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1. Introduction

The evolution of ideal incompressible fluid vorticity preserves compactness

of support. For planar fluids, the diameter of the support of nonnegative

initial vorticity will be shown to grow no faster than O[(t log t)1/4], improving

the bound of O(t1/3) obtained by Marchioro [12]. In addition, an example

of an initial vorticity with indefinite sign will be given whose support grows

unboundedly at a rate of O(t).

The initial value problem for the 2d incompressible Euler equations is glob-

ally well-posed in variety of settings. Wolibner [14] established the existence

of classical solutions given initial vorticity in Cα(R2)∩L1(R2), and Yudovitch

[15] gave the framework for weak solutions starting with initial vorticity in

L1(R2) ∩ L∞(R2). Three basic elements of the classical existence theory are

relevant for the present discussion. The divergence-free fluid velocity vector
1
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field v(t, x) generates a particle flow map Φ(t, p) through the system of ODE’s

d

dt
Φ(t, p) = v(t,Φ(t, p)), Φ(0, p) = p,(1)

such that the map p 7→ Φ(t, p) is a continuously varying family of area-

preserving diffeomorphisms of the plane. The scalar vorticity ω = ∂1v2 − ∂2v1

is transported by this flow

Dt ω = ∂t ω + v · ∇ω = 0, ω(0, x) = ω0(x),(2)

and the velocity is coupled to the vorticity through the Biot-Savart law

v(t, x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(t, y) dy.(3)

Existence, but not uniqueness, of global weak solutions has been established

for less regular initial vorticity of compact support. DiPerna and Majda [9]

treated the case of initial data in Lp(R2), for 1 < p <∞, and Delort [8] tackled

vortex sheet initial vorticity, a positive Radon measure in H−1(R2).

Despite this successful existence theory, little can be said about the large

time behavior of solutions. This is not surprising since point vortex approxima-

tions, even using small numbers of particles, can generate complex dynamics.

Given that the vorticity is transported by a area-preserving flow (2), it follows

that its Lp norms are constant in time. In the case of smooth data, Hölder

regularity of the flow map is preserved in time, but the Hölder norm of the flow

map is only known to be bounded by an expression of the form exp(expCt).

Clearly, any growth in the Hölder norm of the flow map would be related to

the evolution of compact regions under the flow.

If the initial vorticity is supported in a compact set Ω ⊂ R2, then equation

(2) shows that at time t > 0 the vorticity is supported in Ω(t) = Φ(t,Ω).

Nothing can be said about the geometry of Ω(t). However in the case where

the vorticity equals the characteristic function of a set with smooth bound-

ary, the so-called vortex patch, Chemin [5] proved that the regularity of the

boundary is propagated, see also [3], [7]. A simple estimate from (3), given

in Lemma 2.1 below, provides a uniform bound for the velocity, and so the

support of the vorticity can grow at most linearly in time. For positive initial

vorticity, Marchioro [12] demonstrated that the conservation of the moment of

inertia,
∫
R2 |x|2ω(t, x)dx, further acts to constrain the spreading of the support
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to a rate of O(t1/3). This result was generalized to include vorticity in Lp for

2 < p <∞, in [11].

Here it will be shown, in Theorem 2.1, that Marchioro’s bound for the growth

rate of the support of positive vorticity can be improved to O[(t log t)1/4] by

taking into account not only the conservation of the moment of inertia but

also the conservation of the center of mass,
∫
R2 xω(t, x) dx. As in [12], bounds

for the flow map will come from an estimate for the radial component of the

velocity starting from (3). The heart of the matter is to measure the vorticity in

L1 outside of balls centered at the origin, Proposition 2.1. The approach taken

here, which is the second main difference with [12], is to derive a differential

inequality for a certain smooth approximation to this L1 quantity. The analysis

applies to weak solutions in Lp, 2 < p ≤ ∞. Another proof of Proposition 2.1,

using higher momenta, has been found by Gamblin. His argument is included

in the appendix at the end of the article. After the completion of this work,

we learned that Serfati [13] has independently obtained a result similar to

Theorem 2.1 with the factor t1/4 log ◦ · · · ◦ log t replacing (t log t)1/4.

