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Abstract. Let Ω be a simply connected, bounded, smooth domain of R2 or R3. We consider the
equation of steady motion of a third grade fluid in Ω with homogeneous Dirichlet boundary conditions.
We prove that the monotonicity technique used by Paicu [22] in the full space for unsteady motion
allows to obtain the existence of a W 1,4

0 solution provided that the forcing belongs to W−1, 4
3 . The

size of the forcing is arbitrary.
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1. Introduction

Fluids of grade three are a subclass of the family of fluids of complexity three for which the
constitutive law is given by the formula

(1) T = −pI + νA+ α1A2 + α2A
2 + β1A3 + β2(AA2 + A2A) + β|A|2A

where A1 ≡ A, A2 and A3 are the first three Rivlin-Ericksen tensors (or rate-of-strain tensors) defined
recursively by

A = A1 = ∇u+ (∇u)t, An = Ȧn−1 + (∇u)tAn−1 + An−1∇u,

where the dot denotes the material derivative and u is the velocity field. Relation (1) arises when
the fluid is assumed incompressible and the constitutive law is polynomial of degree less than 3 in
the first three Rivlin-Ericksen tensors.

To prove a mathematical theory of existence and uniqueness of solutions for the constitutive law (1)
with no restrictions on the material coefficients ν, α1, α2, β1, β2, β (other than the obvious condition
ν ≥ 0) seems to be out of reach. One can find conditions on these coefficients either through
theoretical investigations or from experimental data.

Theoretical conditions were found by Fosdick and Rajagopal [16]. These authors performed a
thermodynamic study and deduced that the material coefficients should satisfy the restrictions ν ≥
0, α1 ≥ 0, β1 = β2 = 0, β ≥ 0 and |α1 + α2| ≤ (24νβ)1/2. Unfortunately, experimental data seems
to be at odds with the theoretical results. Indeed, virtually all experimental data exhibits negative
values of α1. The reason why this apparent contradiction occurs is beyond the scope of the present
paper; we refer the reader to [15, 17, 19] for a discussion involving both points of view. We also
remark that ν should be positive and that both signs of the coefficient β (if β > 0 the fluid is said
shear thickening while for β < 0 the fluid is said shear thinning) are observed in experiments although
the sign minus for β seems to be more frequent, see [25, Fig. 7, 22, 23] and [4, Table 6.2-1].

In order for the model to be mathematically amenable we will assume that β1 = β2 = 0 as in [16]
but we will allow signs of coefficients in agreement with the experimental data. In particular, α1 may
be negative in our results (see the statements of Theorems 1 and 2 below for the precise restrictions
imposed on the coefficients).

We are concerned in this work with the steady motion of a third grade fluid in a bounded domain
Ω endowed with homogeneous Dirichlet boundary conditions. Given the condition β1 = β2 = 0, the
equation of motion becomes

−ν4u+ u · ∇u− α2 div(A2)− α1 div(u · ∇A+ LtA+ AL)− β div(|A|2A) = f −∇p, in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω.

(2)
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Above, u(x) denotes the velocity vector field, p is the fluid pressure and L denotes the gradient
matrix of the velocity L = ∇u = (∂jui)i,j. We will assume that Ω is a bounded, smooth, simply-
connected domain of R2 or R3. The unsteady version of the above equations involves the additional
term ∂t(u− α14u) on the left-hand side.

The first mathematical results on third grade fluids are due to [1, 2], see also [7, 24]. These articles
treat the unsteady case, assume that the initial data belongs to H3 or W 2,r with r > 3 and prove
global existence and uniqueness of solutions for small initial data or local existence and uniqueness
of solutions for large initial data.

Recently, in the case of the full space R2 and R3, two of the authors proved the global existence
of solutions for large H2 initial data, and also the uniqueness of such solutions in dimension two, see
[8, 9]. These results were extended in [10] to bounded domains if Navier slip boundary conditions
are imposed, see also [11] for the case of second grade fluids.

Very recently, one of the authors went even further and was able to prove in [22] the global existence
of solutions in the case of the full space for large initial data in H1. This requires a new idea, even
though there is a well-known a priori energy estimate in H1. Indeed, it seems to be very hard to pass
to the limit in an approximation procedure with compactness methods since the a priori estimates
we have give control over the W 1,4 norm of the solution at most and we would need to pass to the
limit in terms like div(|A|2A). The new idea of [22] is the use of the monotonicity of some of the non-
linear part of the equation in order to pass to the limit. Let us note that this monotonicity method
was already used for example by O.A. Ladyzhenskaya [20] and J.-L. Lions [21, pages 155-162] for a
simpler model related to our equation. We would also like to point out that using this approach it
is possible to construct a unique L2 solution in the particular case where α1 = 0, see [18].

As far as the steady case is concerned, Bernard and Ouazar [3] were able to extend the results
available for second grade fluids (see [6, 13]) to the case of third grade fluids. They prove the existence
and uniqueness of an H3 solution provided that the forcing f is small and belongs to H1. Passerini
and Patria [23] consider the steady problem for third grade fluids in a channel but with different kind
of data: these authors assume that the forcing vanishes and prescribe instead the flux. Since the flux
is a constant, in contrast to our setting there is no regularity issue with the data. It is proved in [23]
that a unique solution exists for small flux.

In this paper we use the monotonicity idea of [22] to prove existence of solutions in the steady
state case for bounded domains with homogeneous Dirichlet boundary conditions. We are then able
to remove the smallness assumption of [3] and moreover consider less regular forcing. More precisely,

we prove that for every forcing f ∈ W−1, 4
3 , there exists a W 1,4 solution of the steady third grade

fluids equations. We also prove that every such weak solution verifies an energy equality. A special
smoothing procedure must be used for the proof to work. We also note that the restrictions that we
impose on the coefficients due to the monotonicity argument are weaker than those of [22].

