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Université de Rennes 1
IRMAR

Campus de Beaulieu
35042 Rennes Cedex

France

Abstract
In this paper we prove global existence and uniqueness for solutions of the

3-dimensional Navier-Stokes équations with small initial data in spaces which are
Hδi in the i-th direction, δ1 + δ2 + δ3 = 1

2
, −1

2
< δi <

1
2

and in a space which is L2

in the first two directions and B
1
2
2,1 in the third direction, where H and B denote

the usual homogeneous Sobolev and Besov spaces.

Résumé
Dans cet article on montre l’existence et l’unicité globale des solutions des

équations de Navier-Stokes tridimensionnelles pour des données initiales petites
dans des espaces qui sont Hδi dans la ième direction, δ1 +δ2 +δ3 = 1

2
, −1

2
< δi <

1
2

ou dans un espace qui est L2 dans les deux premières directions et B
1
2
2,1 dans la

troisième direction, où H et B sont les espaces de Sobolev et de Besov homogènes
habituels.

Introduction

In this paper we study the problem of global existence and uniqueness for so-
lutions of the 3-dimensional Navier-Stokes equations. These equations are the
following:

(N-S)


∂tU + U · ∇U − ν∆U = −∇P

div U(t, ·) = 0 for all t ≥ 0
U |t=0 = U0.

.

Here, U(t, x) is a time-dependent three-dimensional vector-field.
The goal of this work is to solve these equations in the spaces

Hδ1,δ2,δ3 , δ1 + δ2 + δ3 =
1

2
, −1

2
< δi <

1

2
,

and in the space
HB0,0, 1

2 ,
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where the first space is Hδi in the i-th direction and the second space is L2 in

the first two directions and B
1
2
2,1 in the third direction, where Hs, respectively

Bs
p,q, denote the usual homogeneous Sobolev, respectively Besov, spaces. We are

using homogeneous spaces because they are more easy to handle in the case of
the Navier-Stokes equations and, in addition, they are larger than the classical
ones, so we obtain more general results.

By solving (N-S) in the space X we mean proving the global existence and
uniqueness of solutions for small initial data in X and the local existence and
uniqueness of solutions for arbitrary initial data in X.

The first paragraph is devoted to the study of the spaces Hs1,s2,s3 , essentially
the proof of a product theorem in these spaces. A somewhat similar theorem was
proved by M. Sablé-Tougeron in [10] for the Hörmander spaces.

The second paragraph contains the resolution of (N-S) in

Hδ1,δ2,δ3 , δ1 + δ2 + δ3 =
1

2
, −1

2
< δi <

1

2
.

The methods used here are inspired from a paper of J.-Y. Chemin and N. Lerner
(see [4]). The case when one of the δi equals 1

2
is important but it cannot be

studied through our results because H
1
2 (R) is not an algebra. This difficulty is

partially avoided by replacing H
1
2 (R) with B

1
2
2,1(R) which has the property to

cancel this critical case. And this is how we come to solve (N-S) in the space

HB0,0, 1
2 during the third paragraph. The same method of replacing Hs with Bs

2,1

may be used in the resolution of general hyperbolic symmetric systems. These
systems can be solved in the space Hs(Rd), s > d

2
+ 1 but the case s = d

2
+ 1

cannot be proved unless we replace H
d
2

+1 with B
d
2

+1
2,1 (a short proof is given in the

Appendix).
Finally, the last paragraph makes a comparison between this article and the

results which are known. We shall see there that the space HB0,0, 1
2 is not imbed-

ded in any of the spaces introduced by H. Kozono and M. Yamazaki in [8], N
−1+ 3

p
p,q,∞ ,

provided that 1 ≤ q ≤ p < 3q
2

, p > 3. We are not able to prove an imbedding or
a nonimbedding if p ≥ 3q

2
. The space Hδ1,δ2,δ3 is also interesting if we remark, for

instance, that we allow negative values for δi.
The results of this article can be easily extended to an arbitrary dimension,

here we consider R3 only for sake of simplicity. In fact, if we work in Rd, we can
solve (N-S) in the spaces

Hδ1,δ2,··· ,δd , δ1 + δ2 + · · ·+ δd =
d

2
− 1, −1

2
< δi <

1

2
,

and in the space
HB0,··· ,0, 1

2 ,

where the first space is Hδi in the i-th direction and the second space is L2 in the

first n− 1 directions and B
1
2
2,1 in the last one. For instance, we can solve the 2D
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Navier-Stokes equations with small initial data in Hδ,−δ, 0 < δ < 1
2
, that is in a

space of functions which are not square-integrable.

1 Study of the anisotropic spaces and prelimi-

nary results

We work in R3 and we denote by x = (x1, x2, x3) the variable in R3. If q =
(q1, q2, q3) ∈ Z3 and s = (s1, s2, s3) ∈ R3 then we define q · s = q1s1 + q2s2 + q3s3.

Also, if λ = (λ1, λ2, λ3) then we note λ
s

= |λ1|s1|λ2|s2|λ3|s3 .
Let

Lp = Lp1,p2,p3 =

u such that ‖u‖Lp
def
=

∥∥∥∥∥∥∥∥‖u(x1, x2, x3)‖Lp3x3

∥∥∥
L
p2
x2

∥∥∥∥∥
L
p1
x1

<∞


and `p be the analogous space for sequences. Also, when p = q = r we shall note
`p,p,p = `p and Lp,p,p = Lp. If u is a function u : (0, T )× Rn → C then we note

‖u‖LpT (Lq)
def
= ‖‖u(t, x)‖Lq(Rn)‖Lp(0,T )

The order of integrations is important, as the following remark shows it:

Remark 1.1 Let (X1, µ1), (X2, µ2) be two measure spaces , 1 ≤ p ≤ q and
f : X × Y → R. Then

‖‖f(·, x2)‖Lp(X1,µ1)‖Lq(X2,µ2) ≤ ‖‖f(x1, ·)‖Lq(X2,µ2)‖Lp(X1,µ1).

Indeed∥∥∥∥‖f(·, x2)‖Lp(X1,µ1)

∥∥∥∥
Lq(X2,µ2)

=

(∥∥∥∥∫
X1

fp(·, x2) dµ1

∥∥∥∥
L
q
p (X2,µ2)

) 1
p

≤
(∫

X1

∥∥∥∥fp(x1, ·)
∥∥∥∥
L
q
p (X2,µ2)

dµ1

) 1
p

=
∥∥∥∥‖f(x1, ·)‖Lq(X2,µ2)

∥∥∥∥
Lp(X1,µ1)

.

The Hölder and Young inequalities for the Lq spaces take the form:

‖fg‖Lp ≤ ‖f‖Lq ‖g‖Lr , where
1

pi
=

1

qi
+

1

ri
, ∀ i ∈ {1, 2, 3},

and

‖f ∗ g‖La ≤ ‖f‖Lb ‖g‖Lc , where 1 +
1

ai
=

1

bi
+

1

ci
, ∀ i ∈ {1, 2, 3}.

We can prove a variant of the Littlewood-Paley lemma for the Lq spaces:
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Lemma 1.1 If

supp û ⊂ B(0, rλ1, rλ2, rλ3)
def
=
{
ξ ∈ R3 such that |ξ1| < rλ1, |ξ2| < rλ2, |ξ3| < rλ3

}
and a1 ≤ b1, a2 ≤ b2, a3 ≤ b3, α = (α1, α2, α3) is a multi-index, then

‖∂αu‖Lb ≤ Cλ
α1+ 1

a1
− 1
b1

1 λ
α2+ 1

a2
− 1
b2

2 λ
α3+ 1

a3
− 1
b3

3 ‖u‖La .

Proof
Let φ ∈ C∞0 (R), φ equal to 1 near the ball of center 0 and radius r, g =

F−1(φ). Then

û(ξ) = φ(
ξ1

λ1

)φ(
ξ2

λ2

)φ(
ξ3

λ3

)û(ξ),

and thus
u(x) = λ1λ2λ3

∫
R3
g(λ1y1)g(λ2y2)g(λ3y3)u(x− y) dy.

Differentiating and using Young’s inequality ends the proof.

Before introducing our functional spaces let us recall that the homogeneous
Besov spaces are defined to be the closure of compactly supported smooth func-
tions under the norm

‖u‖Bsp,q
def
=
∥∥∥2is ‖∆iu‖Lp

∥∥∥
`q
.

The need of taking the closure of compactly supported smooth functions comes
from the fact that the quantity above is only a semi-norm since the ”norm” of
a polynomial vanishes. Another way of defining these homogeneous spaces is
to take equivalence classes of distributions modulo polynomials and to remark
that we obtain in that way a real norm. For further details on Besov spaces
(homogeneous or not) see [12].

