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Abstract. We consider the equations governing the motion of third grade fluids in Rn, n = 2, 3.
We show global existence of solutions without any smallness assumption, by assuming only that the
initial velocity belongs to the Sobolev space H2. The uniqueness of such solutions is also proven in
dimension two.

Introduction

The fluids of grade n, introduced by Rivlin and Ericksen [1], are the fluids for which
the stress tensor is a polynomial of degree n in the first n Rivlin-Ericksen tensors defined
recursively by

A1 = A = 2D, Ak+1 =
d

dt
Ak + LtAk + AkL,

where d
dt

= ∂t + u · ∇ denotes the material derivative and

L = (∂jui)i,j, Lt = (∂iuj)i,j, D =
1

2
(∂iuj + ∂jui)i,j.

For third grade fluids, physical considerations were taken into account by Fosdick and
Rajagopal [2] in order to obtain the following form for the constitutive law:

T = −pI + νA1 + α1A2 + α2A
2
1 + β|A1|2A1,

which, introduced in the equation of conservation of momentum leads to the following
equation:

(1) ∂t(u− α14u)− ν4u + u · ∇u− α1 div(u · ∇A + LtA + AL)

− α2 div A2 − β div(|A|2A) = f −∇p, div u = 0.

Moreover, the coefficients ν, α1, α2 and β must satisfy the following hypotheses:

ν ≥ 0, α1 > 0, β ≥ 0 and |α1 + α2| ≤ (24νβ)1/2.
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The equation of third grade fluids is usually given under the form

∂t(u− α14u)− ν4u + curl(u− α14u) ∧ u

− (α1 + α2)
(
A4u + 2 div

(
∇u(∇u)t

))
− β div(|A|2A) = f −∇p.

These two different forms are, of course, equivalent. Here, the form (1) is more useful.
Notice that if β = 0 then α1 + α2 = 0 and (1) becomes the equation of second grade

fluids (see [3]) which is studied by many authors (see, for instance, [4], [5], [6], [7], [8] and
[9]). Therefore, for third grade fluids, one can assume that β > 0. We will make this
hypothesis in the sequel.

The mathematical results available in the literature consider these equations in a domain
of R2 or R3 and show local existence and uniqueness of solutions for arbitrary size of initial
data, or global existence and uniqueness if ν > 0 and if the initial data is small compared
with the viscosity ν. The regularity of the initial data needed in order to obtain these
results is at least H3 (see [10], [11], [12]) or W 2,r, r > 3 (see [13]).

Here, we will prove that global solutions exist without any smallness assumption and with
less regularity requirements as before. These solutions are also less regular and uniqueness
is much more difficult to prove. We can prove uniqueness of bidimensional solutions only.
More precisely, we will prove the following theorem:

Theorem 1. Consider the equation (1) in Rn, n = 2, 3, with f ∈ L∞loc

(
[0,∞); L2

)
and

u0 ∈ H2, div u0 = 0. There exists a global solution u ∈ Cw

(
[0,∞); H2

)
∩C

(
[0,∞); Hs

)
for

all s < 2. Moreover, if n = 2 then this solution is unique.

The starting point of the proof is the remark that the equation contains a term which
is more “regularizing” then the viscosity one; it is the term

βK(u) = −β div(|A|2A).

For example, making H1 energy estimates, the viscosity term yields
∫

Rn |∇u|2 while the
term K(u) gives

∫
Rn |D(u)|4; therefore, the viscosity term gives H1 estimates while K

implies W 1,4 estimates, which are better then the H1 estimates.
It is clear that H1 estimates are not sufficient to pass to the limit in the equation and

one has to look for another a priori estimates. The problem is that the “regularizing” term
K(u) is non-linear and it may behave dangerously in higher order energy estimates. For
instance, in H3 estimates, we could not even show a sign for this term and it also becomes
the most troublesome one. Here we will show that, when making H2 energy estimates, the
term coming from K(u) has the good sign. Furthermore, this term will be used to cancel
other bad terms. This is the basis in obtaining the global existence of an H2 solution; it is
detailed in the second section.

The last section contains the proof of uniqueness of 2D solutions which is in three steps.
First, we write the term 〈K(u)−K(ũ), u− ũ〉 under a form which has the good sign and
can be used to simplify bad terms (we denoted by 〈·, ·〉 the scalar product of

(
L2(Rn)

)n
).

Secondly, we write the other terms under a form where the bad part simplifies with terms
from 〈K(u)−K(ũ), u− ũ〉. However, all the terms can not be treated in this way. For the
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other terms, there is a third step which is the only one to use that the space dimension is
equal to two. It consists in remarking that these terms can be estimated by using Hs norms
of u and ũ with s > 2 instead of s = 2. We conclude by using a sort of limit argument.