Theorem 1 (H1 solutions). Assume that f ∈ W−1, 4
3 and that the material coefficients verify the

following conditions: ν ≥ 0, β > 0 and |α1| ≤
√

8βν in dimension two and ν ≥ 0, β > 0 and
3α2

1 + 4(α1 + α2)
2 ≤ 24νβ in dimension three. There exists a solution u ∈ W 1,4

0 of equation (2) in
the sense of distributions. In addition, the following energy equality holds true:

(3) ν

∫
Ω

|A|2 + β

∫
Ω

|A|4 + (α1 + α2)

∫
Ω

tr(A3) = 2〈f, u〉
W−1, 43 ,W 1,4

0

.

In the theorem above, we extended the result of [22] to the steady case and to bounded domains.
One might wonder if the theory of H2 solutions of [9] cannot be extended likewise. The difficulty
when one considers the Dirichlet condition and performs H2 energy estimates arises from the term
−

∫
Ω
∇p · 4u. This term is of lower order for Navier boundary condition (and this allows to prove

the results of [10]), but does not seem to be of lower order for Dirichlet boundary condition.
We conclude this work with a weak-strong uniqueness result. When the forcing f is small and

belongs to H1, one can construct a small H3 solution as in [3], but also W 1,4 solutions by Theorem
1. We prove that the W 1,4 and (the small) H3 solutions must necessarily be equal.
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Theorem 2 (weak-strong uniqueness). Assume the same hypothesis on the material coefficients as
in Theorem 1 but with strict inequalities: ν > 0, β > 0 and |α1| <

√
8βν in dimension two and ν > 0,

β > 0 and 3α2
1 +4(α1 +α2)

2 < 24νβ in dimension three. Let u and ũ be two solutions of Equation (2)
belonging to W 1,4

0 which are associated to the same forcing. Let p = 3 if the space dimension is three
and p > 2 arbitrary in dimension two. There exists a constant M depending only on the material
coefficients, the domain Ω and the constant p such that if ũ ∈ W 2,p and ‖ũ‖W 2,p ≤M , then u = ũ.

2. Notation and preliminary results

For two vector fields u and ũ we define the scalar product u · ũ =
∑

i uiũi and |u| = (u · u) 1
2 . For

two matrices A and B we set A : B =
∑

ij AijBij and |A| = (A : A)
1
2 .

Let Ω be a bounded, smooth and simply connected domain of Rn, n = 2, 3. We denote by Wm,p
0

the closure of C∞0 (Ω) in Wm,p(Ω) and by Wm,p
0,σ the space of divergence free vector fields belonging

to Wm,p
0 (Ω). We will also use the classical notation Hm

0 = Wm,2
0 (Ω). We denote by V the space

of divergence free vector fields in H1
0 . The spaces H−1, respectively W−1, 4

3 , denote the dual spaces
of H1

0 , respectively W 1,4
0 . For f and g in two dual spaces X and X ′ we denote by 〈f, g〉X,X′ the

usual duality parenthesis. If f and g are vector fields then 〈f, g〉X,X′ =
∑

i〈fi, gi〉X,X′ and we will

also use a similar notation for matrices. We will use this notation mainly for X = L2, X = W 1,4
0 or

X = D ≡ C∞0 (Ω). It is clear that 〈f, g〉L2 = 〈f, g〉
W−1, 43 ,W 1,4

0

= 〈f, g〉D′,D whenever these expressions

make sense. For this reason, we will sometimes drop the index X,X′ when no confusion can occur.

We observe now that equation (2) makes sense in the space of distributions if u ∈ W 1,3
0 . Indeed,

the terms A2, LtA,AL and |A|2A all belong to L1, so the divergence of these terms is well-defined
in the sense of distributions. Next, the terms 4u and u · ∇u clearly make sense in the space of
distributions. Finally, we observe that div(u · ∇A) =

∑
i ∂i div(uiA). Since uiA ∈ L1, the expression∑

i ∂i div(uiA) is well defined in the sense of distributions, and so is div(u · ∇A).

We next introduce the following smoothing operator

Jεf = AεBεf,

where Bε is a cut-off operator at distance ≥ 2ε of the boundary and Aε is the usual smoothing
by convolution operator. More precisely, let φ be an even function belonging to C∞0 (B(0, 1)), φ ≥
0,

∫
φ = 1; we set

Aεf = φε ∗ f
where φε = 1

εnφ
(

x
ε

)
and n ∈ {2, 3} is the space dimension. Next, for ε small enough there exist a

function hε ∈ C∞0 (Ω; [0, 1]) such that hε(x) = 0 if d(x, ∂Ω) ≤ 2ε, and hε(x) = 1 if d(x, ∂Ω) ≥ 3ε.
We can further assume that ‖∇khε‖L∞(Ω) = O(1/εk). We define then Bε to be the operator of
multiplication by the cut-off function hε:

Bεf = hεf.

We recall that if f ∈ Wm,p
0 (Ω) then

Jεf −→ f in Wm,p(Ω)

and Jεf ∈ C∞0 (Ω).
Let w ∈ Wm,p

0,σ (Ω). In dimension 2, since Ω is simply connected, it is well-known that there exists

a uniquely defined stream function ψ ∈ Wm+1,p
0 (Ω), i.e. ∇⊥ψ = w. In dimension 3, according to

[5, Theorem 2.1] and using again that Ω is a simply connected we deduce that there exists a vector
field ψ ∈ Wm+1,p

0 (Ω)3 such that w = curlψ. The vector field ψ is not necessarily uniquely defined;
however there exists a linear continuous operator

S = S(Ω,m, p) : Wm,p
0,σ (Ω) −→ Wm+1,p

0 (Ω)3

such that curlSw = w,∀w ∈ Wm,p
0,σ (Ω).