Definition 1.1 We denote by Hs1,s2,s3 = Hs the closure of compactly supported
smooth functions under the norm

|u|s1,s2,s3
def
= |u|s def

=
∥∥∥ξsû(ξ)

∥∥∥
L2
.

The space Hs1,s2,s3 is a Banach space of distributions if s1 < 1/2, s2 < 1/2
and s3 < 1/2.

We denote by ψ a dyadical partition of unity in R, that is a smooth function
supported in the ring of center 0, small radius 3

4
, large radius 8

3
and such that

4



∑
q∈Z ψ(2−qξ) = 1 ∀ξ 6= 0 (see [1], [5]). Define

∆i
q = ψ(2−qDi),

Siq =
∑

p≤q−1

∆i
p,

Sq = Sq1,q2,q3 = S1
q1
S2
q2
S3
q3
,

∆q = ∆q1,q2,q3 = ∆1
q1

∆2
q2

∆3
q3
,

Sq = Sq,q,q,

∆q = Sq+1 − Sq.

The following lemmas are easy to prove:

Lemma 1.2 If u ∈ Hs then

|u|s ∼
∥∥∥2q·s ‖∆qu‖L2

∥∥∥
`2
.

Lemma 1.3 If up is a sequence of functions such that

supp ûp ⊂
{

1

γ
2p1 ≤ |ξ1| ≤ γ2p1 ,

1

γ
2p2 ≤ |ξ2| ≤ γ2p2 ,

1

γ
2p3 ≤ |ξ3| ≤ γ2p3

}

and ∥∥∥2p·s ‖up‖L2

∥∥∥
`2
<∞,

then
u =

∑
p

up ∈ Hs1,s2,s3

and
|u|s1,s2,s3 ≤ C

∥∥∥2p·s ‖up‖L2

∥∥∥
`2
.

If s1 > 0 it is enough to assume that

supp ûp ⊂
{
|ξ1| ≤ γ2p1 ,

1

γ
2p2 ≤ |ξ2| ≤ γ2p2 ,

1

γ
2p3 ≤ |ξ3| ≤ γ2p3

}
.

If s1 > 0 and s2 > 0 it is enough to assume that

supp ûp ⊂
{
|ξ1| ≤ γ2p1 , |ξ2| ≤ γ2p2 ,

1

γ
2p3 ≤ |ξ3| ≤ γ2p3

}
.

If s1 > 0, s2 > 0 and s3 > 0 it is enough to assume that

supp ûp ⊂ {|ξ1| ≤ γ2p1 , |ξ2| ≤ γ2p2 , |ξ3| ≤ γ2p3} .
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The next theorem studies the problem of products in the Hs1,s2,s3 spaces.

Theorem 1.1 Let u ∈ Hs, v ∈ Ht such that si <
1
2
, ti <

1
2
, si + ti > 0,

i ∈ {1, 2, 3}. Then

uv ∈ Hs+t−( 1
2
, 1
2
, 1
2

)

and
|uv|s+t−( 1

2
, 1
2
, 1
2

) ≤ C|u|s|v|t.

Proof We shall give a proof which imitates the argument for the classical Sobolev
spaces. This will be done by introducing 3-dimensional paraproduct operators.
We recall the definition of Bony’s decomposition:

uv = T (u, v) +R(u, v) + T̃ (u, v),

where

T (u, v) =
∑
q

Sq−1u ∆qv,

R(u, v) =
∑
|p−q|≤1

∆pu∆qv,

T̃ (u, v) = T (v, u)

(see [1], [5]). It is well-known that T : Hs(R) × H t(R) → Hs+t− 1
2 (R) is well-

defined and continous if s < 1
2
. The same is true for R if s+ t > 0. Here we use

the analogous of this decomposition:

uv = (T 1 +R1 + T̃ 1)(T 2 +R2 + T̃ 2)(T 3 +R3 + T̃ 3)(u, v)

understood as the sum of 33 terms. The definition of each term is a straightfor-
ward extension of the classical paraproduct and remainder. The reader may
give the definition of each term; we give, for instance, the one of the term
T 1R2T̃ 3(u, v) :

T 1R2T̃ 3(u, v) =
1∑

i=−1

∑
p

S1
p1−1∆2

p2
∆3
p3
u ∆1

p1
∆2
p2−iS

3
p3−1v.

We shall prove that each of the 33 operators we find is continuous

Hs ×Ht → Hs+t−( 1
2
, 1
2
, 1
2

),

under weaker hypothesis than those given in the theorem. More precisely, the
conditions to assume are given by the composition of the term in the following
manner: if the term contains T i then we have to assumme si <

1
2
; if the term
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contains Ri then we have to assume si + ti > 0; if the term contains T̃ i then we
have to assume ti <

1
2
. For instance if we want the term T 1R2T̃ 3 to be continous

then we have to assume that s1 <
1
2
, s2 + t2 > 0, t3 <

1
2
. This term is the most

difficult to handle so we prove the assertion only on it. We have

T 1R2T̃ 3(u, v) =
1∑

i=−1

∑
p

wip,

where
wip = S1

p1−1∆2
p2

∆3
p3
u ∆1

p1
∆2
p2−iS

3
p3−1v.

Using several times the anisotropic form of Hölder’s inequality, the definition of
the operators S1 and S3 as well as the anisotropic Littlewood-Paley lemma (1.1)
one can show that∥∥∥∆qw

i
p

∥∥∥
L2
≤ 2

q2
2

∥∥∥wip∥∥∥L2,1,2

≤ 2
q2
2

∥∥∥S1
p1−1∆2

p2
∆3
p3
u
∥∥∥
L∞,2,2

∥∥∥∆1
p1

∆2
p2−iS

3
p3−1v

∥∥∥
L2,2,∞

≤ 2
q2
2

∑
r1≤p1−2
r3≤p3−2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u
∥∥∥
L∞,2,2

∥∥∥∆1
p1

∆2
p2−i∆

3
r3
v
∥∥∥
L2,2,∞

≤ 2
q2
2

∑
r1≤p1−2
r3≤p3−2

2
r1
2

+
r3
2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u
∥∥∥
L2

∥∥∥∆1
p1

∆2
p2−i∆

3
r3
v
∥∥∥
L2
.

(1.1)

Let us introduce
aq = 2q·s ‖∆qu‖L2

and
bq = 2q·t ‖∆qv‖L2 .

Since s1 <
1
2

and t3 <
1
2
, inequality (1.1) implies∥∥∥∆qw

i
p

∥∥∥
L2
≤ C2

q2
2 2p1( 1

2
−s1−t1)2−p2(s2+t2)2p3( 1

2
−s3−t3) ‖ap‖`∞p1 ‖bp1,p2−i,p3‖`∞p3 ,

(1.2)

whence

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qw

i
p

∥∥∥
L2

≤ C2(q1−p1)(s1+t1− 1
2

)2(q3−p3)(s3+t3− 1
2

)2(q2−p2)(s2+t2) ‖ap‖`2p1 ‖bp1,p2−i,p3‖`2p3 . (1.3)

Since |p1 − q1| ≤ 1, q2 < p2, |p3 − q3| ≤ 1 we obtain

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2

≤ C
1∑

i=−1

∑
|p1−q1|≤1
|p3−q3|≤1

∑
p2>q2

2(q2−p2)(s2+t2) ‖ap‖`2p1 ‖bp1,p2−i,p3‖`2p3 .
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Taking the `2
q1,q3

norm gives∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2

∥∥∥
`2q1,q3

≤ C
1∑

i=−1

∑
p2>q2

2(q2−p2)(s2+t2) ‖ap‖`2p1,p3 ‖bp1,p2−i,p3‖`2p1,p3 .

Taking the `2
q2

norm, applying Young’s inequality and using that s2+t2 > 0 yields

∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2

∥∥∥
`2
≤ C

1∑
i=−1

∥∥∥∥‖ap‖`2p1,p3 ‖bp1,p2−i,p3‖`2p1,p3

∥∥∥∥
`1p2

.

Finally, Hölder’s inequality implies∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2

∥∥∥
`2
≤ C ‖ap‖`2 ‖bp‖`2 ,

that is
|T 1R2T̃ 3(u, v)|s+t−( 1

2
, 1
2
, 1
2

) ≤ C|u|s|v|t.
This completes the proof.

We shall now adjust this study to the case of the spaces HBs1,s2,s3 = HBs

defined as the closure of compactly supported smooth functions under the norm

|u|HBs
def
=
∥∥∥2q·s ‖∆qu‖L2

∥∥∥
`2,2,1

.