Let us remark that the inequality |α1 + α2| ≤ (24νβ)1/2 will not be used in the proofs.
Moreover, the viscosity ν plays no role in our results; unlike the previous results where the
global existence is achieved under the assumption that ν > 0 (and a smallness assumption
for the initial data), in our proof ν may vanish and even be negative. Indeed, the only
places in the proofs where “we use” that ν ≥ 0 are in the passages from relation (16)
to (17) and from (37) to (38). But it is trivial to see that, in each of these relations,
the viscosity term may be incorporated in the right-hand side: for relation (16), ν‖∇u‖2

L2

may be incorporated in C
ε
‖v‖2

L2 and for relation (37), ν‖∇w‖2
L2 may be incorporated in

C
ε

∫
R2 |∇w|2.

Before going to the proofs, let us make some comments on the boundary conditions
required for the equations of motion of a third grade fluid. In contrast with the Navier-
Stokes equations, the nonlinear terms are higher order (order three) than the linear terms
(order two). This suggests that the no-slip boundary conditions may be inadequate to
fully determine the solution. Even though existence and uniqueness of solutions is known
on domains with boundaries by assuming only the no-slip boundary condition, existence
and uniqueness is proved only under some smallness assumption (small time or small data)
which allows to consider the nonlinear terms negligible compared to the linear terms; the
viscosity term is viewed as a regularizing term and is used to control the other terms. Here,
we consider a nonlinear term, K(u), as “regularizing” term instead of the viscosity one.
Consequently, the boundary conditions issue becomes even more difficult when trying to
extend the results of this paper to the case of domains with boundaries. We refer to [14],
[15] and [16] for a more detailed discussion, some examples and further references on the
problem of finding the right boundary conditions for fluids of differential type.

1. Notations and preliminary results

We denote by Hs the following Sobolev space:

Hs =
{

g : Rn → C ; ‖g‖2
Hs =

∫
Rn

(1 + |ξ|2)s|ĝ(ξ)|2 dξ < +∞
}

,

where ĝ denotes the Fourier transform of g and | · | the Euclidean norm. For vector-valued
functions h : Rn → Rm, we say that h ∈ Hs if each component hi belongs to Hs and we
define

‖h‖2
Hs =

m∑
i=1

‖hi‖2
Hs .

We denote by 〈·, ·〉 the L2 scalar product, or also the duality parenthesis between Hs

and H−s. For vector valued functions g, h : Rn → Rm, we define

〈g, h〉 =
m∑

i=1

〈gi, hi〉.
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For a vector field u : Rn → Rn we introduce the following matrices:

L(u) = (∂jui)i,j, A(u) = 2D(u) = L(u) + Lt(u) = (∂iuj + ∂jui)i,j.

The scalar product of two matrices A = (aij)i,j and B = (bij)i,j is defined by A · B =∑
i,j aijbij. We denote by |A|2 the quantity A · A. We also introduce the divergence of a

matrix (div A)i =
∑

j ∂jaij. One can check the following identities:

(2) (AB) · C = (CBt) · A = (AtC) ·B,

which hold for arbitrary square matrices A, B and C.
The Leray projector P denotes the L2 orthogonal projection on the space of divergence

free vector fields.
The following product theorem is classical (see, for instance, [17]):

Theorem 2. Let s and t be two real numbers such that s + t > 0, s < n/2 and t < n/2.
There exists a constant C > 0 such that if u ∈ Hs and v ∈ H t then uv ∈ Hs+t−n/2 and

‖uv‖Hs+t−n/2 ≤ C‖u‖Hs‖v‖Ht .

We also have the following easy lemma:

Lemma 1. Let H be a Hilbert space and A ⊂ H a dense subset. If un is a sequence
bounded in H such that 〈un, a〉H → 〈v, a〉H for every a ∈ A, then un converges weakly to
v.

We write the equation of third grade fluids (1) under the form

(3) ∂t(u− α14u) + u · ∇u− ν4u + div N(u) + βK(u) = f −∇p,

where
K(u) = − div(|A|2A), N(u) = −α1(u · ∇A + LtA + AL)− α2A

2.

Another equivalent form, useful in the proof of the existence, is the following:

(4)

 ∂tv − ν4u + u · ∇v +
∑

j

vj∇uj − (α1 + α2) div A2 + βK(u) = f −∇p,

v = u− α14u.

The fact that equations (3) and (4) are equivalent is a simple computation which is given
in the appendix.