We will denote in the following by ψ either the uniquely defined stream function mentioned above
if n = 2 or the vector field Sw if n = 3. Observe that the mapping u 7→ ψ is linear and continuous
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from Wm,p
0,σ (Ω) to Wm+1,p

0 (Ω)2n−3. We introduce now the following smoothing operator for divergence
free vector fields. For w ∈ Wm,p

0,σ (Ω) we set

J̃εw = ∇⊥(Jεψ) if n = 2

and
J̃εw = curl(Jεψ) if n = 3.

We observe that in both cases J̃εw is a divergence free C∞0 vector field such that

J̃εw −→ w in Wm,p(Ω).

We will later use the following classical Hardy inequality.

Lemma 3. If f ∈ Wm,p
0 (Ω) then f(x)/dm(x, ∂Ω) ∈ Lp(Ω) and∥∥ f(x)

dm(x, ∂Ω)

∥∥
Lp(Ω)

≤ C‖f‖W m,p(Ω).

Let us introduce the following non-linear operator R : W 1,4
0 → W−1, 4

3 defined by

(4) W 1,4
0 3 u 7→ R(u) = −ν4u− α1 div(LtA+ AL)− α2 div(A2)− β div(|A|2A) ∈ W−1, 4

3 .

We skip the trivial verification that R(u) indeed belongs to W−1, 4
3 if u ∈ W 1,4

0 . The operator R
verifies the following important monotonicity property:

Lemma 4. Assume that the material coefficients verify the following conditions: ν, β ≥ 0, |α1| ≤√
8βν in dimension two and ν, β ≥ 0, 3α2

1+4(α1+α2)
2 ≤ 24νβ in dimension three. Then the operator

R is monotonic on W 1,4
0,σ :

〈R(u)−R(ũ), u− ũ〉
W−1, 43 ,W 1,4

0

≥ 0

for all vector fields u, ũ ∈ W 1,4
0,σ .

Proof. Let u, ũ ∈ W 1,4
0,σ . We use the notation

A = A(u), Ã = A(ũ), L = L(u), L̃ = L(ũ), w = u− ũ.

One has that 4u = divA and 4ũ = div Ã. Multiplying the difference R(u) −R(ũ) by w = u − ũ
and integrating by parts we obtain that

〈R(u)−R(ũ), u− ũ〉
W−1, 43 ,W 1,4

0

=

∫
Ω

[
ν(A− Ã) + α1(L

tA+ AL− L̃tÃ− ÃL̃) + α2(A
2 − Ã2) + β(|A|2A− |Ã|2Ã)

]
: (L− L̃)

=
1

2

∫
Ω

[
ν(A− Ã) + α1(L

tA+ AL− L̃tÃ− ÃL̃) + α2(A
2 − Ã2) + β(|A|2A− |Ã|2Ã)

]
: (A− Ã).

where we used that the matrix between the square parenthesis is symmetric. Since the matrix A− Ã
is symmetric, we next observe that

(LtA+ AL) : (A− Ã) = LtA : (A− Ã) + AL : (A− Ã) = 2AL : (A− Ã)

and
(L̃tÃ+ ÃL̃) : (A− Ã) = 2ÃL̃ : (A− Ã)

Using the identity

(|A|2A− |Ã|2Ã) : (A− Ã) =
1

2
(|A|2 − |Ã|2)2 +

1

2
|A− Ã|2(|A|2 + |Ã|2)

we get that

(5) 2〈R(u)−R(ũ), u− ũ〉
W−1, 43 ,W 1,4

0

=

∫
Ω

[
ν|A− Ã|2 + 2α1(AL− ÃL̃) : (A− Ã)

+ α2(A
2 − Ã2) : (A− Ã) +

β

2
(|A|2 − |Ã|2)2 +

β

2
|A− Ã|2(|A|2 + |Ã|2)

]
.
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Let M = L − L̃, C = A − Ã and B = A + Ã. We observe that B and C are trace free symmetric
matrices and C = M + M t. Recalling that tr(A1A2) = tr(A2A1) = A1 : A2 for any n × n matrices
A1 and A2 we first observe that

(A2 − Ã2) : (A− Ã) = tr
[
(A2 − Ã2)(A− Ã)

]
= tr

[
(A− Ã)2(A+ Ã)

]
= C2 : B.

Next, using that A = B+C
2

and Ã = B−C
2

one has that

(AL− ÃL̃) : (A− Ã) =
1

2
[(B + C)L− (B − C)L̃] : C =

1

2
(BM) : C +

1

2
(CL+ CL̃) : C.

But (CL) : C = L : C2 = 1
2
(L+ Lt) : C2 = 1

2
A : C2 and similarly (CL̃) : C = 1

2
Ã : C2, so

(AL− ÃL̃) : (A− Ã) =
1

2
B : (CM t) +

1

4
B : C2 =

1

4
B : (CM t +MC) +

1

4
B : C2.

Furthermore, replacing A = B+C
2

and Ã = B−C
2

in (5) we finally observe that

2〈R(u)−R(ũ), u− ũ〉
W−1, 43 ,W 1,4

0

=

∫
Ω

[
ν|C|2 +

β

2
(C : B)2 +

β

4
|C|4 +

β

4
|C|2|B|2 +

(
α2 +

α1

2

)
C2 : B +

α1

2
E : B

]
,(6)