Remark 1.2 In this definition, when we apply the `2,2,1 norm, we first take the
`1 norm and afterwards the others, but all the work we do is valid for the spaces
HB obtained by appling the `2,2,1 norm in an arbitrary manner. We choosed this
order because, according to remark 1.1, this space is the largest.

Remark 1.3 For all real numbers s1, s2, s3 the space HBs is strictly included into
the space Hs. Moreover, HBs is a Banach space of distributions for s1 < 1/2,
s2 < 1/2 and s3 ≤ 1/2.

The lemmas 1.2 and 1.3 will modify in an obvious way, only the product theorem
is relevant for the (N-S) equations.

Theorem 1.2 Let u ∈ HBs, v ∈ HBt such that si <
1
2
, ti <

1
2
, si + ti > 0,

i ∈ {1, 2} and s3 ≤ 1
2
, t3 ≤ 1

2
, s3 + t3 > 0. Then

uv ∈ HBs+t−( 1
2
, 1
2
, 1
2

)

and
|uv|

HBs+t−( 1
2 ,

1
2 ,

1
2 ) ≤ C|u|HBs |v|HBt .
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Proof
The proof is almost identical to the preceding one, the modification, which

allows us to take into account the case s3 = 1
2

or t3 = 1
2

is that the classical

paraproduct T : Bs
2,1(R)× Bt

2,1(R)→ B
s+t− 1

2
2,1 (R) is well-defined and continous if

s ≤ 1
2
. Hence, we shall prove that each of the 33 operators is continous under

the same assumptions as above, with the modification that if a paraproduct in
the third direction is involved, then we can allow s3 or t3, depending on the
paraproduct, to be equal to 1

2
. The only problem in the proof is that at the end

we have to commute some norms which give raise to the wrong inequality. We
have to restart from inequality (1.1)∥∥∥∆qw

i
p

∥∥∥
L2
≤ 2

q2
2

∑
r1≤p1−2
r3≤p3−2

2
r1
2

+
r3
2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u
∥∥∥
L2

∥∥∥∆1
p1

∆2
p2−i∆

3
r3
v
∥∥∥
L2
.

(1.4)

Recall that
aq = 2q·s ‖∆qu‖L2

and
bq = 2q·t ‖∆qv‖L2 .

We use that |p1 − q1| ≤ 1, |p3 − q3| ≤ 1 to rewrite the last inequality as

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qw

i
p

∥∥∥
L2
≤ C2(s2+t2)(q2−p2)

×
∑

r1≤p1−2
r3≤p3−2

2(r1−p1)( 1
2
−s1)+(r3−p3)( 1

2
−t3)ar1,p2,p3bp1,p2−i,r3 (1.5)

Now we sum on i, p and q3 to obtain∑
q3

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2
≤ C

1∑
i=−1

∑
|p1−q1|≤1
p2>q2

2(s2+t2)(q2−p2)

×
∑

r1≤p1−2

2(r1−p1)( 1
2
−s1)

∑
p3

∑
r3≤p3−2

2(r3−p3)( 1
2
−t3)ar1,p2,p3bp1,p2−i,r3

≤ C
1∑

i=−1

∑
|p1−q1|≤1
p2>q2

2(s2+t2)(q2−p2)
∑

r1≤p1−2

2(r1−p1)( 1
2
−s1) ‖ar1,p2,p3‖`1p3 ‖bp1,p2−i,r3‖`1r3

≤ C
1∑

i=−1

∑
|p1−q1|≤1
p2>q2

2(s2+t2)(q2−p2)

∥∥∥∥‖ar1,p2,p3‖`1p3

∥∥∥∥
`2r1

‖bp1,p2−i,r3‖`1r3

Since |p1 − q1| ≤ 1, applying Holdër’s inequality gives∥∥∥∥∥∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2

∥∥∥
`1q3

∥∥∥∥∥
`2q1

≤ C
1∑

i=−1

∑
p2>q2

2(s2+t2)(q2−p2)

∥∥∥∥‖ap1,p2,p3‖`1p3

∥∥∥∥
`2p1

∥∥∥∥‖bp1,p2−i,p3‖`1p3

∥∥∥∥
`2p1

. (1.6)

9



Using that q2 < p2 and applying Young’s inequality yields∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2

∥∥∥
`2,2,1

≤ C
1∑

i=−1

∥∥∥∥∥
∥∥∥∥‖ap1,p2,p3‖`1p3

∥∥∥∥
`2p1

∥∥∥∥‖bp1,p2−i,p3‖`1p3

∥∥∥∥
`2p1

∥∥∥∥∥
`1p2

.

Finnaly, we apply Hölder’s inequality to obtain∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2T̃ 3(u, v)
∥∥∥
L2

∥∥∥
`2,2,1
≤ C ‖ap1,p2,p3‖`2,2,1 ‖bp1,p2,p3‖`2,2,1 ,

which implies

|T 1R2T̃ 3(u, v)|
HBs+t−( 1

2 ,
1
2 ,

1
2 ) ≤ C|u|HBs |v|HBt .

This completes the proof for T 1R2T̃ 3.
Since the third variable plays a special role in the definition of the HB spaces,

we show how the same estimates can be modified for other terms. We consider
first the term T 1R2R3. We have

T 1R2R3(u, v) =
1∑

i,j=−1

∑
p

zi,jp ,

where
zi,jp = S1

p1−1∆2
p2

∆3
p3
u ∆1

p1
∆2
p2−i∆

3
p3−jv.

As above, we deduce the following inequalities∥∥∥∆qz
i,j
p

∥∥∥
L2
≤ 2

q2
2

+
q3
2

∥∥∥zi,jp ∥∥∥L2,1,1

≤ 2
q2
2

+
q3
2

∥∥∥S1
p1−1∆2

p2
∆3
p3
u
∥∥∥
L∞,2,2

∥∥∥∆1
p1

∆2
p2−i∆

3
p3−jv

∥∥∥
L2,2,2

≤ 2
q2
2

+
q3
2

∑
r1≤p1−2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u
∥∥∥
L∞,2,2

∥∥∥∆1
p1

∆2
p2−i∆

3
p3−jv

∥∥∥
L2,2,2

≤ 2
q2
2

+
q3
2

∑
r1≤p1−2

2
r1
2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u
∥∥∥
L2

∥∥∥∆1
p1

∆2
p2−i∆

3
p3−jv

∥∥∥
L2
.

(1.7)

Since |p1 − q1| ≤ 1, it follows that

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qz

i,j
p

∥∥∥
L2
≤ C2(s2+t2)(q2−p2)+(s3+t3)(q3−p3)

×
∑

r1≤p1−2

2(r1−p1)( 1
2
−s1)ar1,p2,p3bp1,p2−i,p3−j.

Now we sum on i, j, p and q3 to obtain

∑
q3

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2R3(u, v)
∥∥∥
L2
≤ C

1∑
i,j=−1

∑
|p1−q1|≤1
p2>q2

2(s2+t2)(q2−p2)

×
∑

r1≤p1−2

2(r1−p1)( 1
2
−s1)

∑
q3

∑
p3>q3

2(s3+t3)(q3−p3)ar1,p2,p3bp1,p2−i,p3−j
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Applying Young’s inequality gives∑
q3

∑
p3>q3

2(s3+t3)(q3−p3)ar1,p2,p3bp1,p2−i,p3−j ≤ C ‖ar1,p2,p3bp1,p2−i,p3‖`1p3
≤ C ‖ar1,p2,p3‖`1p3 ‖bp1,p2−i,p3‖`1p3 .

It follows that

∑
q3

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2R3(u, v)
∥∥∥
L2
≤ C

1∑
i=−1

∑
|p1−q1|≤1
p2>q2

2(s2+t2)(q2−p2)

×
∑

r1≤p1−2

2(r1−p1)( 1
2
−s1) ‖ar1,p2,p3‖`1p3 ‖bp1,p2−i,p3‖`1p3 ≤ C

1∑
i=−1

∑
|p1−q1|≤1
p2>q2

2(s2+t2)(q2−p2)

×
∥∥∥∥‖ar1,p2,p3‖`1p3

∥∥∥∥
`2r1

‖bp1,p2−i,p3‖`1p3 .

Since |p1 − q1| ≤ 1, applying Holdër’s inequality gives∥∥∥∥∥∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1R2R3(u, v)
∥∥∥
L2

∥∥∥
`1q3

∥∥∥∥∥
`2q1

≤ C
1∑

i=−1

∑
p2>q2

2(s2+t2)(q2−p2)

∥∥∥∥‖ap1,p2,p3‖`1p3

∥∥∥∥
`2p1

∥∥∥∥‖bp1,p2−i,p3‖`1p3

∥∥∥∥
`2p1

.