2. Global existence of solutions

The regularity of the solutions we consider is L∞(0, T ; H2). But, in equation (4) there
are derivatives of order 3 of u and also a trilinear term. One has to check that these terms
are defined in the sense of distributions. The term

u · ∇v = div(u⊗ v),

is a derivative of an L1 function, so it defines a distribution. The term

K(u) = − div(|A|2A)
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is a sum of terms of the type
DuDuD2u,

where Dk denotes a space derivative of order k. The time regularity of the above term is
L∞. As for the space regularity, since the dimension is less then 3, one has D2u ∈ L2 and
Du ∈ H1 ⊂ Lp for all p ∈ [2, 6]. Hölder’s inequality now implies that DuDuD2u ∈ Lq,
for all q ∈ [1, 6/5]. Consequently, the term K(u) is (locally) integrable and defines a
distribution. The remaining terms are easily seen to define a distribution.

The rigorous definition of an H2 solution is the following:

Definition 1. Let u0 ∈ H2(Rn), f ∈ L∞(0, T ; L2(Rn)), n ∈ {2, 3}. We say that u is a H2

solution of (1) on [0, T ) if u is a divergence free vector field

u ∈ L∞
(
0, T ; H2(Rn)

)
verifying∫ T

0

∫
Rn

(
−v · ∂tϕ− ν4u · ϕ− (u · ∇ϕ) · v +

∑
j

vj∇uj · ϕ− (α1 + α2) div(A2) · ϕ

+ βK(u) · ϕ
)

=

∫ T

0

∫
Rn

f · ϕ +

∫
Rn

v0(x) · ϕ(0, x) dx,

for every divergence free vector field ϕ ∈ C∞
0 (Rn × [0, T ); Rn).

A solution which belongs to L∞loc

(
[0,∞); H2(Rn)

)
automatically satisfies the additional

regularity given in theorem 1. More precisely, one has the following lemma:

Lemma 2. Let u be a solution of (3) on [0, T ) such that u ∈ L∞(0, T ; H2) and f ∈
L∞(0, T ; L2). Then

u ∈ Cw

(
[0, T ]; H2

)
∩ C

(
[0, T ]; Hs

)
and ∂tu ∈ L∞(0, T ; L2)

for all s < 2.

Proof. Theorem 2 easily implies that the term

u · ∇u− ν4u + div N(u) + βK(u)

belongs to L∞(0, T ; H−2). Applying the Leray projector P to (3) implies that

∂t(u− α14u) ∈ L∞(0, T ; H−2).

We deduce that

(5) ∂tu ∈ L∞(0, T ; L2),

so u ∈ C
(
[0, T ]; L2

)
. The strong continuity u ∈ C

(
[0, T ]; Hs

)
, 0 ≤ s < 2, follows from the

interpolation inequality

‖u(t, ·)− u(t0, ·)‖Hs ≤ C‖u(t, ·)− u(t0, ·)‖1−s/2

L2 ‖u(t, ·)− u(t0, ·)‖s/2

H2 .

Finally, the density of smooth functions in H2 and lemma 1 implies the assertion on the
weak continuity of u. �
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The proof of the existence consists in proving some H2 a priori estimates and passing to
the limit in the equation.

2.1. A priori estimates. Multiplying equation (4) by v and integrating in space yields

(6)
1

2
∂t‖v‖2

L2 + ν‖∇u‖2
L2 + α1ν‖4u‖2

L2 + β

∫
|A|2A · ∇v

= −
∫

(u · ∇v) · v −
∫

(v · ∇u) · v + (α1 + α2)

∫
div(A2) · v +

∫
f v.

The fact that A is a symmetric matrix implies that∫
|A|2A · ∇v =

1

2

(∫
|A|2A · ∇v +

∫
|A|2A · (∇v)t

)
=

1

2

∫
|A|2A · A(v)

=
1

2

∫
|A|2A · (A− α14A)

=
1

2

∫
|A|4 − α1

2

∫
|A|2A · 4A.

On the other hand, some integrations by parts show that

−
∫
|A|2A · 4A = −

∑
i,j,k,l,m

∫
a2

ijakl∂
2
makl

= 2
∑

i,j,k,l,m

∫
aij∂maijakl∂makl +

∑
i,j,k,l,m

∫
a2

ij(∂makl)
2

=

∫
|A|2|∇A|2 + 2

∑
m

∫
(A · ∂mA)2.

We deduce from the above two relations that∫
|A|2A · ∇v =

1

2

∫
|A|4 +

α1

2

∫
|A|2|∇A|2 + α1

∑
m

∫
(A · ∂mA)2.