There are a few examples of explicit solutions, but none of these exhibit

any growth of support. Spherically symmetric initial vorticity gives rise to a

stationary solution whose velocity vector field induces flow lines which follow

circles about the origin. The support of the Kirchoff elliptical vortex patch

rotates with constant angular velocity, although the velocity vector field has a

nontrivial structure exterior to the support, (see [10], p.232). The support of

the so-called Batchelor couple, the continuous analog of a pair of oppositely

charged point vortices, moves by translation with speed O(t), without any

change of shape, (see [2], p.534). On the other hand, numerical simulations

starting with a pair of positively charged vortex patches show homogenization

of the patches simultaneous with the formation of long filaments [4].

In the final section, an example is presented for which the support of the

vorticity grows at a rate of O(t). This rate is optimal since, as mentioned

above, the growth can be at most linear in time. The initial vorticity is

not positive, rather it consists of four blobs, identical except for alternating

sign, located symmetrically in the four quadrants. The initial configuration

is inspired by two examples. First, the discrete analog of this set-up can be

integrated explicitly, and the point vortices are seen to spread at a rate of
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O(t). Secondly, at the other extreme, Bahouri and Chemin [1] consider an

example for which the initial vorticity is piecewise constant with alternating

values ±1 in the unit square of the four quadrants. There one finds rapid loss

of Hölder regularity of the flow map. The motion in our example restricts

to a solution of the Euler equations in the first quadrant with slip boundary

conditions. The proof will show that the center of the mass located in the

first quadrant moves at a rate of O(t). In this case, the conservation of the

center of mass and moment of inertia are no longer useful since both quantities

vanish. Instead, we shall use conservation of energy.

2. When the vorticity is positive

In this section we prove that the support of nonnegative vorticity in L∞

grows no faster than C(t log t)1/4. We will make use of several quantities that

are conserved by the time evolution, namely the total mass∫
ω(t, x) dx =

∫
ω0(x) dx = m0,

the maximum norm

‖ω(t)‖L∞ = ‖ω0‖L∞ = M0,

the center of mass

m−1
0

∫
xω(t, x) dx = m−1

0

∫
xω0(x) dx = c0,

and the moment of inertia∫
|x|2ω(t, x) dx =

∫
|x|2ω0(x) dx = i0.

Assume that the support of ω0 is contained in the ball centered at the origin

of radius d0. We are going to prove the following theorem.

Theorem 2.1. Let ω(t, x) be the solution of the 2d incompressible Euler equa-

tions with a positive compactly supported initial vorticity ω0 ∈ L∞(R2). There

exists a constant C0 = C0(i0, d0,m0,M0) such that, for every time t ≥ 0, the

support of ω(t, ·) is contained in the ball |x| < 4d0 + C0[t log(2 + t)]1/4.

Proof. First, by making the change of variable x → x − c0, we may assume,

without loss of generality, that the center of mass is located at the origin.

In the following estimates, constants will be independent of ω0, unless other-

wise indicated, and then the dependence will be only through the quantities i0,
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d0, m0, and M0. We will establish the theorem for classical solutions, and the

general result, for weak solutions, follows immediately since these quantities

are stable under passage to the weak limit. The time variable will often be

suppressed since it plays no role in the estimation of the various convolution

integrals.

We are going to show that the radial component of the velocity satisfies an

estimate of the form∣∣∣∣ x|x| · v(t, x)

∣∣∣∣ ≤ C0

|x|3
, for all |x| ≥ 4d0 + C0[t log(2 + t)]1/4,(4)

with C0 = C0(i0, d0,m0,M0). The proof of the theorem concludes by noticing

that the region

{(t, x) : t ≥ 0, |x| < 4d0 + C0[t log(2 + t)]1/4}

is invariant for the flow

dt

ds
= 1,

dx

ds
= v(t, x)

since the bound (4) implies that the vector field (1, v(t, x)) points inward along

the boundary of this region.

We now turn to the verification of (4). The radial part of the velocity is

x

|x|
· v(x) =

1

2π

∫
x

|x|
· (x− y)⊥

|x− y|2
ω(y) dy,

in which (x1, x2)⊥ = (−x2, x1). The last integral will be divided into two

pieces.

The portion of the integral over the region |x − y| < |x|/2 is immediately

seen to be bounded by

C

∫
|x−y|<|x|/2

ω(y)

|x− y|
dy.