This inequality is similar to (1.6), so we can continue likewise to obtain the result
on T 1R2R3.

Finally, we give the proof for the term T 1T̃ 2R3. As above we have

T 1T̃ 2R3(u, v) =
1∑

i=−1

∑
p

αip,

where
αip = S1

p1−1∆2
p2

∆3
p3
u ∆1

p1
S2
p2−1∆3

p3−iv.

As above, we deduce the following inequalities∥∥∥∆qα
i
p

∥∥∥
L2
≤ 2

q3
2

∥∥∥αip∥∥∥L2,2,1

≤ 2
q3
2

∥∥∥S1
p1−1∆2

p2
∆3
p3
u
∥∥∥
L∞,2,2

∥∥∥∆1
p1
S2
p2−1∆3

p3−iv
∥∥∥
L2,∞,2

≤ 2
q3
2

∑
r1≤p1−2
r2≤p2−1

∥∥∥∆1
r1

∆2
p2

∆3
p3
u
∥∥∥
L∞,2,2

∥∥∥∆1
p1

∆2
r2

∆3
p3−iv

∥∥∥
L2,∞,2

≤ 2
q3
2

∑
r1≤p1−2
r2≤p2−1

2
r1
2

+
r2
2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u
∥∥∥
L2

∥∥∥∆1
p1

∆2
r2

∆3
p3−iv

∥∥∥
L2
.

(1.8)
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Since |p1 − q1| ≤ 1 and |p2 − q2| ≤ 1 it follows that

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qα

i
p

∥∥∥
L2
≤ C2(s3+t3)(q3−p3)

∑
r1≤p1−2
r3≤p3−2

2(r1−p1)( 1
2
−s1)+(r2−p2)( 1

2
−t2)

× ar1,p2,p3bp1,r2,p3−i.

Now we sum on i, p and q3 to obtain∑
q3

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1T̃ 2R3(u, v)
∥∥∥
L2

≤ C
1∑

i=−1

∑
|p1−q1|≤1
|p2−q2|≤1

∑
r1≤p1−2
r2≤p2−2

2(r1−p1)( 1
2
−s1)+(r2−p2)( 1

2
−t2)

×
∑
q3

∑
p3>q3

2(s3+t3)(q3−p3)ar1,p2,p3bp1,r2,p3−i

Applying Young’s inequality gives∑
q3

∑
p3>q3

2(s3+t3)(q3−p3)ar1,p2,p3bp1,r2,p3−i ≤ C ‖ar1,p2,p3bp1,r2,p3−i‖`1p3
≤ C ‖ar1,p2,p3‖`1p3 ‖bp1,r2,p3‖`1p3 .

It follows that∑
q3

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1T̃ 2R3(u, v)
∥∥∥
L2

≤ C
∑

|p1−q1|≤1
|p2−q2|≤1

∑
r1≤p1−2
r2≤p2−1

2(r1−p1)( 1
2
−s1)+(r2−p2)( 1

2
−t2)

× ‖ar1,p2,p3‖`1p3 ‖bp1,r2,p3‖`1p3
≤ C

∑
|p1−q1|≤1
|p2−q2|≤1

∥∥∥∥‖ar1,p2,p3‖`1p3

∥∥∥∥
`2r1

∥∥∥∥‖bp1,r2,p3‖`1p3

∥∥∥∥
`2r2

.

Using again that |p1 − q1| ≤ 1, |p2 − q2| ≤ 1 and taking the `2
q1,q2

norm yields∥∥∥2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qT

1T̃ 2R3(u, v)
∥∥∥
L2

∥∥∥
`2,2,1
≤ C ‖ap‖`2,2,1 ‖bp‖`2,2,1 ,

that is
|T 1T̃ 2R3(u, v)|

HBs+t−( 1
2 ,

1
2 ,

1
2 ) ≤ C|u|HBs |v|HBt .

This completes the proof.
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2 Resolution of (N-S) in the Hs1,s2,s3 spaces

Let −1
2
< δi <

1
2
, i ∈ {1, 2, 3}, δ1 + δ2 + δ3 = 1

2
. Then there exist nonnegative

numbers a1, a2, a3 such that

0 < δi + ai <
1

2
∀ i ∈ {1, 2, 3} and a1 + a2 + a3 =

1

2
(2.1)

(one can choose ai = 1
4
− δi

2
). We shall prove the following theorems:

Theorem 2.1 (global existence and uniqueness) There exists C > 0 such

that if divu0 = 0, u0 ∈ Hδ and |u|δ < Cν then the (N-S) equations have a unique
solution in

L4(]0,∞[;Hδ+a) ∩ L∞(]0,∞[;Hδ).

Moreover, the solution satisfies u ∈ C([0,∞[;Hδ).

Theorem 2.2 (local existence and uniqueness) If divu0 = 0 and u0 ∈ Hδ

then a time T >0 and a unique solution of (N-S) on [0, T ] exist so that

u ∈ L4(]0, T [;Hδ+a) ∩ C([0, T [;Hδ).

The uniqueness is proved at the end. The global existence is proved in the same
time with the local existence. In fact, we shall prove a better result valid for the
space HT defined as the closure of compactly supported smooth functions under
the norm

‖u‖HT
def
=
∥∥∥∥∥∥∥2q·(δ+a)∆qu

∥∥∥
L4
T (L2)

∥∥∥∥
`2
.

Theorem 2.3 Let divu0 = 0 and u0 ∈ Hδ. Then there exist T >0 and a solution
of (N-S) on [0, T ] which verifies u ∈ HT .

Remark 2.1 We have HT ↪→ L4(]0, T [;Hδ+a).

Indeed, from remark 1.1 we infer

‖u‖
L4(]0,T [;Hδ+a)

=
∥∥∥∥∥∥2q·(δ+a) ‖∆qu‖L2

∥∥∥
`2

∥∥∥
L4

≤
∥∥∥∥∥∥∥2q·(δ+a)∆qu

∥∥∥
L4
T (L2)

∥∥∥∥
`2

= ‖u‖HT .

Proof of theorem 2.3
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We approach u0 with the sequence un0 = Snu0, where Sn is the classical Sn
in R3. Let un be the local regular solution of (N-S) with initial data un0 (for the
existence of un see [6], [11]). For each n we apply ∆q at (N-S) and we multiply
by ∆qun to obtain:

d

dt
‖∆qun‖2

L2 + ν‖∇∆qun‖2
L2 ≤ C |< ∆q(un∇un)|∆qun > |

= C |< ∆q(div(un ⊗ un))|∆qun > |. (2.2)

The localization of the Fourier transform of ∆qun enables us to say that

‖∇∆qun‖2
L2 = ‖∂1∆qun‖2

L2 + ‖∂2∆qun‖2
L2 + ‖∂3∆qun‖2

L2

≥ C4q1 ‖∆qun‖2
L2 + C4q2 ‖∆qun‖2

L2 + C4q3 ‖∆qun‖2
L2

= C(4q1 + 4q2 + 4q3)‖∆qun‖2
L2 .

Moreover, we have from Theorem 1.1 that if un ∈ Hδ+a, then un⊗un ∈ H2δ+2a−( 1
2
, 1
2
, 1
2

).
Thus we can write

div (un ⊗ un) =
3∑
j=1

wj,

where
|w1|2δ+2a−( 3

2
, 1
2
, 1
2

) ≤ C|un ⊗ un|2δ+2a−( 1
2
, 1
2
, 1
2

) ≤ C|un|2δ+a,

|w2|2δ+2a−( 1
2
, 3
2
, 1
2

) ≤ C|un ⊗ un|2δ+2a−( 1
2
, 1
2
, 1
2

) ≤ C|un|2δ+a,

|w3|2δ+2a−( 1
2
, 1
2
, 3
2

) ≤ C|un ⊗ un|2δ+2a−( 1
2
, 1
2
, 1
2

) ≤ C|un|2δ+a.