Using this relation in (6) yields

(7)
1

2
∂t‖v‖2

L2 + ν‖∇u‖2
L2 + α1ν‖4u‖2

L2 +
β

2

∫
|A|4 +

α1β

2

∫
|A|2|∇A|2

+ α1β
∑
m

∫
(A · ∂mA)2 = −

∫
(v · ∇u) · v + (α1 + α2)

∫
div(A2) · v +

∫
f v.

We will now estimate the terms from the right-hand side. First, note that

(8)

∫
(v · ∇u) · v =

∑
i,j

∫
vivj∂iuj =

1

2

∑
i,j

∫
vivj(∂iuj + ∂jui) =

1

2

∫
Av · v.
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But v = u− α14u. So, using again the symmetry of A, we get

(9)

∫
(v · ∇u) · v =

1

2

∫
Au · u +

∫
A4u · u +

1

2

∫
A4u · 4u.

Reversing the argument of (8) gives

(10)

∫
Au · u = 2

∫
(u · ∇u) · u = 0.

To estimate the other terms, remark that

div A = 4u.

Therefore

(11)
1

2

∣∣∣∫ A4u · 4u
∣∣∣ =

1

2

∣∣∣∫ A div A · 4u
∣∣∣ ≤ C

∫
|A||∇A||4u|

≤ ε

∫
|A|2|∇A|2 +

C

ε
‖4u‖2

L2 ,

where ε > 0 will be chosed later. We obtain in the same way that

(12)
∣∣∣∫ A4u · u

∣∣∣ ≤ ε

∫
|A|2|∇A|2 +

C

ε
‖u‖2

L2 .

We now use relations (10), (11) and (12) in (9) to obtain that

(13)
∣∣∣∫ (v · ∇u) · v

∣∣∣ ≤ 2ε

∫
|A|2|∇A|2 +

C

ε
‖v‖2

L2 .

Since div A2 is a term of the form A∇A, we can further estimate as in (11)

(14)
∣∣∣∫ div(A2) · v

∣∣∣ ≤ ε

∫
|A|2|∇A|2 +

C

ε
‖v‖2

L2 .

The forcing term is very easy to estimate:

(15)
∣∣∣∫ f v

∣∣∣ ≤ ‖f‖L2‖v‖L2 ≤
‖v‖2

L2

2
+
‖f‖2

L2

2
.

Finally, using (13), (14) and (15) in (7) gives

(16)
1

2
∂t‖v‖2

L2 +ν‖∇u‖2
L2 +α1ν‖4u‖2

L2 +
β

2

∫
|A|4 +

α1β

2

∫
|A|2|∇A|2 +α1β

∑
m

∫
(A ·∂mA)2

≤ 2ε(1 + |α2 + α2|)
∫
|A|2|∇A|2 +

C

ε
‖v‖2

L2 +
‖f‖2

L2

2
.

The choice

ε =
α1β

4(1 + |α1 + α2|)
,

now implies

(17) ∂t‖v‖2
L2 ≤ C‖v‖2

L2 + ‖f‖2
L2 .
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Gronwall’s lemma gives

(18) ‖v(t)‖2
L2 ≤

(
‖v0‖2

L2 +
1

C
‖f‖2

L∞(0,t;L2)

)
eCt,

where C = C(α1, α2)/β is a constant depending on the material coefficients α1, α2 and β
but not on the viscosity ν.

2.2. Regularization and passage to the limit. The fact that allows us to pass to
the limit is that the equation does not contain any term with products of second order
derivatives of u with other second order derivatives. With this remark, passing to the limit
is classical, so we will only sketch the proof.

We use Friedrichs method, also known as “modified Galerkin method”, which can be
found for example, with minor modifications, in [18], [19] and [20]. We denote by Jε a
Friedrichs mollifier, that is the convolution operator

Jεu = jε ∗ u,

where

jε(x) = ε−nj(ε−1x),

and j is a positive radial compactly supported smooth function whose integral is equal to
1. Let us briefly recall the main properties of these mollifiers:

(1) Jε commutes with derivatives.
(2) For all s ≥ 0, Jε is continuous from Hs to

⋂
l<∞

H l.

(3) For all s ≥ 0 and u ∈ Hs, one has that ‖Jεu‖Hs ≤ ‖u‖Hs and Jεu → u strongly in
Hs as ε → 0.

(4) Jε is selfadjoint for the L2 scalar product.
(5) If u is compactly supported and ε ≤ 1, then the support of Jεu is included in a

compact independent of ε.