Using that x · (x− y)⊥ = −x · y⊥ and the fact that the center of mass is at

the origin, we can express the other portion as
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∫
|x−y|>|x|/2

x

|x|
· (x− y)⊥

|x− y|2
ω(y) dy = −

∫
|x−y|>|x|/2

x · y⊥

|x||x− y|2
ω(y) dy

=−
∫

|x−y|>|x|/2

x · y⊥

|x|

(
1

|x− y|2
− 1

|x|2

)
ω(y) dy

+

∫
|x−y|<|x|/2

x · y⊥

|x|3
ω(y) dy

=−
∫

|x−y|>|x|/2

x · y⊥

|x|
〈y, 2x− y〉
|x− y|2|x|2

ω(y) dy

+

∫
|x−y|<|x|/2

x · y⊥

|x|3
ω(y) dy.

Next, we note that |x− y| > |x|/2 implies

|2x− y| ≤ |x− y|+ |x| < 3|x− y|,

and so the first of these integrals is bounded as follows∣∣∣ ∫
|x−y|>|x|/2

x · y⊥

|x|
〈y, 2x− y〉
|x− y|2|x|2

ω(y) dy
∣∣∣≤ ∫
|x−y|>|x|/2

|y|2|2x− y|
|x|2|x− y|2

ω(y) dy

≤ C

|x|3

∫
|x−y|>|x|/2

|y|2ω(y) dy ≤ Ci0
|x|3

.

On the grounds of simple homogeneity, it is difficult to see how to improve

this estimate using only the conserved quantities at hand.

As for the second piece, we use that |x − y| < |x|/2 gives |y| ≤ 3|x|/2 to

write ∣∣∣ ∫
|x−y|<|x|/2

x · y⊥

|x|3
ω(y) dy

∣∣∣≤ C

∫
|x−y|<|x|/2

ω(y)

|x− y|
dy.

We have deduced the following estimate for the radial component of velocity∣∣∣∣ x|x| · v(x)

∣∣∣∣ ≤ Ci0
|x|3

+ C

∫
|x−y|<|x|/2

ω(y)

|x− y|
dy.(5)

The rest of the proof consists in showing that the last integral is negligible for

large |x|.
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Before going any further, we need an elementary lemma which gives a bound

of the L∞ norm of the velocity in terms of the vorticity.

Lemma 2.1. Let S ⊂ R2 and h : S → R
+ be a function belonging to L1(S)∩

L∞(S). Then ∫
S

h(y)

|x− y|
dy ≤ C‖h‖1/2

L1(S)‖h‖
1/2
L∞(S).

Proof of Lemma 2.1. Let k be an arbitrary positive number. We can write∫
S

h(y)

|x− y|
dy =

∫
S∩{|x−y|>k}

h(y)

|x− y|
dy +

∫
S∩{|x−y|<k}

h(y)

|x− y|
dy

≤
‖h‖L1(S)

k
+ ‖h‖L∞(S)

∫
|x−y|<k

1

|x− y|
dy

=
‖h‖L1(S)

k
+ ‖h‖L∞(S)2πk.

Choose k = ‖h‖1/2

L1(S)‖h‖
−1/2
L∞(S).

Therefore, from (5), Lemma 2.1, and the fact that

{y : |x− y| < |x|/2} ⊂ {y : |y| > |x|/2},

the estimate for the radial component of the velocity is∣∣∣∣ x|x| · v(x)

∣∣∣∣ ≤ Ci0
|x|3

+ CM
1/2
0

(∫
|y|>|x|/2

ω(y) dy
)1/2

.

Given the following proposition, with k = 6, the last integral is also O(|x|−3)

for |x| large so that inequality (4) holds, and hence Theorem 2.1 is valid.

Proposition 2.1. There exists a constant C0 = C0(i0, d0,m0,M0, k) such that

for any k > 0 ∫
|y|>|x|/2

ω(t, y) dy ≤ C0

|x|k
,

for all |x| > 4d0 + C0[t log(2 + t)]1/4.

Proof of the Proposition. Let us consider the function

fr(t) =

∫
φr(y)ω(t, y) dy

in which

φr(y) = η

(
|y|2 − r2

λr2

)
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with

η(s) =
es

1 + es
,

and λ = λ(r) is a positive function less than 1 to be chosen in (18). We shall

use later that

η′(s) = es/(1 + es)2 ≤
{
η(s)
e−|s|

and

η′′(s) = es(1− es)/(1 + es)3, so |η′′| ≤ η.