It follows that

|< ∆q(un∇un)|∆qun > | ≤ C
(
2−q·(2δ+2a−( 3

2
, 1
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 3
2
, 1
2

))

+2−q·(2δ+2a−( 1
2
, 1
2
, 3
2

))
)
aq‖∆qun‖L2|un|2δ+a,

where

aq =
2q·(2δ+2a−( 3

2
, 1
2
, 1
2

))‖∆qw1‖L2

|w1|2δ+2a−( 3
2
, 1
2
, 1
2

)

+
2q·(2δ+2a−( 1

2
, 3
2
, 1
2

))‖∆qw2‖L2

|w2|2δ+2a−( 1
2
, 3
2
, 1
2

)

+
2−q·(2δ+2a−( 1

2
, 1
2
, 3
2

))‖∆qw3‖L2

|w3|2δ+2a−( 1
2
, 1
2
, 3
2

)

so ‖aq(τ)‖`2 ≤ 3 ∀τ. Using this in (2.2) leads to

d

dt
‖∆qun‖2

L2 + Cν(4q1 + 4q2 + 4q3)‖∆qun‖2
L2

≤ C
(
2−q·(2δ+2a−( 3

2
, 1
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 3
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 1
2
, 3
2

))
)

aq|un|2δ+a‖∆qun‖L2 .
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By Gronwall’s lemma we have

‖∆qun(t)‖L2 ≤ ‖∆qu
n
0‖L2 exp(−Cν(4q1 + 4q2 + 4q3)t)

+ C
(
2−q·(2δ+2a−( 3

2
, 1
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 3
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 1
2
, 3
2

))
)

×
∫ t

0
exp

(
−Cν(4q1 + 4q2 + 4q3)(t− τ)

)
aq(τ)|un(τ)|2

δ+a
dτ. (2.3)

Taking the L4(0, T ) norm and using Young’s inequality gives

‖∆qun(t)‖L4
T (L2) ≤ Cν−

1
4 (4q1 + 4q2 + 4q3)−

1
4‖∆qu

n
0‖L2

×
(

1− exp(−CνT ((4q1 + 4q2 + 4q3)))
) 1

4

+ C
(
2−q·(2δ+2a−( 3

2
, 1
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 3
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 1
2
, 3
2

))
)

× ‖ exp(−Cν(4q1 + 4q2 + 4q3)(·))‖
L

4
3 (0,T )

‖aq|un|2δ+a‖L2(0,T )

≤ Cν−
1
4 (4q1 + 4q2 + 4q3)−

1
4‖∆qu

n
0‖L2(1− exp(−CνT (4q1 + 4q2 + 4q3)))

1
4

+ Cν−
3
4

(
2−q·(2δ+2a−( 3

2
, 1
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 3
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 1
2
, 3
2

))
)

× (4q1 + 4q2 + 4q3)−
3
4 ‖aq|un|2δ+a‖L2(0,T ).

Young’s inequality along with relation (2.1) imply

2q·a = 2q1a12q2a22q3a3 ≤ 2a122q1 + 2a222q2 + 2a322q3 ≤ (4q1 + 4q2 + 4q3)

2q1(1− 2
3

(a1+δ1))2q2( 1
3
− 2

3
(a2+δ2))2q3( 1

3
− 2

3
(a3+δ3))

≤ (1− 2

3
(a1 + δ1))2q1 + (

1

3
− 2

3
(a2 + δ2))2q2 + (

1

3
− 2

3
(a3 + δ3))2q3

≤ 2q1 + 2q2 + 2q3 ,

and two similar inequalities. Therefore

(4q1 + 4q2 + 4q3)−
1
4 ≤ 2−q·a,

2−q·(2δ+2a−( 3
2
, 1
2
, 1
2

)) (2q1 + 2q2 + 2q3)−
3
2 ≤ 2−q·(2δ+2a−( 3

2
, 1
2
, 1
2

))

× 2−
3
2(q·((1, 13 ,

1
3

)− 2
3

(a+δ))) = 2−q·(a+δ),

2−q·(2δ+2a−( 1
2
, 3
2
, 1
2

)) (2q1 + 2q2 + 2q3)−
3
2 ≤ 2−q·(2δ+2a−( 1

2
, 3
2
, 1
2

))

× 2−
3
2(q·(( 1

3
,1, 1

3
)− 2

3
(a+δ))) = 2−q·(a+δ),
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2−q·(2δ+2a−( 1
2
, 1
2
, 3
2

)) (2q1 + 2q2 + 2q3)−
3
2 ≤ 2−q·(2δ+2a−( 1

2
, 1
2
, 3
2

))

× 2−
3
2(q·(( 1

3
, 1
3
,1)− 2

3
(a+δ))) = 2−q·(a+δ).

It follows that

2q·(a+δ) ‖∆qun‖L4
T (L2) ≤ Cν−

1
4 2q·δ‖∆qu

n
0‖L2

×
(

1− exp(−CνT (4q1 + 4q2 + 4q3))
) 1

4

+Cν−
3
4‖aq|un|2δ+a‖L2(0,T ). (2.4)

Taking the `2 norm gives

‖un‖HT ≤ Cν−
1
4

∥∥∥∥∥2q·δ‖∆qu
n
0‖L2

(
1− exp(−CνT (4q1 + 4q2 + 4q3))

) 1
4

∥∥∥∥∥
`2

+ Cν−
3
4‖un(τ)‖2

L4(]0,T [;Hδ+a)
(2.5)

≤ ν−
1
4fn(T ) + Cν−

3
4‖un‖2

HT
,

where

fn(T ) = C
∥∥∥2q·δ‖∆qu

n
0‖L2(1− exp(−CνT (4q1 + 4q2 + 4q3)))

1
4

∥∥∥
`2
.

We shall need to have fn(T ) small. In order to obtain that, we use Lebesgue’s
dominated convergence theorem. The particular form of un0 implies

‖∆qu
n
0‖L2 ≤ ‖∆qSnu0‖L2 ≤ ‖Sn∆qu0‖L2 ≤ ‖∆qu0‖L2

and the estimate

2q·δ‖∆qu
n
0‖L2(1− exp(−CνT (4q1 + 4q2 + 4q3)))

1
4 ≤ 2q·δ‖∆qu0‖L2

fulfills the domination requirement since the right side is an `2 sequence that is
independent of T and n. As for the pointwise convergence, for fixed q one has

2q·δ‖∆qu
n
0‖2

L2(1− exp(−CνT (4q1 + 4q2 + 4q3)))
1
4

≤ |u0|δ(1− exp(−CνT (4q1 + 4q2 + 4q3)))
1
4
T→0−→ 0.

So, by Lebesgue, lim
T→0

fn(T ) = 0 uniformly with respect to n. We choose T small

enough such that fn(T ) < ν
4C

, where C is the constant from inequality (2.5). It
follows that

‖un‖HT <
ν

3
4

4C
+ Cν−

3
4‖un‖2

HT
.

We deduce that ‖un‖HT ≤ ν
3
4

2C
if we take into account that ‖un‖HT is continuous

in T , ‖un‖H0 = 0 and

ν
3
4

2C
=
ν

3
4

4C
+ Cν−

3
4

 ν 3
4

2C

2

.
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This allows us to take the limit and to find the existence of the solution on [0, T ].

Proof of the global existence
We start again from inequality (2.5) and we estimate fn(t) ≤ C|u0|δ. We find

in the same way the existence of a solution in L4(]0,∞[;Hδ+a). Next we prove

that such a solution belongs to L∞(]0,∞[;Hδ).
We start again from inequality (2.3), we apply the L∞ norm and making

similar computations we find

2q·δ ‖∆qu‖L∞T (L2) ≤ C2q·δ ‖∆qu0‖L2 + Cν−
1
2

∥∥∥aq|u|2δ+a∥∥∥L2(0,T )
. (2.6)

Taking the `2 norm yields

‖u‖
L∞(]0,∞[;Hδ) ≤ |u0|δ + Cν−

1
2

(
‖u‖

L4(]0,∞[;Hδ+a)

)2
. (2.7)

Finally, the continuity in time follows from Lebesgue’s dominated convergence
theorem since the map t → ‖∆qun‖L2 is continous and the domination require-
ment is given in relations (2.6) and (2.7).

Let us now prove the uniqueness.

Theorem 2.4 (uniqueness) Let u1 and u2 be two solutions of (N-S) which be-

long to the space L4(]0, T [;Hδ+a)∩C([0, T [;Hδ) with the same initial data in Hδ.
Then u1 = u2.

Proof
We subtract the equations verified by u1 and u2 to obtain:

∂t(u1 − u2)− ν∆(u1 − u2) + u1 · ∇(u1 − u2) + (u1 − u2)∇u2 = ∇(p1 − p2).

The same computations as in theorem 2.3 yield

‖u1 − u2‖L4(]0,t[;Hδ+a)
≤ C‖u1 − u2‖L4(]0,t[;Hδ+a)

×
(
‖u1‖L4(]0,t[;Hδ+a)

+ ‖u2‖L4(]0,t[;Hδ+a)

)
.