Approximating equation. Consider the following approximating system:

∂tvε − νJε4Jεuε + Jε(Jεuε∇Jεvε) +
∑

j

Jε(Jεvε,j∇Jεuε,j)− (α1 + α2)Jε div A2
ε

+ βJεK(Jεuε) = Jεf −∇pε

uε(0) = Jεu(0)

div uε = 0

vε = uε − α14uε,
8



where Aε = A(Jεuε). To eliminate the pressure, we apply the Leray projector P to obtain

(Sε)



∂tvε − νPJε4Jεuε + PJε(Jεuε∇Jεvε) +
∑

j

PJε(Jεvε,j∇Jεuε,j)

− (α1 + α2)PJε div A2
ε + βPJεK(Jεuε) = PJεf

uε(0) = Jεu(0)

vε = uε − α14uε.

These two systems are equivalent. Thanks to the smoothing properties of Jε, the second
system can be viewed as an ordinary differential equation (with values in a Banach space).
Therefore, Cauchy’s theorem gives the existence of a short-time smooth solution.

Estimates independent of ε. The H2 estimates (18) proved above are true for the
approximating solution uε. Indeed, multiplying (Sε) by vε, using that uε is divergence free
and Jε self-adjoint, we get

1

2
∂t‖vε‖2

L2 + ν‖∇Jεuε‖2
L2 + α1ν‖4Jεuε‖2

L2 + β

∫
|Aε|2Aε · ∇Jεvε

= −
∫

(Jεuε ·∇Jεvε) ·Jεvε−
∫

(Jεvε ·∇Jεuε) ·Jεvε +(α1 +α2)

∫
div(A2

ε) ·Jεvε +

∫
f Jεvε.

The same estimates as above yield

∂t‖vε‖2
L2 ≤ C‖Jεvε‖2

L2 + ‖f‖2
L2 .

According to the properties of Jε, it follows that

∂t‖vε‖2
L2 ≤ C‖vε‖2

L2 + ‖f‖2
L2 ,

whence, by Gronwall’s lemma,

‖vε(t)‖2
L2 ≤

(
‖vε(0)‖2

L2 + ‖f‖2
L∞(0,t;L2)/C

)
eCt.

The constant C is of course independent of ε. Therefore uε exists globally and

(19) uε is bounded in L∞
(
0, T ; H2

)
for all T > 0.

We now have to obtain estimates on ∂tuε. According to the properties of Jε and using
theorem 2, it is an exercise to check that all the terms of (Sε), except ∂tvε, are bounded in
L∞(0, T ; H−2) independently of ε for all T > 0. Therefore, the same holds for ∂tvε and we
finally get that

(20) ∂tuε is bounded in L∞(0, T ; L2
)

for all T > 0.

Extraction of a convergent sequence. Relation (20) implies that uε are equicon-
tinuous in C([0, T ]; L2). Ascoli’s theorem allows to extract a sequence um corresponding
to εm → 0, such that um converges strongly in C([0, T ]; H−1

loc ), for all T > 0. A standard
9



interpolation inequality next shows that um converges strongly in C([0, T ]; Hs
loc) for all

s < 2. Using also (19), we obtain the existence of u such that

(21) um ⇀ u in L∞(0, T ; H2) weak∗,
and

(22) um → u strongly in C([0, T ]; Hs
loc),

for all T > 0 and s < 2.
Relations (19) and (20) remain true for Jεuε instead of uε. Therefore, assertions (21)

and (22) remain true with Jεmum instead of um and some ũ instead of u. It is easy to see
that u = ũ, since for ϕ ∈ C∞

0 ((0,∞)×Rn) and by the properties of the Friedrichs mollifier
one has that∫ ∞

0

∫
Rn

ũ ϕ = lim
m→∞

∫ ∞

0

∫
Rn

Jεmum ϕ = lim
m→∞

∫ ∞

0

∫
Rn

um Jεmϕ =

∫ ∞

0

∫
Rn

u ϕ.

Consequently, we also have that

(23) Jεmum ⇀ u in L∞(0, T ; H2) weak∗,
and

(24) Jεmum → u strongly in C([0, T ]; Hs
loc),

for all T > 0 and s < 2.

Passage to the limit. Consider a divergence free vector field ϕ ∈ C∞
0 (Rn× [0,∞); Rn).

Multiplying (Sε) by ϕ and integrating we get after some integrations by parts∫ ∞

0

∫
Rn

(
−vm · ∂tϕ− ν4Jεmum · Jεmϕ− (Jεmum · ∇Jεmϕ) · Jεmvm

+
∑

j

Jεmvm,j∇Jεmum,j · Jεmϕ− (α1 + α2)(div A2(Jεmum)) · Jεmϕ + βK(Jεmum) · Jεmϕ
)

=

∫ ∞

0

∫
Rn

f · Jεmϕ +

∫
Rn

v0(x) · Jεmϕ(0, x) dx.