If |y| > r, then (|y|2 − r2)/r2λ > 0, and the monotonicity of η implies that

fr(t) > η(0)

∫
|y|>r

ω(t, y) dy.

Hence, in order to prove the Proposition, it suffices to show that there is a

constant C0 = C0(i0, d0,m0,M0, k) such that

fr(t) ≤
C0

rk
,(6)

as long as r > 2d0+C0[t log(2+t)]1/4. The inequality of the Proposition follows

by setting r = |x|/2. The rest of the section is concerned with the proof of the

inequality (6). (For notational convenience, the integration variable of fr(t)

will now be switched from y to x.)

Differentiating fr(t), using the vorticity equation (2), integrating by parts,

and finally using the Biot-Savart law (3) gives

f ′r(t) =

∫
φr(x)∂tω(t, x) dx

= −
∫
φr(x)v(t, x) · ∇ω(t, x) dx

=

∫
∇φr(x) · v(t, x)ω(t, x) dx(7)

=
1

2π

∫∫
∇φr(x) · (x− y)⊥

|x− y|2
ω(t, x)ω(t, y) dx dy

=
1

2π

∫∫
2η′
(
|x|2 − r2

λr2

)
〈x, (x− y)⊥〉
λr2|x− y|2

ω(t, x)ω(t, y) dx dy.
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Furthermore, since the center of mass is at the origin, we have

(8) f ′r(t) =
1

π

∫∫
η′
(
|x|2 − r2

λr2

)
〈x, (x− y)⊥〉

λr2

×
(

1

|x− y|2
− 1

|x|2

)
ω(t, x)ω(t, y) dx dy.

Let us denote by L(x, y) the kernel in the integral above.

Define the following sets

Ω1 =

{
(x, y) : |x| < r

2
or |x| > 3r

2

}
,

Ω2 =

{
(x, y) :

r

2
≤ |x| ≤ 3r

2
, |y| < r

4
or |y| > 7r

4

}
,

Ω3 =

{
(x, y) :

r

2
≤ |x| ≤ 3r

2
,
r

4
≤ |y| ≤ 7r

4

}
,

Ω4 =

{
(x, y) :

r

4
< |x| < 7r

4
,
r

4
< |y| < 7r

4

}
.

Clearly, the whole space R2 × R2 can be written as the disjoint union Ω1 ∪
Ω2 ∪ Ω3. Therefore, we have

f ′r =

∫∫
Ω1

L(x, y) dx dy +

∫∫
Ω2

L(x, y) dx dy +

∫∫
Ω3

L(x, y) dx dy.

Moreover, since Ω3 ⊂ Ω4, we can further write

(9) f ′r =

∫∫
Ω1

L(x, y) dx dy +

∫∫
Ω2

L(x, y) dx dy

+

∫∫
Ω4

L(x, y) dx dy −
∫∫

Ω4\Ω3

L(x, y) dx dy.

Now, Ω4 \ Ω3 ⊂ Ω1 where |x| < r/2 or |x| > 3r/2 hold. In this case, since

η′(s) is bounded by e−|s|, we have η′
(
|x|2 − r2

λr2

)
≤ e−1/2λ. Therefore, in the

region Ω1 we have the bound

|L(x, y)| = 1

πλr2

∣∣∣∣η′( |x|2 − r2

λr2

) ∣∣∣∣
×
∣∣∣∣〈x, (x− y)⊥〉
|x− y|2

+
〈x, y⊥〉
|x|2

∣∣∣∣ω(x)ω(y)(10)

≤ C

λr2e1/2λ

(
|x|
|x− y|

+
|y|
|x|

)
ω(x)ω(y).
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An application of the Cauchy-Schwarz inequality yields∫
|x|ω(x) dx ≤

(∫
ω(x) dx

)1/2(∫
|x|2ω(x) dx

)1/2

= (m0i0)1/2.(11)

From (10), applying Lemma 2.1 and inequality (11) gives∣∣∣∣∫∫
Ω1

L(x, y) dx dy −
∫∫

Ω4\Ω3

L(x, y) dx dy

∣∣∣∣
≤ C

λr2e1/2λ

[(∫ ω(x)

|x|
dx
)(∫

|y|ω(y) dy
)

+

∫
|x|ω(x)

(∫ ω(y)

|x− y|
dy
)
dx

]
(12)

≤ C

λr2e1/2λ
m0(M0i0)1/2.