≡
∫

Ω

F (B)

where
E = CM t +MC

is a symmetric matrix. Let us fix C, M and determine the minimum of the functional F (B). We
identifyM3(R) with R9, we consider F to be defined onM3(R) by the same formula and we compute
the minimum of F constrained by tr(B) = 0. We do not include the constraint that B is symmetric
since it will turn out that the minimum point of F is symmetric; so the constraint that B is symmetric
is unnecessary. It is clear from the formula of F (B) that F (B) → ∞ if |B| → ∞. Therefore, there
exists a global minimum point of F on M3(R) constrained by tr = 0. Let B0 be such a global
minimum point. By the Lagrange multipliers method, one has that ∇F (B0) must be proportional
to ∇ tr(B0). Clearly,

∇F (B0) = β(C : B0)C +
β

2
|C|2B0 +

(
α2 +

α1

2

)
C2 +

α1

2
E and ∇ tr(B0) = I

so there exists λ ∈ R such that

(7) β(C : B0)C +
β

2
|C|2B0 +

(
α2 +

α1

2

)
C2 +

α1

2
E = λI.

Taking the trace of the above relation and observing that

(8) tr(E) = tr(CM t +MC) = tr(M tC +MC) = tr(C2) = |C|2

we get that

(9) λ =
α1 + α2

n
|C|2.

We next take the scalar product of (7) with C and use that

(10) E : C = (CM t) : C + (MC) : C = M t : C2 +M : C2 = C : C2 = tr(C3)

to obtain

(11) C : B0 = −2(α1 + α2) tr(C3)

3β|C|2
.

Plugging (9) and (11) in (7) allows to deduce the value of B0:

(12) B0 =
4(α1 + α2) tr(C3)

3β|C|4
C − (α1 + 2α2)

β|C|2
C2 − α1

β|C|2
E +

2(α1 + α2)

nβ
I.

We observe first that, as claimed above, B0 is indeed a symmetric matrix. Next, we observe that
|C2|2 = |C|4/2; this follows from a trivial computation if the matrix C is trace-free and diagonal.
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The general case follows by diagonalising the matrix C = OCO−1 with O an orthogonal matrix and

C a diagonal trace free matrix and writing |C2|2 = tr(C4) = tr(OC
4
O−1) = tr(C

4
) = [tr(C

2
)]2/2 =

[tr(C2)]2/2 = |C|4/2. Moreover, it is easy to obtain as above that

(13) E : C2 = C2 : C2 = |C|4/2.
Using these observations we can compute C2 : B0 and find

(14) C2 : B0 =
4(α1 + α2)[tr(C

3)]2

3β|C|4
+
α1 + α2

β

( 2

n
− 1

)
|C|2.

We next express E : B0. This term contains |E|2 that we need to compute. Let D = M −M t. It is
a simple calculation to check that

E = C2 +
DC − CD

2
.

We also observe that the matrices C2 and DC − CD are perpendicular with respect to the scalar
product of matrices. Indeed, C2 : (DC) = C2 : (CD) = C3 : D. Therefore

(15) |E|2 = |C2|2 +
|CD −DC|2

4
=
|C|4

2
+
|CD −DC|2

4

Taking the scalar product of (12) with E and using relations (8), (10), (13) and (15) we obtain after
a few calculations that

(16) E : B0 =
4(α1 + α2)[tr(C

3)]2

3β|C|4
+
α1 + α2

β

( 2

n
− 1

)
|C|2 − α1|CD −DC|2

4β|C|2

and squaring (12) and using that tr(C) = 0 yields

(17) |B0|2 = −32(α1 + α2)
2[tr(C3)]2

9β2|C|6
+

4(α1 + α2)
2

β2

(1

2
− 1

n

)
+
α2

1|CD −DC|2

4β2|C|4
.

Using (11), (14), (15), (16) and (17) we finally get the following formula for F (B0):

(18) F (B0) =
[
ν +

(α1 + α2)
2

β

( 1

n
− 1

2

)]
|C|2 − α2

1|CD −DC|2

16β|C|2
+
β

4
|C|4 +

2(α1 + α2)
2[tr(C3)]2

3β|C|4

We claim next that

(19) |CD −DC|2 ≤ 2|C|2|D|2.
In dimension two, since C is symmetric trace free and D is antisymmetric, it is an easy calculation to
check that equality holds in the above relation. In dimension three, we diagonalize again the matrix
C and use that if O is an orthogonal matrix and F is an arbitrary matrix, then |OF | = |FO| = |F |.
We write

|CD −DC| = |OCOtD −DOCOt| = |COtDO −OtDOC| = |CD̃ − D̃C|

where C is a trace free diagonal matrix and D̃ = OtDO is an antisymmetric matrix. Moreover,

|C| = |C| and |D̃| = |D|. Let

C =

a 0 0
0 b 0
0 0 c

 and D̃ =

 0 x y
−x 0 z
−y −z 0

 .

We compute explicitly

|CD̃− D̃C|2 = 2
[
x2(a− b)2 +y2(a− c)2 +z2(b− c)2

]
≤ 2(x2 +y2 +z2) max

[
(a− b)2, (a− c)2, (b− c)2

]
.

We can assume without loss of generality that a ≥ b ≥ 0. Since c = −a− b we infer that

max
[
(a− b)2, (a− c)2, (b− c)2

]
= (2a+ b)2 ≤ 2[a2 + b2 + (a+ b)2].