With the informations at hand, it is not difficult to pass to the limit in all the terms.
For instance, the term ∫ ∞

0

∫
Rn

K(Jεmum) · Jεmϕ,

is a sum of terms of the type∫ T

0

∫
M

D2Jεmum DJεmumDJεmum Jεmϕ,

where [0, T ]×M is a bounded open set (containing supp Jεmϕ) independent of m. We now
use (23) and the strong convergences of DJεmum in L∞(0, T ; H3/4(M)) ⊂ L∞(0, T ; L4(M))
and of Jεmϕ in L1(0, T ; L∞(M)) to pass to the limit.
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3. Uniqueness of bidimensional solutions

We denote by C a constant which depends solely on the material coefficients α1, α2, β
and which may change from one relation to another; in particular, the constant C does not
depend on the viscosity ν nor on the quantities p, ε, η, . . . , which will be introduced in
the course of the proof. Let u and ũ be two solutions of (3) belonging to Cw

(
[0,∞); H2

)
with the same initial data u(0) = ũ(0) ∈ H2. Let w = u− ũ. To simplify the presentation,
we introduce

A = A(u), Ã = A(ũ), L = L(u), L̃ = L(ũ).

We have that w ∈ L∞loc

(
[0,∞); H2

)
and, by (5), ∂t(w − α14w) ∈ L∞loc

(
[0,∞); H−2

)
. It

follows that

〈∂t(w − α14w), w〉 =
1

2
∂t(‖w‖2

L2 + α1‖∇w‖2
L2) ∈ L∞loc

(
[0,∞)

)
,

in the distributional sense of (0,∞). Rigorously, the above relation is verified for smooth
functions and may be obtained in general by density of smooth functions and passage to
the limit.

Subtracting the equations of u and ũ, multiplying by w and integrating in space gives,
after some integrations by parts,

(25)
1

2
∂t(‖w‖2

L2 + α1‖∇w‖2
L2) + ν‖∇w‖2

L2 + β〈|A|2A− |Ã|2Ã, L(w)〉

= −〈u · ∇u− ũ · ∇ũ, w〉+ 〈N(u)−N(ũ), L(w)〉,
where the equality holds in the sense of distributions or almost everywhere since all the
terms are locally bounded. As usual, the integration by parts may be rigorously justified
by multiplying with an approximation of w and passing to the limit. This argument is
classical and we will omit it.

As the matrix |A|2A− |Ã|2Ã is symmetric, we have that

(26) 〈|A|2A− |Ã|2Ã, L(w)〉 =
1

2
〈|A|2A− |Ã|2Ã, A(w)〉 =

1

2

∫
R2

(
|A|2A− |Ã|2Ã

)
· A(w).

But one can check the following identity

(|x|2x− |y|2y) · (x− y) =
1

2

(
|x|2 − |y|2

)2
+

1

2
|x− y|2(|x|2 + |y|2),

which holds for arbitrary vectors x, y ∈ Rk. Consequently, we get from (26) that

(27) 〈|A|2A− |Ã|2Ã, L(w)〉 =
1

4

∫
R2

(
|A|2 − |Ã|2

)2
+

1

4

∫
R2

|A(w)|2(|A|2 + |Ã|2).

Next,

(28) − 〈u · ∇u− ũ · ∇ũ, w〉 = −
∫

R2

w · ∇u w −
∫

R2

ũ · ∇w w

= −
∫

R2

w · ∇u w ≤ ‖∇u‖H1‖w ⊗ w‖H−1 ≤ C‖w‖2
H1‖u‖H2 ,

11



where we have used theorem 2.
It remains to estimate the last term of (25). The fact that the matrix N(u) − N(ũ) is

symmetric implies that

(29) 〈N(u)−N(ũ), L(w)〉 =
1

2

∫
R2

(
N(u)−N(ũ)

)
· A(w)

= −α2

2

∫
R2

(A2 − Ã2) · A(w)︸ ︷︷ ︸
I1

− α1

2

∫
R2

(u · ∇A− ũ · ∇Ã) · A(w)︸ ︷︷ ︸
I2

− α1

2

∫
R2

(
LtA + AL− L̃tÃ− ÃL̃

)
· A(w)︸ ︷︷ ︸

I3

.