Thus, if t is small enough, we have

‖u1 − u2‖L4(]0,t[;Hδ+a)
≤ 1

2
‖u1 − u2‖L4(]0,t[;Hδ+a)

,

so we get local uniqueness that is global uniqueness, since the map t → ‖u1 −
u2‖L4(]0,t[;Hδ+a)

is continous.
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3 Resolution of (N-S) in the HBs1,s2,s3 spaces

Let us introduce the spaces HBT,p,s1,s2,s3 = HBT,p,s defined as the closure of
compactly supported smooth functions under the norm

‖u‖HBT,p,s
def
=
∥∥∥∥∥∥∥2q·s∆qu

∥∥∥
LpT (L2)

∥∥∥∥
`2,2,1

.

As for the Hs spaces we shall prove a theorem of global existence and uniqueness
and a local existence and uniqueness one. Let a and b be two positive real numbers
such that a+ b = 1

2
.

Theorem 3.1 (global existence and uniqueness) There exists C > 0 such

that if div u0 = 0, u0 ∈ HB0,0, 1
2 and |u|

HB0,0, 12
< Cν then the (N-S) equations

have a unique global solution which belongs to

HB∞,4,a,b, 1
2
∩ L∞(]0,∞[;HB0,0, 1

2 ) ∩ C([0,∞[;HB0,0, 1
2 ).

Theorem 3.2 (local existence and uniqueness) If divu0 = 0 and u0 ∈ HB0,0, 1
2

then there exist T >0 and a unique solution of (N-S) on [0, T ] which belongs to

HBT,4,a,b, 1
2
∩ C([0, T [;HB0,0, 1

2 ).

Remark 3.1 We have HBT,4,a,b, 1
2
↪→ L4(]0,∞[;HBa,b, 1

2 ).

Indeed, remark 1.1 implies

‖u‖
L4(]0,∞[;HBa,b,

1
2 )

=
∥∥∥∥∥∥2q1a+q2b+

q3
2 ‖∆qu‖L2

∥∥∥
`2,2,1

∥∥∥
L4

≤
∥∥∥∥∥∥2q1a+q2b+

q3
2 ‖∆qu‖L2

∥∥∥
L4

∥∥∥
`2,2,1

= ‖u‖HB
T,4,a,b 1

2

.

We first prove

Lemma 3.1 Let si <
1
2
, ti <

1
2
, si + ti > 0 ∀ i ∈ {1, 2}, s3 ≤ 1

2
, t3 ≤ 1

2
,

s3 + t3 > 0 and p, q ≥ 1, r = pq
p+q
≥ 1. Then

‖uv‖HB
T,r,s+t−( 1

2 ,
1
2 ,

1
2 )
≤ ‖u‖HBT,p,s‖v‖HBT,q,t .
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Proof
We shall copy the proof of theorem 1.2 and prove this lemma for each of the

27 terms of the Littlewood-Paley decomposition. Let us take, for instance, the
T 1R2T̃ 3 term. We start again from inequality (1.4)∥∥∥∆qw

i
p(t)

∥∥∥
L2
≤ 2

q2
2

∑
r1≤p1−2
r3≤p3−2

2
r1
2

+
r3
2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u(t)

∥∥∥
L2

∥∥∥∆1
p1

∆2
p2−i∆

3
r3
v(t)

∥∥∥
L2
.

Taking the Lr(0, T ) norm and applying Hölder’s inequality gives∥∥∥∆qw
i
p(t)

∥∥∥
LrT (L2)

≤ 2
q2
2

∑
r1≤p1−2
r3≤p3−2

2
r1
2

+
r3
2

∥∥∥∆1
r1

∆2
p2

∆3
p3
u(t)

∥∥∥
LpT (L2)

∥∥∥∆1
p1

∆2
p2−i∆

3
r3
v(t)

∥∥∥
LqT (L2)

.

If we define
Aq = 2q·s ‖∆qu‖LpT (L2)

and
Bq = 2q·t ‖∆qu‖LqT (L2) ,

it follows that

2q·(s+t−( 1
2
, 1
2
, 1
2

))
∥∥∥∆qw

i
p(t)

∥∥∥
LrT (L2)

≤ C2q1(s1− 1
2

)+(s2+t2)(q2−p2)+q3(t3− 1
2

)

×
∑

r1≤p1−2
r3≤p3−2

2r1( 1
2
−s1)+r3( 1

2
−t3)Ar1,p2,p3Bp1,p2−i,r3

This inequality is entirely similar to (1.5) so the proof continues in exactly the
same way we did after that inequality.

Proof of the local existence
It is obvious that if δ = (0, 0, 1

2
) and a1 = a, a2 = b, a3 = 0 then hypoth-

esis (2.1) is verified excepted for the condition δ3 + a3 < 1
2
. This is precisely

where we use that B
1
2
2,1(R) is an algebra. Hence, we can follow the same line of

proof as in theorem 2.3, replacing the `2 norms by the `2,2,1 norms and the Hs

spaces with the HBs spaces. There is one fact which doesn’t allow us to give
an identical proof: the deduction of inequality (2.5) from inequality (2.4) which
is not possible because the switch of the L2 and `2,2,1 norms yields an inequality
in the opposite sens of the wanted one. To avoid that we have to give up the
estimate

‖∆q(u∇u)‖L2 ≤ C
(
2−q·(2δ+2a−( 3

2
, 1
2
, 1
2

)) + 2−q·(2δ+2a−( 1
2
, 3
2
, 1
2

))

+2−q·(2δ+2a−( 1
2
, 1
2
, 3
2

))
)
aq|u|21

2
+δ, 1

2
−δ,
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and to use, for the deduction of inequality (2.5), lemma 3.1. As in theorem 2.3
we find the following inequality:

d

dt
‖∆qun‖2

L2 + Cν(4q1 + 4q2 + 4q3)‖∆qun‖2
L2 ≤ ‖∆q(un∇un)‖L2 ‖∆qun‖L2 .

Gronwall’s lemma implies

‖∆qun(t)‖L2 ≤ ‖∆qu
n
0‖L2 exp(−Cν(4q1 + 4q2 + 4q3)t)

+ C
(
exp(−Cν(4q1 + 4q2 + 4q3)(·)) ∗ (‖∆q(un(·)∇un(·))‖L2)

)
(t).

Taking the L4(0, T ) norm and using Young’s inequality gives

‖∆qun(t)‖L4
T (L2) ≤ Cν−

1
4 (4q1 + 4q2 + 4q3)−

1
4‖∆qu

n
0‖L2

×
(

1− exp(−CνT ((4q1 + 4q2 + 4q3)))
) 1

4

+ C‖ exp(−Cν(4q1 + 4q2 + 4q3)(·))‖
L

4
3 (0,T )

‖∆q(un∇un)‖L2
T (L2)

≤ Cν−
1
4 (4q1 + 4q2 + 4q3)−

1
4‖∆qu

n
0‖L2(1− exp(−CνT (4q1 + 4q2 + 4q3)))

1
4

+ Cν−
3
4 (4q1 + 4q2 + 4q3)−

3
4 ‖∆q(un∇un)‖L2

T (L2) .

Again by Young’s inequality we have

(4q1 + 4q2 + 4q3)−
1
4 ≤ 2

q3
2 2−q·(a,b,

1
2

).

It follows that

2q·(a,b,
1
2

) ‖∆qun(t)‖L4
T (L2)

≤ Cν−
1
4 2

q3
2 ‖∆qu

n
0‖L2

(
1− exp(−CνT (4q1 + 4q2 + 4q3))

) 1
4

+ Cν−
3
4 (4q1 + 4q2 + 4q3)−

3
4 2q·(a,b,

1
2

) ‖∆q(un∇un)‖L2
T (L2) . (3.1)

Now we use the lemma 3.1 to deduce that

‖∆q(un∇un)‖L2
T (L2) = ‖∆qdiv (un ⊗ un)‖L2

T (L2)

≤ Ccq
(
2−q·(2a−

3
2
,2b− 1

2
, 1
2

) + 2−q·(2a−
1
2
,2b− 3

2
, 1
2

) + 2−q·(2a−
1
2
,2b− 1

2
,− 1

2
)
)
‖un‖2

HB
T,4,a,b, 12

,

where ‖cq‖`2,2,1 = 1. Young’s inequality implies

(4q1 + 4q2 + 4q3)−
3
4 2q·(a,b,

1
2

)2−q·(2a−
3
2
,2b− 1

2
, 1
2

) ≤ 1,

(4q1 + 4q2 + 4q3)−
3
4 2q·(a,b,

1
2

)2−q·(2a−
1
2
,2b− 3

2
, 1
2

) ≤ 1,

20



(4q1 + 4q2 + 4q3)−
3
4 2q·(a,b,

1
2

)2−q·(2a−
1
2
,2b− 1

2
,− 1

2
) ≤ 1.