Assume now that (x, y) ∈ Ω2. This implies that |x− y| > r/4 and also that

|2x− y| ≤ |x|+ |x− y| ≤ 7|x− y|. Thus, since η′ ≤ η, it follows that on Ω2

|L(x, y)| = 1

π
η′
(
|x|2 − r2

λr2

)
|〈x, y⊥〉|
λr2

|〈y, 2x− y〉|
|x|2|x− y|2

ω(x)ω(y)

≤Cφr(x)
|y|2

λr2|x||x− y|
ω(x)ω(y)

≤ C

λr4
φr(x)ω(x)|y|2ω(y).

Finally, from the conservation of the moment of inertia, we deduce∣∣∣∣∫∫
Ω2

L(x, y) dx dy

∣∣∣∣≤ ∫∫ C

λr4
φr(x)ω(x)|y|2ω(y) dx dy =

Ci0
λr4

fr.(13)

It remains to study the integral over Ω4. Note that this domain is symmetric

with respect to the diagonal. Interchanging the roles of the coordinates, we

may write ∫∫
Ω4

L(x, y) dx dy =
1

2

∫∫
Ω4

[L(x, y) + L(y, x)] dx dy.

But it is easy to see that L(x, y) + L(y, x) = L1(x, y) + L2(x, y) where

L1(x, y) =
1

πλr2

[
η′
(
|x|2 − r2

λr2

)
〈x, (x− y)⊥〉

− η′
(
|y|2 − r2

λr2

)
〈y, (x− y)⊥〉

](
1

|x− y|2
− 1

|x|2

)
ω(x)ω(y)
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and

L2(x, y) =
1

πλr2
η′
(
|y|2 − r2

λr2

)
〈y, (x− y)⊥〉

(
1

|y|2
− 1

|x|2

)
ω(x)ω(y).

If (x, y) lies in Ω4, then |x| ∼ r and |y| ∼ r. Recalling that η′ ≤ η, we can

bound L2(x, y) by

|L2(x, y)| ≤ C

λr2
φr(x)|y||x− y|

(
1

|x|2
+

1

|y|2

)
ω(x)ω(y).

≤ C

λr2
φr(x)ω(x)ω(y)

(14)

We now go to the estimate of L1(x, y). The observation that

〈x, (x− y)⊥〉 = 〈y, (x− y)⊥〉

allows L1 to be rewritten as

(15) L1(x, y) =
1

πλr2

[
η′
(
|x|2 − r2

λr2

)
−η′
(
|y|2 − r2

λr2

)]

× 〈y, (x− y)⊥〉
(

1

|x− y|2
− 1

|x|2

)
ω(x)ω(y).

The mean value theorem ensures the existence of a point ξ located between

(|x|2 − r2)/λr2 and (|y|2 − r2)/λr2 such that

η′
(
|x|2 − r2

λr2

)
−η′
(
|y|2 − r2

λr2

)
= η′′(ξ)

|x|2 − |y|2

λr2
.

Since |η′′| ≤ η, we infer from the monotonicity of η that∣∣∣∣∣η′
(
|x|2 − r2

λr2

)
− η′

(
|y|2 − r2

λr2

)∣∣∣∣∣
≤ C

λr2

[
η

(
|x|2 − r2

λr2

)
+η

(
|y|2 − r2

λr2

)]
|x− y||x+ y|

=
C

λr2
[φr(x) + φr(y)]|x− y||x+ y|.
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We are now able to estimate L1(x, y). From relation (15) and the preceding

inequality we get

|L1(x, y)| ≤ C

λ2r4
[φr(x) + φr(y)]|x− y||x+ y||〈y, (x− y)⊥〉|

× |〈y, 2x− y〉|
|x|2|x− y|2

ω(x)ω(y)

≤ C

λ2r4
[φr(x) + φr(y)]|x− y|2|x+ y||y|

× |y||2x− y|
|x|2|x− y|2

ω(x)ω(y)

=
C

λ2r4
[φr(x) + φr(y)]

|x+ y||y|2|2x− y|
|x|2

ω(x)ω(y).

Again using that |x| ∼ r and |y| ∼ r when (x, y) ∈ Ω4, we get

|L1(x, y)| ≤ C

λ2r2
[φr(x) + φr(y)]ω(x)ω(y).