We now study each of the last three terms. One has after some integrations by parts

I1 =

∫
R2

(
(A− Ã)A + Ã(A− Ã)

)
· A(w) =

∫
R2

(
A(w)A + ÃA(w)

)
· A(w),(30)

I2 =

∫
R2

(u · ∇(A− Ã) + (u− ũ) · ∇Ã) · A(w) =

∫
R2

(w · ∇Ã) · A(w).(31)

To estimate I3, we first use the identities (2) to deduce that

(LtA + AL) · A(w) = (LtA) · A(w) + (AL) · A(w)

=
(
A(w)A

)
· Lt +

(
AA(w)

)
· L =

(
A(w)A

)t · L +
(
AA(w)

)
· L = 2

(
AA(w)

)
· L.

It follows that

(32) I3 = 2

∫
R2

((
AA(w)

)
· L−

(
ÃA(w)

)
· L̃

)
= 2

∫
R2

(
A2(w) · L +

(
ÃA(w)

)
· L(w)

)
.

Thanks to relations (30) and (32) we can bound
(33)∣∣∣α2

2
I1 +

α1

2
I3

∣∣∣ ≤ C

∫
R2

|A(w)|(|A|+ |Ã|)|∇w| ≤ ε

∫
R2

|A(w)|2(|A|2 + |Ã|2) +
C

ε

∫
R2

|∇w|2,

where ε > 0 will be chosed later.
The key point of the proof consists in the estimate of I2. It is the only place where we

use that the space dimension is equal to two. Let γ ∈ (0, 1) be arbitrary. Thanks to (31),
one can write ∣∣∣α1

2
I2

∣∣∣ ≤ C

∫
R2

|w||∇Ã||A(w)|

= C

∫
R2

|w||A(w)|γ|∇Ã||A(w)|1−γ

≤ C‖w‖Lp

∥∥|A(w)|γ
∥∥

L2/γ ‖∇Ã‖L2

∥∥|A(w)|1−γ
∥∥

L4/(1−γ)

= C‖w‖Lp ‖A(w)‖γ
L2 ‖∇Ã‖L2 ‖A(w)‖1−γ

L4 ,

(34)
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where we have applied Hölder’s inequality and set

(35) p =
4

1− γ
.

But, in dimension 2, the Sobolev embedding H1 ↪→ Lp holds and there exists a constant
C which is independent of p such that

‖w‖Lp ≤ Cp‖w‖H1 ,

(see, for instance, the computations of [21], pages 723–724). Actually, the optimal constant
is Cp1/2 but Cp is sufficient for our purposes. We now obtain from (34) that∣∣∣α1

2
I2

∣∣∣ ≤ Cp‖w‖1+γ
H1 ‖ũ‖H2‖A(w)‖1−γ

L4 .

Applying Young’s inequality yields∣∣∣α1

2
I2

∣∣∣ ≤ 1− γ

4
η4/(1−γ)‖A(w)‖4

L4 +
γ + 3

4

(
Cp

η

)4/(γ+3)

‖w‖4(1+γ)/(γ+3)

H1 ‖ũ‖4/(γ+3)

H2 ,

where η is such that
1− γ

4
η4/(1−γ) = ε

which, according to (35), leads to(
p

η

)4/(γ+3)

=
4

1− γ
ε(γ−1)/(γ+3).

Consequently∣∣∣α1

2
I2

∣∣∣ ≤ ε‖A(w)‖4
L4 +

C

1− γ
ε(γ−1)/(γ+3)‖w‖4(1+γ)/(γ+3)

H1 ‖ũ‖4/(γ+3)

H2

= ε

∫
R2

|A(w)|2|A− Ã|2 +
C

1− γ
ε(γ−1)/(γ+3)‖w‖4(1+γ)/(γ+3)

H1 ‖ũ‖4/(γ+3)

H2

≤ 2ε

∫
R2

|A(w)|2(|A|2 + |Ã|2) +
C

1− γ
ε(γ−1)/(γ+3)‖w‖4(1+γ)/(γ+3)

H1 ‖ũ‖4/(γ+3)

H2 .