Consequently,

|CD −DC|2 = |CD̃ − D̃C|2 ≤ 4(x2 + y2 + z2)(a2 + b2 + c2) = 2|D̃|2|C|2 = 2|C|2|D|2
6



which completely proves (19). Using now (19) in (18) gives

(20) F (B0) ≥
[
ν +

(α1 + α2)
2

β

( 1

n
− 1

2

)]
|C|2 − α2

1

8β
|D|2 +

β

4
|C|4 +

2(α1 + α2)
2[tr(C3)]2

3β|C|4

On the other hand, we observe that the vector field w = u − ũ is divergence free, vanishes on the
boundary, C = ∇w + (∇w)t and D = ∇w − (∇w)t. Then∫

Ω

|D|2 =
∑
ij

∫
Ω

(∂iwj − ∂jwi)
2 = 2

∑
ij

∫
Ω

(∂iwj)
2 − 2

∑
ij

∫
Ω

∂iwj∂jwi

= 2
∑
ij

∫
Ω

(∂iwj)
2 + 2

∑
ij

∫
Ω

∂j∂iwjwi = 2
∑
ij

∫
Ω

(∂iwj)
2 − 2

∑
ij

∫
Ω

∂j∂iwjwi =

∫
Ω

|C|2

We deduce from the above relation and from (6) and (20) that

2〈R(u)−R(ũ), u− ũ〉
W−1, 43 ,W 1,4

0

≥
∫

Ω

[
ν+

(α1 + α2)
2

β

( 1

n
−1

2

)
−α

2
1

8β

]
|C|2+β

4
|C|4+2(α1 + α2)

2[tr(C3)]2

3β|C|4

With the assumptions we have made on the coefficients α1, α2, ν, β the right-hand side of the above
relation is obviously non-negative. The conclusion follows. �

We prove next the following crucial lemma.

Lemma 5. Let u and v be two vector fields belonging to W 1,4
0,σ . Then∑

j

〈vjA, ∂j∇J̃εu〉D′,D → 0 as ε→ 0,

where A = A(u).

Even though the integral below is not convergent in the usual sense, we will use in the sequel the
standard notation ∑

j

〈vjA, ∂j∇J̃εu〉D′,D =

∫
Ω

v · ∇A : ∇J̃εu,

and we will also use the same notation for other similar terms.

Proof. We denote by Iε the integral from the statement. For notational convenience, we treat the
case n = 2. It will be clear from the proof that in the case n = 3 the argument is strictly similar,
just the notation is different. Indeed, we will not use any Sobolev embedding, only the Hardy and

Hölder inequalities which are dimension free. Let uε = J̃εu. We write∫
Ω

v · ∇A : ∇uε =

∫
Ω

v · ∇A : ∇∇⊥[φε ∗ (hεψ)]

=

∫
Ω

v · ∇A : Jε∇u︸ ︷︷ ︸
Iε
1

+

∫
Ω

v · ∇A : [φε ∗ (ψ∇∇⊥hε)]︸ ︷︷ ︸
Iε
2

(21)

+

∫
Ω

v · ∇A : [φε ∗ (∇hε ⊗∇⊥ψ)]︸ ︷︷ ︸
Iε
3

+

∫
Ω

v · ∇A : [φε ∗ (∇⊥hε ⊗∇ψ)]︸ ︷︷ ︸
Iε
4

.

Let Γε denote the ε-neighborhood of the boundary:

Γε = {x ∈ Ω; d(x, ∂Ω) < ε}.

Clearly vol(Γε) ≤ Cε, for some constant C. Given the localisation properties of φε and hε we observe
that the supports of the integrands in Iε

2 , I
ε
3 and Iε

4 are included in Γ4ε. Next, for p ∈ [1, 4] we use
7



the Holder inequality and the Hardy inequality given in Lemma 3 to write:

‖∇u‖Lp(Γ4ε) ≤ ‖∇u‖L4‖1‖
L

4p
4−p (Γ4ε)

≤ Cε
1
p
− 1

4‖u‖W 1,4(22)

‖u‖Lp(Γ4ε) ≤ Cε
1
p
− 1

4‖u‖L4(Γ4ε) ≤ Cε
1
p
+ 3

4‖u
d
‖L4 ≤ Cε

1
p
+ 3

4‖u‖W 1,4(23)

‖∇ψ‖Lp(Γ4ε) ≤ Cε
1
p
+ 3

4‖ψ‖W 2,4 ≤ Cε
1
p
+ 3

4‖u‖W 1,4(24)

‖ψ‖Lp(Γ4ε) ≤ Cε
1
p
− 1

4‖ψ‖L4(Γ4ε) ≤ Cε
1
p
+ 7

4‖ψ‖W 2,4 ≤ Cε
1
p
+ 7

4‖u‖W 1,4(25)

and similar relations hold true for v.
We integrate by parts using that u is divergence free, use the Holder and Young inequality, together

with relations (23) for v, (22) and (25) to get that

|Iε
2 | =

∣∣∣∫
Γ4ε

{
v · [∇φε ∗ (∇∇⊥hεψ)]

}
: A

∣∣∣
≤‖v‖L3(Γ4ε)‖A‖L3(Γ4ε)‖∇φε ∗ (ψ∇∇⊥hε)‖L3

≤‖v‖L3(Γ4ε)‖A‖L3(Γ4ε)‖∇φε‖L1‖∇∇⊥hε‖L∞‖ψ‖L3(Γε)

≤Cε
1
4‖u‖2

W 1,4‖v‖W 1,4 .

(26)

We used above that ‖∇φε‖L1 ≤ C/ε and ‖∇∇⊥hε‖L∞ ≤ C/ε2, relations (22), (23) and (25) with
p = 3 and u replaced by v in (23). Similarly, using also (24),

|Iε
3 | =

∣∣∣∫
Γ4ε

{
v · [∇φε ∗ (∇hε ⊗∇⊥ψ)]

}
: A

∣∣∣
≤‖v‖L3(Γ4ε)‖A‖L3(Γ4ε)‖∇φε‖L1‖∇hε‖L∞‖∇ψ‖L3

≤Cε
1
4‖u‖2

W 1,4‖v‖W 1,4

(27)

and also

(28) |Iε
4 | ≤ Cε

1
4‖u‖2

W 1,4‖v‖W 1,4 .