The final estimate for the integral over Ω4 now comes by using the estimate

above and inequality (14). We get

|L1(x, y) + L2(x, y)| ≤ C

λ2r2
[φr(x) + φr(y)]ω(x)ω(y),

and hence, ∣∣∣∣∫∫
Ω4

L(x, y) dx dy

∣∣∣∣
≤
∫∫
Ω4

C

λ2r2
[φr(x) + φr(y)]ω(x)ω(y) dx dy

= 2
C

λ2r2

∫∫
Ω4

φr(x)ω(x)ω(y) dx dy

≤ C

λ2r2

∫
φr(x)ω(x) dx

∫
r
4
<|y|< 7r

4

ω(y) dy

≤ Ci0
λ2r4

fr,

(16)

where we used the conservation of moment of inertia to deduce that∫
r/4<|y|<7r/4

ω(y) dy ≤ Ci0
r2

.
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Putting together relations (9), (12), (13) and (16) we obtain the following

differential inequality

f ′r(t) ≤
Ci0
λ2r4

fr(t) +
C

λr2e1/2λ
m0(M0i0)1/2.

Gronwall’s lemma implies

fr(t) ≤ fr(0) exp

[
Ci0
λ2r4

t

]
+m0λr

2

(
M0

i0

)1/2

exp

[
Ci0
λ2r4

t− 1

2λ

]
.

If we assume that r ≥ 2d0, then from the definition of fr(t), we have that

fr(0) ≤ m0e
−1/2λ,

which gives us the bound

fr(t) ≤ m0

(
1 + λr2

(
M0

i0

)1/2
)

exp

[
Ci0
λ2r4

t− 1

2λ

]
.

Now we suppose that

t ≤ λr4

4Ci0
,(17)

so that
Ci0
λ2r4

t− 1

2λ
≤ − 1

4λ
,

and we make the choice

λ =

[
4(k + 2) log

(
r

d0

)]−1

.(18)

Combining the above, we have shown that

fr(t) ≤
C0

rk
,

with C0 = C0(i0, d0,m0,M0, k), provided that r ≥ 2d0, (17), and (18) hold.

The conclusion of Proposition 2.1 follows by noting that, for C0 large enough,

t and r will lie in the appropriate range as long as

r ≥ 2d0 + C0[t log(2 + t)]1/4.

We remark that the proof goes through for ω0 ∈ Lp, 2 < p ≤ ∞, simply by

replacing the maximum norm by the Lp-norm in Lemma 2.1 and remembering

that the Lp-norm is conserved under the time evolution.
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3. An example of linear growth

The aim of this section is to present an example of vorticity, with indefinite

sign, whose support grows like O(t). Let us denote the first quadrant by Q.

Let ω̃0 be a nonnegative function, belonging to L∞, copactly supported in

Q. We denote m0 =
∫
ω̃0(x) dx, M0 = ‖ω̃0‖L∞ , and P0 =

∫
x ω̃0(x) dx. Our

example of initial vorticity is a function antisymmetric with respect with both

coordinate axes and equal to ω̃0 in the first quadrant. In other words, using x

for the complex conjugate of x, we define ω0(x) = ω̃0(x) for x ∈ Q and extend

ω0 to R2 so as to have ω0(x) = −ω0(x) = −ω0(−x) = ω0(−x). We shall prove

the following theorem.

Theorem 3.1. There exists a constant C0 = C0(m0,M0,P0) such that, for

every time t, the diameter, d(t), of the support of the vorticity evolved from

ω0 satisfies d(t) ≥ C0t.

Proof. By uniqueness, the vorticity ω(t, x) preserves the antisymmetry of the

initial data,

ω(t, x) = −ω(t, x) = −ω(t,−x) = ω(t,−x).

Moreover, the flow map is antisymmetric, and so it leaves each quadrant and

both coordinate axes invariant. Consequently, we have∫
Q

ω(t, x) dx =

∫
Q

ω(0, x) dx =

∫
Q

ω̃0(x) dx = m0.(19)

We shall consider the evolution of the center of mass of ω(t, x) restricted to

Q defined by

P(t) =
1

m0

∫
Q

xω(t, x) dx.