Hence inequality (3.1) may be written as

2q·(a,b,
1
2

) ‖∆qun‖L4
T (L2) ≤ Cν−

1
4 2

q3
2 ‖∆qu

n
0‖L2

×
(

1− exp(−CνT (4q1 + 4q2 + 4q3))
) 1

4

+Cν−
3
4 cq‖un‖2

HB
T,4,a,b, 12

.

Taking the `2,2,1 norm gives

‖un‖HB
T,4,a,b, 12

≤ C

∥∥∥∥∥2 q3
2 ‖∆qu0‖L2

(
1− exp

(
−CνT (4q1 + 4q2 + 4q3)

)) 1
4

∥∥∥∥∥
`2,2,1

+ C‖un(τ)‖2
HB

T,4,a,b, 12

≤ gn(T ) + C‖un‖2
HB

T,4,a,b, 12

,

where

gn(t) = C

∥∥∥∥∥2 q3
2 ‖∆qu0‖L2

(
1− exp

(
−CνT (4q1 + 4q2 + 4q3)

)) 1
4

∥∥∥∥∥
`2,2,1

.

We conclude as in theorem 2.3. The fact that u ∈ C([0, T [;HB0,0, 1
2 ) is proved as

in the case of Hs spaces.

Proof of the global existence
Same proof as above by estimating

gn(t) ≤ C|u0|
HB0,0, 12

.

The uniqueness theorem is also similar to the one of the case Hs.

Theorem 3.3 (uniqueness) Let u1 and u2 be two solutions of (N-S) which be-

long to HBT,4,a,b, 1
2
∩C([0, T [;HB0,0, 1

2 ) with the same initial data in HB0,0, 1
2 . Then

u1 = u2.

Proof
Making the same computations as in theorem 2.4, replacing the `2 norms with

the `2,2,1 norms and using lemma 3.1 as shown above we find:

‖u1 − u2‖HB
t,4,a,b, 12

≤ C‖u1 − u2‖HB
t,4,a,b, 12

(‖u1‖HB
t,4,a,b, 12

+ ‖u2‖HB
t,4,a,b, 12

).

We conclude as in theorem 2.4.
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4 Some imbeddings and nonimbeddings

In this section we prove some imbeddings and some nonimbeddings which are used
to compare the results from the previous sections with the results already known.

We recall that one can solve (N-S) in the spaces H
1
2 , B

−1+ 3
p

p,∞ , 2 ≤ p <∞ (see [2],

[3], [7], [9]) and it seems very difficult to do it in C−1 (‖u‖Bsp,q
def
= ‖2is ‖∆iu‖Lp‖`q

and C−1 = B−1
∞,∞). It is also proved by H. Kozono and M. Yamazaki in [8] that

one can solve (N-S) in the homogeneous spaces N
3
p
−1

p,q,∞, 1 ≤ q ≤ p < ∞, p > 3,
where N s

p,q,r is defined to be the closure of the compactly supported smooth
functions under the norm:

‖u‖N sp,q,r =

∥∥∥∥∥2sj sup
x0∈R3

sup
R>0

R
3
p
− 3
q ‖∆ju‖Lq(B(x0,R))

∥∥∥∥∥
`r

,

where B(x0, R) denotes the closed ball in R3 with center x0 and radius R. Let
us remark that Bs

p,r = N s
p,p,r. We can prove the following proposition:

Proposition 4.1 i) If δ1 + δ2 + δ3 = 1
2
, −1

2
< δi <

1
2
∀ i ∈ {1, 2, 3} and

p > max
1≤i≤3

2

1− 2δi
then

Hδ ↪→ B
−1+ 3

p
p,∞ ↪→ C−1.

ii)H0,0, 1
2 ∩ L2 6⊂ C−1.

iii)If 1 ≤ q ≤ p < 3q
2

, p > 3, then HB0,0, 1
2 6⊂ N

3
p
−1

p,q,∞ hence HB0,0, 1
2 6⊂

B
−1+ 3

p
p,∞ ∀ 2 ≤ p <∞.

iv)HB0,0, 1
2 ↪→ C−1.

Property i) shows that Hδ solutions of (N-S) were already constructed by
M. Cannone [2], F. Planchon [9] and H. Kozono, M. Yamazaki [8]. Property

ii) suggests that the space H0,0, 1
2 is very interesting as space of initial data;

unfortunately we cannot include it in our results. Finally, property iii) shows that

HB0,0, 1
2 is not included in the space considered by H. Kozono and M. Yamazaki at

least for some p and q; it implies that it is not included in any of the spaces used
by M. Cannone and F. Planchon. The author doesn’t know if the non-imbedding
of iii) still holds for the other values of p and q .

Proof of proposition 4.1

i) First we remark that if s < 0, then we can replace ∆i with Si in the
definition of the Bs

p,∞ space. By lemma 1.1 we have

2q(−1+ 3
p

) ‖Squ‖Lp ≤ C2q(−1+ 3
p

)
∑

q1≤q,q2≤q
q3≤q

‖∆qu‖Lp
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≤ C2q(−1+ 3
p

)
∑

q1≤q,q2≤q
q3≤q

2q1( 1
2
− 1
p

)+q2( 1
2
− 1
p

)+q3( 1
2
− 1
p

) ‖∆qu‖L2

≤ C2q(−1+ 3
p

)
∑

q1≤q,q2≤q
q3≤q

2q1( 1
2
− 1
p
−δ1)+q2( 1

2
− 1
p
−δ2)+q3( 1

2
− 1
p
−δ3)

×
(

2q·δ ‖∆qu‖L2

)
≤ C2q(−1+ 3

p
)

∑
q1≤q,q2≤q
q3≤q

2q1( 1
2
− 1
p
−δ1)+q2( 1

2
− 1
p
−δ2)+q3( 1

2
− 1
p
−δ3)|u|δ

.

As 1
2
− 1

p
− δi > 0 for any i ∈ {1, 2, 3}, one deduces∑

q1≤q,q2≤q
q3≤q

2q1( 1
2
− 1
p
−δ1)+q2( 1

2
− 1
p
−δ2)+q3( 1

2
− 1
p
−δ3) ≤ C2q(

3
2
− 3
p
−δ1−δ2−δ3) = C2q(1−

3
p

).

Hence ‖u‖
B
−1+ 3

p
p,∞

≤ C|u|δ and the first imbedding is proved. In order to obtain the

second imbedding it is enough to apply the classical Littlewood-Paley inequality:

‖∆qu‖L∞ ≤ 2
3q
p ‖∆qu‖Lp ,

to multiply by 2−q and to take the upper bound on q.
ii) As H0,0, 1

2 ∩ L2 and C−1 are distribution spaces, the closed graph theorem

shows that it is enough to prove H0,0, 1
2 ∩ L2 \↪→ C−1. Assume by absurd that

H0,0, 1
2 ∩ L2 ↪→ C−1. Then

2−q ‖Squ‖L∞ ≤ C‖u‖
H0,0, 12 ∩L2

∀ q.

We choose u = f ⊗ g where f : R2 → C, g : R → C. It is obvious that
Squ = Sqf ⊗ Sqg and ‖u‖

H0,0, 12 ∩L2
= ‖f‖L2 ‖g‖

H
1
2
, where in Sqf , Sq is the 2D Sq

and in Sqg, Sq is the 1D Sq. Hence

2−q ‖Sqf‖L∞ ‖Sqg‖L∞ ≤ C ‖f‖L2 ‖g‖
H

1
2
∀ q. (4.1)

For each fixed q we use the function fq(x) = f0(2qx), where f0 is chosen with

suppf̂0 sufficiently small to get Sqfq = fq, that gives ‖Sqfq‖L∞ = ‖fq‖L∞ =
‖f0‖L∞ and ‖fq‖L2 = 2−q ‖f0‖L2 since we work in two dimensions. Therefore, it
comes from relation (4.1)

‖Sqg‖L∞ ≤ C‖g‖
H

1
2
,

that is H
1
2 (R) ⊂ L∞ which is false.

iii) As above we assume by absurd that HB0,0, 1
2 ↪→ N

3
p
−1

p,q,∞ and we remark
that if s < 0, then we can replace ∆j with Sj in the definition of the norm of the
space N s

p,q,∞.
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Again, we choose u = f ⊗ g where f : R2 → C, g : R→ C. It is not difficult
to see that the norm

sup
x0∈R3

sup
R>0

R
3
p
− 3
q ‖f ⊗ g‖Lq(B(x0,R))

is equivalent to the norm

sup
x0∈R3

sup
R>0

R
3
p
− 3
q ‖f‖Lq(B2(x′0,R))‖g‖Lq(B1(x3

0,R))

where B1 and B2 denote the one-dimensional, respectively two-dimensional balls.
This is done by including a cube of size R into the ball B(x0, R), applying Fubini’s
theorem, then including balls of radius R