We next deal with Iε
1 . For notational convenience, we extend u, v and A, with 0 outside Ω. We

denote by ũ, ṽ and Ã the corresponding extension. Observe that Ã = A(ũ) in Rn and that ṽ · ∇Ã
is simply the extension of v · ∇A with 0 outside Ω (no jump occurs on ∂Ω). This allows to have
integrals on Rn instead of Ω while dealing with compactly supported functions. One has that

Iε
1 =

∫
Rn

ṽ · ∇Ã : [φε ∗ (hε∇ũ)]

=

∫
Rn

[φε ∗ (ṽ · ∇Ã)] : (hε∇ũ)

=

∫
Rn

[ṽ · ∇(φε ∗ Ã)] : (hε∇ũ) +

∫
Rn

[φε ∗ (ṽ · ∇Ã)− ṽ · ∇(φε ∗ Ã)] : (hε∇ũ)

=

∫
Rn

ṽ · ∇(JεÃ) : ∇ũ︸ ︷︷ ︸
Iε
11

+
∑

i

∫
Rn

ṽi[(∂iφε ∗ Ã)hε − ∂iφε ∗ (hεÃ)] : ∇ũ︸ ︷︷ ︸
Iε
12

+

∫
Rn

[φε ∗ (ṽ · ∇Ã)− ṽ · ∇(φε ∗ Ã)] : (hε∇ũ)︸ ︷︷ ︸
Iε
13

(29)

Next,

(30) Iε
11 =

∫
Ω

v · ∇(JεA) : ∇u =

∫
Ω

v · ∇(Jε∇u+ Jε(∇u)t) : ∇u

=

∫
Ω

v · ∇Jε(∇u) : A = −
∫

Ω

v · ∇A : Jε(∇u) = −Iε
1 .
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On the other hand, due to the localisation properties of φε and hε, we observe that

supp
[
(∂iφε ∗ Ã)hε − ∂iφε ∗ (hεÃ)

]
⊂ Γ4ε,

so one can deduce as in the estimates of Iε
2 , I

ε
3 and Iε

4 that

(31) |Iε
12| ≤ Cε

1
4‖u‖2

W 1,4‖v‖W 1,4 .

Next, we bound

|Iε
13| ≤ ‖∇u‖L2‖φε ∗ (ṽ · ∇Ã)− ṽ · ∇(φε ∗ Ã)‖L2 .

Since ṽ ∈ W 1,4(Rn) and Ã ∈ L4(Rn), according to [14, Lemma II.1] one has that

φε ∗ (ṽ · ∇Ã)− ṽ · ∇(φε ∗ Ã)
ε→0−→ 0 strongly in L2

so that

(32) Iε
13

ε→0−→ 0.

Collecting relations (29), (30), (31) and (32) gives that

(33) Iε
1 =

1

2
Iε
12 +

1

2
Iε
13

ε→0−→ 0.

We finally deduce from relations (21), (26), (27), (28) and (33) that

Iε −→ 0 as ε→ 0

and this concludes the proof. �

3. Existence of H1 solutions

Let ϕn ∈ V be the classical basis of eigenfunctions of the Stokes operator −P4, where P is the
Leray projector. That is

(34) −4ϕn = λnϕn +∇pn, ϕn|∂Ω = 0, divϕn = 0,

the set {ϕn} is an orthonormal basis of H, an orthogonal basis of V and the sequence {λn} is increas-
ing. Let Πn be the L2 orthogonal projection on the subspace spanned by the first n eigenfunctions
ϕ1, . . . , ϕn. We use the Galerkin procedure to construct an approximate system which will admit a

solution. Let un =
n∑

k=1

an
kϕk be a solution of the following system of equations:

(35) 〈un · ∇un − α1 div(un · ∇An) +R(un), ϕj〉 = 〈f, ϕj〉W−1, 43 ,W 1,4
0

, ∀j ∈ {1, . . . , n}.

We used the notation An = A(un). We argue now that such a solution indeed exists. Let T : Rn → Rn

be defined by T (a)j = 〈u·∇u−α1 div(u·∇A)+R(u)−f, ϕj〉 for all j ∈ {1, . . . , n} where u =
n∑

k=1

akϕk.

We need to prove that there exists an a ∈ Rn such that T (a) = 0. Clearly T is continuous. We prove
next that there exists M such that T (a) · a ≥ 0 for all |a| ≥ M . The existence of a zero of T then
follows from the classical Brouwer theorem, see for example [12, Lemma 7.2].

We observe that

〈u · ∇u, u〉 =

∫
Ω

u · ∇u · u = 0

and

〈div(u · ∇A), u〉 = −
∫

Ω

u · ∇A : ∇u = −1

2

∫
Ω

u · ∇A : A = 0

so

T (a) · a = 〈u · ∇u− α1 div(u · ∇A) +R(u)− f, u〉 = 〈R(u), u〉 − 〈f, u〉
W−1, 43 ,W 1,4

0

≥ 〈R(u), u〉 − ‖f‖
W−1, 43

‖u‖W 1,4 .