Let P(t) = (P1(t), P2(t)). The support of ω has a non-empty intersection

with the region {x1 ≥ P1}. Therefore, the symmetry properties of ω(t, x)

imply that the diameter of the support of the vorticity is bounded by below

by P1(t). So, in order to prove Theorem 3.1 , it is enough to prove that

P1(t) ≥ C0(m0,M0,P0)t. In the course of the proof, we shall also see that

P1(t) is increasing and that P2(t) is decreasing.
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From the Biot-Savart law (3) along with the obvious changes of coordinates,

we deduce

v(x) =

∫
R2

(x− y)⊥

|x− y|2
ω(y) dy

=

∫
Q

(
(x− y)⊥

|x− y|2
+

(x+ y)⊥

|x+ y|2
− (x− y)⊥

|x− y|2
− (x+ y)⊥

|x+ y|2

)
ω(y) dy.

Separating the components, we can further write

v1(x) =

∫
Q

[
−(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)
+ (x2 + y2)

(
1

|x− y|2
− 1

|x+ y|2

)]
ω(y) dy

v2(x) =

∫
Q

[
(x1 − y1)

(
1

|x− y|2
− 1

|x− y|2

)
+ (x1 + y1)

(
1

|x+ y|2
− 1

|x+ y|2

)]
ω(y) dy.

(20)

Differentiating P(t), using the vorticity equation (2), and integrating by

parts implies

P′(t) =
1

m0

∫
Q

x ∂tω(t, x) dx =
1

m0

∫
Q

v(t, x)ω(t, x) dx.

Furthermore, according to the modified Biot-Savart law (20), we obtain

P ′1 =
1

m0

∫∫
Q2

[
−(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)

+ (x2 + y2)

(
1

|x− y|2
− 1

|x+ y|2

)]
ω(x)ω(y) dx dy

P ′2 =
1

m0

∫∫
Q2

[
(x1 − y1)

(
1

|x− y|2
− 1

|x− y|2

)

+ (x1 + y1)

(
1

|x+ y|2
− 1

|x+ y|2

)]
ω(x)ω(y) dx dy.

(21)

Interchanging the coordinates, x↔ y, yields∫∫
Q2

(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)
ω(x)ω(y) dx dy

= −
∫∫

(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)
ω(x)ω(y) dx dy,
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so ∫∫
Q2

(x2 − y2)
( 1

|x− y|2
− 1

|x+ y|2
)
ω(x)ω(y) dx dy = 0.

In a similar manner, we see that∫∫
Q2

(x1 − y1)
( 1

|x− y|2
− 1

|x− y|2
)
ω(x)ω(y) dx dy = 0.

We conclude that relation (21) can be now written as

P ′1 =
1

m0

∫∫
Q2

4x1y1(x2 + y2)

|x− y|2|x+ y|2
ω(x)ω(y) dx dy

P ′2 = − 1

m0

∫∫
Q2

4x2y2(x1 + y1)

|x+ y|2|x+ y|2
ω(x)ω(y) dx dy.

(22)

The first thing to remark is that P1 is increasing and P2 is decreasing.

The second main ingredient is conservation of energy. When the velocity

lies in L2, its norm is equivalent to the quantity

E0 = − 1

2π

∫∫
R2×R2

log |x− y|ω(x)ω(y) dx dy.

However, it can be seen directly that the latter integral is a constant of the

motion. Thanks to the symmetry, a few changes of coordinates reduce the

integration to the first quadrant

E0 =
2

π

∫∫
Q2

log
|x− y||x+ y|
|x− y||x+ y|

ω(x)ω(y) dx dy.

The kernel is nonnegative, since we can write

log
|x− y||x+ y|
|x− y||x+ y|

=
1

2
log
|x− y|2|x+ y|2

|x− y|2|x+ y|2

=
1

2
log

(
1 +
|x− y|2|x+ y|2 − |x− y|2|x+ y|2

|x− y|2|x+ y|2

)
(23)

=
1

2
log

(
1 +

16x1y1x2y2

|x− y|2|x+ y|2

)
.

Taking 1/p + 1/q = 1, with 1 < q < 2, Hölder’s inequality along with

relation (22) imply

Ep
0 ≤ C m0 P

′
1 I

1/(q−1),(24)
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in which

I ≡
∫∫
Q2

[
|x− y|2|x+ y|2

x1y1(x2 + y2)

]q−1 [
log
|x− y||x+ y|
|x− y||x+ y|

]q
ω(x)ω(y) dx dy.(25)

In the following, we will derive an upper bound for the integral I.

