)|AqU > .
Some easy computations done integrating by parts show that

< Af(Taeny VAL >=3" < [Ay, S, 1 A;(U)]8;A,U, AU >

D.J

1 .
= 5 2 Sy divA(U) A AU AU
p

1
) Z'(Sp—l = Sp-1)A;(U) Bg AU 0,08 U
p,pJ
The last two terms are very easy to estimate, we need only to apply the
definition of the Besov spaces. The first term is estimated by remarking that
A, is an operator of convolution with the function 29%h(24-), where h = F~1¢.
Therefore

1Sy 1450, Agla(x) = 200 [ (8,4 45(U)(@) = Sy A5 () (9)) b2 (2 —y))aly) dy.

Hence
[Sp-14;(U), Agla(z)| < C29V||VU || [yh|(29:) * |al.

Young’s inequality now gives

1[Sp-14;(U), Agla(@)|[ . < C27[|[VU]| e [lal] 2 -

This proves the lemma.

We return to the proof of the proposition. We apply A, to (5) and we take
the scalar product with A,U to obtain:

d
pm 1AU[7: < 1< Ay(AU) - VU)|AU >|
_g( 8
<2 q(z“)chUHB;% VU oo [AgU 2
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It follows that
2 AU o < 208 84Ul o+ C [ IV g VU)o
Summing on ¢ yields
IO 1og < W0l g +C [ WOy IVU g
Applying Gronwall’s lemma we find
U@ o5 < W00l g esp (€ [ 1NV )
Next we use that Bt C L to write
VU@ < N0 g < Woll g o0 (C [ IV dr).

If we note .
f0 = [ IVU@ 1 dr

we obtain

F(t) < CllU| g exp(f(1))-
2,1
Again by Gronwall’s lemma it follows

exp(—f(t)) 2 exp(=f(0)) = Ct|[To| .4-

Hence, as long as CtHUOHBH% < 1, we have
2,1

¢
/ IVU(7)]| ;0o dT < 00.
0

Standard L? estimates and the inequality above imply uniqueness of solutions.
This completes the proof.
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