With similar calculations as in Lemma 4, one has that

〈R(u), u〉 =
1

2

∫
Ω

[ν|A|2 + (α1 + α2) tr(A3) + β|A|4].
9



In dimension two, since u is divergence free we have that tr(A3) = 0. Moreover, by the Korn
inequality, ‖A‖L4 ' ‖u‖W 1,4 . We infer that

T (a)·a ≥ β

2
‖A‖4

L4−‖f‖
W−1, 43

‖u‖W 1,4 ≥ ‖u‖W 1,4(C‖u‖3
W 1,4−‖f‖

W−1, 43
) ≥ ‖u‖W 1,4(C‖u‖3

V−‖f‖W−1, 43
),

where we used the embedding W 1,4 ↪→ V . Since ϕ1, . . . , ϕn are orthogonal in V , clearly ‖u‖V →∞
as |a| → ∞. Therefore, there exists M such that ‖u‖V ≥ (‖f‖

W−1, 43
/C)

1
3 for all |a| ≥M . Obviously

T (a) · a ≥ 0 for all |a| ≥M .
In dimension three, we know from [16, Lemma 3] that if ν, β ≥ 0 and |α1 + α2| ≤

√
24νβ then

ν|A|2 + (α1 + α2) tr(A3) + β|A|4 ≥ 0. Since n = 3, here we assumed the more restrictive assumption
ν, β ≥ 0 and |α1 + α2| ≤

√
6νβ. Therefore,

〈R(u), u〉 =
1

2

∫
Ω

[ν|A|2 + (α1 + α2) tr(A3) +
β

4
|A|4] +

3β

8

∫
Ω

|A|4 ≥ 3β

8

∫
Ω

|A|4.

We deduce as in the bidimensional case that there exists M > 0 such that T (a)·a ≥ 0 for all |a| ≥M .
This concludes the proof of the existence of the approximate solution un.

Multiplying (35) by an
j and summing over j we obtain that

(36) 2〈R(un), un〉 =

∫
Ω

[ν|An|2 + (α1 + α2) tr(A3
n) + β|An|4] = 2〈f, un〉W−1, 43 ,W 1,4

0

≤ 2‖f‖
W−1, 43

‖un‖W 1,4 .

According to the remarks above, the left-hand side is bounded from below as follows

(37)

∫
Ω

[ν|An|2 + (α1 + α2) tr(A3
n) + β|An|4] ≥

3β

8

∫
Ω

|An|4 ≥ C1‖un‖4
W 1,4 .

We infer from (36) and (37) that ‖un‖W 1,4 ≤ (2‖f‖
W−1, 43

/C1)
1
3 . The sequence un is therefore bounded

in W 1,4. By the compact embedding W 1,4 ↪→ L2, we finally deduce that there is a sub-sequence,
again denoted by un, such that

un ⇀ u in W 1,4 weakly(38)

and

un → u in L2 strongly(39)

as n→∞. Moreover, one also has that R(un) is bounded in W−1, 4
3 , so there exists ζ ∈ W−1, 4

3 such
that

(40) R(un) ⇀ ζ in W−1, 4
3 weakly.

We fix j and pass to the limit as n→∞ in (35). We clearly have from (38) and (39) that

〈un · ∇un, ϕj〉
n→∞−→ 〈u · ∇u, ϕj〉,

〈div(un · ∇An), ϕj〉 =
∑

i

∫
Ω

un,iAn : ∂i∇ϕj
n→∞−→

∑
i

∫
Ω

uiA : ∂i∇ϕj

and, in view of (40),

〈R(un), ϕj〉
n→∞−→ 〈ζ, ϕj〉W−1, 43 ,W 1,4

0

.

Above, un,i denotes the i-th component of un. We infer that

〈u · ∇u+ ζ − f, ϕj〉W−1, 43 ,W 1,4
0

− α1

∑
i

∫
Ω

uiA : ∂i∇ϕj = 0 ∀j.
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It is well-known that the set of eigenfunctions ϕj form a complete system of D(−P4) = H2 ∩H1
0,σ,

see for example [12, Chapter 4]. Therefore, the equality above holds true with ϕj replaced with any
function in H2 ∩H1

0,σ. In particular, it holds true with ϕj replaced by any element of C∞0,σ:

〈u · ∇u− α1 div(u · ∇A) + ζ − f, ϕ〉D′,D = 0 ∀ϕ ∈ C∞0,σ.

Equivalently, there exists some scalar function p such that

(41) u · ∇u− α1 div(u · ∇A) + ζ = f −∇p

in the sense of distributions. The rest of this proof consists in showing that ζ = R(u). This equality
is proved with monotonicity arguments as follows. We will show that

(42) 〈ζ −R(ϕ), u− ϕ〉
W−1, 43 ,W 1,4

0

≥ 0 ∀ϕ ∈ C∞0,σ.

Let us assume for the moment that the above relation is true and let us conclude the proof. We will
use an idea known under the name of “Minty argument”. We observe by a density argument that
(42) holds true for any vector field ϕ ∈ W 1,4

0,σ . Choose now ϕ = u+ λψ, where ψ ∈ W 1,4
0,σ is arbitrary

and λ > 0. We obtain then

〈ζ −R(u+ λψ), ψ〉
W−1, 43 ,W 1,4

0

≤ 0

From the explicit expression of R given in relation (4), we observe that the application R 3 λ 7→
〈R(u+ λψ), ψ〉

W−1, 43 ,W 1,4
0

is polynomial, therefore continuous. Letting λ→ 0 in the above inequality

yields

〈ζ −R(u), ψ〉
W−1, 43 ,W 1,4

0

≤ 0

Changing ψ into −ψ we infer that equality must hold above. This clearly implies the desired equality
ζ = R(u).

It remains to prove (42). We write the following computation

(43) 〈ζ −R(ϕ), u− ϕ〉
W−1, 43 ,W 1,4

0

= 〈R(un)−R(ϕ), un − ϕ〉
W−1, 43 ,W 1,4

0︸ ︷︷ ︸
I1

+ 〈R(un)− ζ, ϕ〉
W−1, 43 ,W 1,4

0︸ ︷︷ ︸
I2

+ 〈R(ϕ), un − u〉
W−1, 43 ,W 1,4

0︸ ︷︷ ︸
I3

+ 〈ζ, u〉
W−1, 43 ,W 1,4

0

− 〈R(un), un〉W−1, 43 ,W 1,4
0︸ ︷︷ ︸

I4

We observe first that R being monotone, one has that I1 ≥ 0. From the definition of ζ we infer
that I2 → 0 as n→∞. Next, by (38),

I3 = 〈R(ϕ), un − u〉
W−1, 43 ,W 1,4

0

→ 0 as n→∞.