(36)

We finally obtain from relations (25), (27), (28), (29), (33) and (36) the following in-
equality:

(37)
1

2
∂t(‖w‖2

L2 + α1‖∇w‖2
L2) + ν‖∇w‖2

L2 +
β

4

∫
R2

(
|A|2 − |Ã|2

)2
+

β

4

∫
R2

|A(w)|2(|A|2 + |Ã|2)

≤ 3ε

∫
R2

|A(w)|2(|A|2 + |Ã|2) +
C

ε

∫
R2

|∇w|2 + C‖w‖2
H1‖u‖H2

+
C

1− γ
ε(γ−1)/(γ+3)‖w‖4(1+γ)/(γ+3)

H1 ‖ũ‖4/(γ+3)

H2 .
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As u, ũ ∈ L∞(0, 1; H2), the choice ε = β/12 implies the existence of a constant M =
M(α1, α2, β, u, ũ) independent of γ such that

(38) f ′(t) ≤ M

1− γ

(
f(t) + f(t)2(γ+1)/(γ+3)

)
, ∀t ∈ [0, 1],

where we defined
f(t) = ‖w(t)‖2

L2 + α1‖∇w(t)‖2
L2 .

As f(0) = 0, we have by the continuity of f the existence of a time T0 ≤ 1 such that
f(t) ≤ 1 for all t ∈ [0, T0]. Using also that 2(γ + 1)/(γ + 3) < 1, we deduce from (38) that,
for all t ∈ [0, T0],

f ′ ≤ 2M

1− γ
f 2(γ+1)/(γ+3)

which, in turn, implies(
f (1−γ)/(γ+3)

)′
=

1− γ

γ + 3
f ′f−2(γ+1)/(γ+3) ≤ 2M

γ + 3
.

It comes after integration

f(t) ≤
(

2Mt

γ + 3

)(γ+3)/(1−γ)

∀t ∈ [0, T0].

If t ≤ 3
4M

one has that 2Mt
γ+3

≤ 1
2
; we deduce that

f(t) ≤
(

1

2

)(γ+3)/(1−γ)

∀t ∈
[
0, min

(
T0,

3

4M

)]
.

Passing to the limit γ ↗ 1 now yields

f(t) = 0 ∀t ∈
[
0, min

(
T0,

3

4M

)]
,

which implies local uniqueness. Global uniqueness follows by a connexity argument. The
set {

t ; f(s) = 0 ∀s ∈ [0, t]
}
⊂ [0, +∞)

is nonvoid, open and closed; therefore it coincides with [0, +∞).

Appendix

The purpose of this appendix is to show that equations (3) and (4) are equivalent. To
do that, it is sufficient to check that the expression

B = u · ∇u + div
(
−α1(u · ∇A + LtA + AL)− α2A

2
)

− u · ∇v −
∑

j

vj∇uj + (α1 + α2) div A2

is a gradient. From the definition of v, one has

u · ∇u− u · ∇v = α1u · ∇4u.
14



The i-th component of B can now be written under the form

Bi = α1

∑
j,k

uj∂j∂
2
kui −

∑
j

(uj − α14uj)∂iuj − α1 div
(
u · ∇A + LtA + AL− A2

)
,

or, equivalently,

1

α1

(
Bi +

1

2
∂i(|u|2)

)
=

∑
j,k

(
uj∂j∂

2
kui + ∂2

kuj∂iuj − ∂j

(
uk∂k(∂jui + ∂iuj)

+ ∂iuk(∂juk + ∂kuj) + (∂iuk + ∂kui)∂juk − (∂iuk + ∂kui)(∂kuj + ∂juk)
))

.

Expanding further, simplifying the obvious terms and using that u is divergence free yields

1

α1

(
Bi +

1

2
∂i(|u|2)

)
=

∑
j,k

(
uj∂j∂

2
kui︸ ︷︷ ︸

D1

+ ∂2
kuj∂iuj︸ ︷︷ ︸

D2

− ∂juk∂k∂jui︸ ︷︷ ︸
D3

− ∂juk∂k∂iuj

− uk∂k∂
2
j ui︸ ︷︷ ︸

D4

− ∂j∂iuk∂juk − ∂iuk∂
2
j uk︸ ︷︷ ︸

D5

+ ∂j∂kui∂kuj︸ ︷︷ ︸
D6

)
.

Interchanging j and k, the term D1 simplifies with D4, D2 with D5 and D3 with D6. On
the other hand, we have that

∂j∂iuk∂juk =
1

2
∂i

(
(∂juk)

2
)
,

and, again interchanging j and k,∑
j,k

∂juk∂k∂iuj = ∂i

∑
j,k

∂juk∂kuj −
∑
j,k

∂i∂juk∂kuj = ∂i

∑
j,k

∂juk∂kuj −
∑
j,k

∂juk∂k∂iuj,

so that
1

α1

(
Bi +

1

2
∂i(|u|2)

)
=

1

2
∂i

∑
j,k

(
∂juk∂kuj + (∂juk)

2
)

=
1

2
∂i|∇u|2.

We deduce that

B =
1

2
∇(α1|∇u|2 − |u|2),

which completes the proof.
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