2
into the one-dimensional and the two-

dimensional cubes of size R and finally taking the upper bound on R.
It follows that

2j(−1+ 3
p

) sup
x0∈R3

sup
R>0

R
3
p
− 3
q ‖Sjf‖Lq(B2(x′0,R))‖Sjg‖Lq(B1(x3

0,R)) ≤ C ‖f‖L2 ‖g‖
B

1
2
2,1

∀ j,

where the constant C does not depend on j. Choosing x0 = 0 yields

2j(−1+ 3
p

) sup
R>0

R
3
p
− 3
q ‖Sjf‖Lq(B2(0,R))‖Sjg‖Lq(B1(0,R)) ≤ C ‖f‖L2 ‖g‖

B
1
2
2,1

∀ j,

Now we fix j and we choose fj(x) = f0(2jx), the same example as above. We
also choose g to be a function whose Fourier transform is a compactly supported
smooth function. This implies that Sjfj = fj and Sjg = g for j large enough.
Moreover, we have that

‖Sjfj‖Lq(B2(0,R)) = ‖fj‖Lq(B2(0,R)) = 2−
2j
q ‖f0‖Lq(B2(0,2jR)),

and
‖fj‖L2 = 2−j ‖f0‖L2 .

It follows that, for j large enough, we have

2j(
3
p
− 2
q

) sup
R>0

R
3
p
− 3
q ‖f0‖Lq(B2(0,2jR))‖g‖Lq(B1(0,R)) ≤ C ‖f0‖L2 ‖g‖

B
1
2
2,1

,

which implies

2j(
3
p
− 2
q

) sup
R>0

R
3
p
− 3
q ‖f0‖Lq(B2(0,R))‖g‖Lq(B1(0,R)) ≤ C ‖f0‖L2 ‖g‖

B
1
2
2,1

, ∀j > j0.

Taking the limit on j →∞ gives a contradiction.
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iv) We write

2−q ‖Squ‖L∞ ≤ 2−q
∑

q1≤q,q2≤q
q3≤q

‖∆qu‖L∞

≤ 2−q
∑

q1≤q,q2≤q
q3≤q

2
q1
2

+
q2
2

+
q3
2 ‖∆qu‖L2

≤ 2−q
∑
q1≤q
q2≤q

2
q1
2

+
q2
2

∥∥∥2 q3
2 ‖∆qu‖L2

∥∥∥
`1q3

≤
∥∥∥2 q3

2 ‖∆qu‖L2

∥∥∥
`∞,∞,1

≤
∥∥∥2 q3

2 ‖∆qu‖L2

∥∥∥
`2,2,1

= ‖u‖
HB0,0, 12

.

This completes the proof.

One could ask whether the divergence free condition has an influence on the
choice of the spaces where we can take the initial data or not. The answer is
negative because, if we look to the proofs above, we see that the scalar coun-
terexamples f we deduce have the property that ∂1f and ∂2f are again good
counterexamples (differentiating f0 only diminishes the support of its Fourier
transform), so we can take as initial data u0 = (∂2f,−∂1f, 0).

Appendix

In this paragraph we show how a general d-dimensional hyperbolic symmetric

system can be solved in B
1+ d

2
2,1 (Rd). By general hyperbolic symmetric system we

mean a system of the form:

(S)

{
∂tU + A(U) · ∇U = 0

U |t=0 = U0,

where A(U) = (Aj(U))1≤j≤d and, for all j, Aj(U) is a symmetric smooth globally
Lipschitz matrix and U is a time dependent vector field in Rd.

Proposition Assume that U0 ∈ L2 ∩ B1+ d
2

2,1 . Then there exist a time T and a

unique solution of (S) on [0, T ] in the space L∞(]0, T [;B
1+ d

2
2,1 ). Moreover, there

exists a constant C > 0 such that the maximal time existence of such a solution
may be bounded from below by T > C

‖U0‖
B

1+ d
2

2,1

.
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Proof

The proof relies on the fact that B
d
2
2,1 is imbedded in L∞ and on the following

estimate:

Lemma For all vector fields U in B
1+ d

2
2,1 there exists a sequence (cq)q∈N such that

|< ∆q(A(U) · ∇U)|∆qU > | ≤ C2−q(
d
2

+1)cq ‖∆qU‖L2 ‖U‖
B

1+ d
2

2,1

‖∇U‖L∞ ,

where
∑
q

cq = 1.

This lemma is well-known in the case of the Sobolev spaces and the extension
to the Besov spaces is simple. Decomposing the product A(U) · ∇U in the usual
sum of two paraproducts and a remainder, using the classical product theorem
for Besov spaces, we see that the only term where a critical case appears is

< ∆q(TA(U)∇U)|∆qU > .

Some easy computations done integrating by parts show that

< ∆q(TA(U)∇U)|∆qU >=
∑
p,j

< [∆q, Sp−1Aj(U)]∂j∆pU,∆qU >

− 1

2

∑
p

Sp−1divA(U) ∆q∆pU ∆qU

− 1

2

∑
p,p′,j

(Sp−1 − Sp′−1)Aj(U) ∆q∆pU ∂j∆q∆p′U

The last two terms are very easy to estimate, we need only to apply the
definition of the Besov spaces. The first term is estimated by remarking that
∆q is an operator of convolution with the function 2qdh(2q·), where h = F−1φ.
Therefore

[Sp−1Aj(U),∆q]a(x) = 2qd
∫

(Sp−1Aj(U)(x)− Sp−1Aj(U)(y))h(2q(x−y))a(y) dy.

Hence
|[Sp−1Aj(U),∆q]a(x)| ≤ C2q(d−1) ‖∇U‖L∞ |yh|(2

q·) ∗ |a|.
Young’s inequality now gives

‖[Sp−1Aj(U),∆q]a(x)‖L2 ≤ C2−q ‖∇U‖L∞ ‖a‖L2 .

This proves the lemma.

We return to the proof of the proposition. We apply ∆q to (S) and we take
the scalar product with ∆qU to obtain:

d

dt
‖∆qU‖2

L2 ≤ |< ∆q(A(U) · ∇U)|∆qU > |

≤ C2−q(
d
2

+1)cq‖U‖
B

1+ d
2

2,1

‖∇U‖L∞ ‖∆qU‖L2 .
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It follows that

2q(
d
2

+1) ‖∆qU(t)‖L2 ≤ 2q(
d
2

+1) ‖∆qU0‖L2 + C
∫ t

0
cq(τ)‖U(τ)‖

B
1+ d

2
2,1

‖∇U(τ)‖L∞ dτ.

Summing on q yields

‖U(t)‖
B

1+ d
2

2,1

≤ ‖U0‖
B

1+ d
2

2,1

+ C
∫ t

0
‖U(τ)‖

B
1+ d

2
2,1

‖∇U(τ)‖L∞ dτ.

Applying Gronwall’s lemma we find

‖U(t)‖
B

1+ d
2

2,1

≤ ‖U0‖
B

1+ d
2

2,1

exp
(
C
∫ t

0
‖∇U(τ)‖L∞

)
dτ.

Next we use that B
d
2 ⊂ L∞ to write

‖∇U(t)‖L∞ ≤ ‖U(t)‖
B

1+ d
2

2,1

≤ ‖U0‖
B

1+ d
2

2,1

exp
(
C
∫ t

0
‖∇U(τ)‖L∞ dτ

)
.

If we note

f(t) = C
∫ t

0
‖∇U(τ)‖L∞ dτ,

we obtain
f ′(t) ≤ C‖U0‖

B
1+ d

2
2,1

exp(f(t)).

Again by Gronwall’s lemma it follows

exp(−f(t)) ≥ exp(−f(0))− Ct‖U0‖
B

1+ d
2

2,1

.

Hence, as long as Ct‖U0‖
B

1+ d
2

2,1

< 1, we have

∫ t

0
‖∇U(τ)‖L∞ dτ <∞.

Standard L2 estimates and the inequality above imply uniqueness of solutions.
This completes the proof.
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Arts et Sciences, 1995.

27



[3] J.-Y. Chemin, Remarques sur l’existence globale pour le systeme de Navier-
Stokes Incompressible, SIAM J. Math. Anal. 23, No.1, pp. 20-28, 1992.

[4] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non-lipschitziens
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