Recall now relation (36):

(44) 〈R(un), un〉W−1, 43 ,W 1,4
0

= 〈f, un〉W−1, 43 ,W 1,4
0

.

We next show that one can multiply (41) by u. To do that, we first multiply by uε = J̃εu and
integrate to obtain

(45)

∫
Ω

u · ∇u · uε − α1

∫
Ω

∑
ij

uiA : ∂i∇uε + 〈ζ, uε〉 = 〈f, uε〉W−1, 43 ,W 1,4
0

.

Since ζ ∈ W−1, 4
3 and uε → u in W 1,4 strongly, we see that

〈ζ, uε〉W−1, 43 ,W 1,4
0

ε→0−→ 〈ζ, u〉
W−1, 43 ,W 1,4

0

,

and ∫
Ω

u · ∇u · uε
ε→0−→

∫
Ω

u · ∇u · u = 0.
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Furthermore, by Lemma 5 one has that∫
Ω

∑
ij

uiA : ∂i∇uε
ε→0−→ 0.

Therefore, taking the limit ε→ 0 in (45) results in

〈ζ, u〉
W−1, 43 ,W 1,4

0

= 〈f, u〉
W−1, 43 ,W 1,4

0

so, in view of (44),

I4 = 〈f, u− un〉W−1, 43 ,W 1,4
0

→ 0 as n→∞.

Taking the limit n → ∞ in (43) implies the desired property (42) and concludes the proof of the
existence of a solution in the sense of distributions, except for the validity of the energy equality (3).
We already proved that (41) can be multiplied by u, that the first two terms vanish when we do that
and also that ζ = R(u). Therefore, one can multiply (41) by u to obtain that

〈f, u〉
W−1, 43 ,W 1,4

0

= 〈R(u), u〉
W−1, 43 ,W 1,4

0

=
1

2

∫
Ω

[
ν|A|2 + (α1 + α2) tr(A3) + β|A|4].

This completes the proof of Theorem 1.

4. Weak-strong uniqueness

In this section we prove Theorem 2. Let u ∈ W 1,4
0 and ũ ∈ W 1,4

0 ∩W 2,p be two solutions of system
(2). We use the notations

w = u− ũ, A = A(u), Ã = A(ũ), L = L(u), L̃ = L(ũ).

We denote by K a generic constant that may depend on the domain Ω and on p. The difference w
verifies the equation

−α1 div[u · ∇A(w)]− α1 div[w · ∇Ã] + (u · ∇u− ũ · ∇ũ) +R(u)−R(ũ) = −∇(p− p̃)

in the sense of distributions. We multiply by wε = J̃εw and integrate in space to obtain

(46) − α1

∑
j

〈ujA(w), ∂j∇wε〉D′,D + α1

∫
Ω

w · ∇Ã : ∇wε +

∫
Ω

(u · ∇u− ũ · ∇ũ) · wε

+ 〈R(u)−R(ũ), wε〉W−1, 43 ,W 1,4
0

= 0.

By Lemma 5, the first term above converges to 0 as ε→ 0. Given that wε → w strongly in W 1,4, it
is easy to pass to the limit in (46) to obtain that

(47) 〈R(u)−R(ũ), w〉
W−1, 43 ,W 1,4

0

= −
∫

Ω

(u · ∇u− ũ · ∇ũ) · w − α1

∫
Ω

w · ∇Ã : A(w).

An easy integration by parts shows that

(48)
∣∣∣∫

Ω

(u · ∇u− ũ · ∇ũ) · w
∣∣∣ =

∣∣∣∫
Ω

w · ∇w · ũ
∣∣∣ ≤ K‖w‖L6‖∇w‖L2‖ũ‖L3 ≤ K‖w‖2

H1‖ũ‖W 2,p ,

where the value of p is given in the statement of Theorem 2. We used above the Sobolev embeddings
H1 ↪→ L6 and W 2,p ↪→ L3. Similarly, if the space dimension is three we bound

(49)
∣∣∣∫

Ω

w · ∇Ã : A(w)
∣∣∣ ≤ K‖w‖L6‖∇w‖L2‖∇Ã‖L3 ≤ K‖w‖2

H1‖ũ‖W 2,3 if n = 3,

while in dimension two we write

(50)
∣∣∣∫

Ω

w · ∇Ã : A(w)
∣∣∣ ≤ K‖w‖Lq‖∇w‖L2‖∇Ã‖Lp ≤ K‖w‖2

H1‖ũ‖W 2,p if n = 2,

where q = 2p/(p− 2).
12



Since the inequalities assumed on the material coefficients are strict, there exists ε0 > 0 such that
if we replace ν by ν− ε0, then these inequalities still hold true. Therefore, by Lemma 4, the operator
R(u) + ε04u is still monotone so that

(51) 〈R(u)−R(ũ), w〉
W−1, 43 ,W 1,4

0

= 〈R(u) + ε04u− (R(ũ) + ε04ũ), w〉W−1, 43 ,W 1,4
0

− ε0〈4w,w〉

≥ ε0

2
‖A(w)‖2

L2 ≥
ε0

K
‖w‖2

H1 .

Putting together relations (47)–(51), we finally get that

ε0‖w‖2
H1 ≤ K‖w‖2

H1‖ũ‖W 2,p ,

which clearly implies that w = 0 provided that ‖ũ‖W 2,p < ε0/K.
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