Since the logarithm grows more slowly than any power, given 0 < α < 1,

there is a constant Cα such that log(1 + z) ≤ Cαz/(1 + z)α, for all z > 0.

Therefore, using (23), the logarithm has the bound

log

(
1 +

16x1y1x2y2

|x− y|2|x+ y|2

)
≤ C

x1y1x2y2

|x− y|2|x+ y|2

[
|x− y|2|x+ y|2

|x− y|2|x+ y|2

]−α
= C

x1y1x2y2

|x− y|2(1−α)|x+ y|2(1−α)|x− y|2α|x+ y|2α
.

From (25), this leads to the upper bound

I ≤ C

∫∫
Q2

x1y1(x2y2)q|x+ y|2αq−2

(x2 + y2)q−1|x− y|2q(1−α)|x+ y|2αq|x− y|2−2q(1−α)

× ω(x)ω(y) dx dy.

If we agree to take α = 1/q, then this simplifies to

I ≤ C

∫∫
Q2

x1y1(x2y2)q

(x2 + y2)q−1|x− y|2(q−1)|x+ y|2|x− y|2(2−q)ω(x)ω(y) dx dy.

Now the trivial inequalities

x1y1 ≤ (x1 + y1)2 ≤ |x+ y|2 and x2y2 ≤ (x2 + y2)2 ≤ |x− y|2

ensure that

I ≤ C

∫∫
Q2

(x2 + y2)3(q−1)

|x− y|2(q−1)
ω(x)ω(y) dx dy.

If q ≤ 6/5, so that 5(q − 1) ≤ 1, we can apply Hölder’s inequality to get

I ≤ CI
1−5(q−1)
1 I

2(q−1)
2 I

3(q−1)
3 ,

with

I1 =

∫∫
Q2

ω(x)ω(y) dx dy, I2 =

∫∫
Q2

1

|x− y|
ω(x)ω(y) dx dy,

I3 =

∫∫
Q2

(x2 + y2)ω(x)ω(y) dx dy.
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From (19), we have that I1 = m2
0. Lemma 2.1 tells us that I2 ≤ Cm

3/2
0 M

1/2
0 .

Also, the monotonicity of P2 gives I3 ≤ Cm2
0P2(0). Altogether, we have the

bound

I ≤ C(q)m2
0

[
M0P2(0)3

m0

]q−1

.

Going back to (24), we obtain

P ′1 ≥ C0 ≡ C(q)

[
E0

m2
0

]1/(q−1)
E0

M0P2(0)3
,

so that

P1(t) ≥ P1(0) + C0t.

This completes the proof of Theorem 3.1.

Appendix

This appendix provides another proof of Proposition 2.1. In order to es-

timate the decay of the mass of vorticity far from the center of mass, we

introduce the higher momenta:

mn(t) =

∫
|x|4nω(t, x) dx.

Although these are not conserved quatities, a recursive estimate holds for their

derivatives leading to the following result.

Lemma A.1. There exists a constant C0 such that for any n ≥ 1

mn(t) ≤ m0(d4
0 + C0i0nt)

n.(26)

Assume, for the moment, that Lemma A.1 is true and let us use it to prove

Proposition 2.1. Fix k ≥ 1, and suppose that

r4 ≥ 2
[
d4

0 + C0i0kt log(2 + t)
]
.(27)

Choose n ≥ k/4 in such a way that

k log(2 + t)− 1 < n ≤ k log(2 + t).(28)

Recalling that the vorticity remains nonnegative during the motion, we have

using (26), (27), and (28)∫
|x|≥r

ω(t, x) dx ≤ mn(t)

r4n
≤ m0

rk
(d4

0 + C0i0nt)
n

r4n−k

≤ m0

rk
2k/4−n

[
d4

0 + C0i0kt log(2 + t)
]k/4

.
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Note that by (28), we have that 2n+1 ≥ (2 + t)k log 2. This means that the

right-hand side can be bounded above by C(i0, d0,m0, k)/rk when (27) holds,

and so Proposition 2.1 follows.

Proof of Lemma A.1. Using the vorticity equation (2) and the Biot-Savart law

(3) as in (7), we have

m′n(t) =
2n

π

∫∫
〈x, (x− y)⊥〉
|x− y|2

|x|4n−2ω(t, x)ω(t, y) dx dy.

We define

K(x, y) = 〈x, (x− y)⊥〉
(

1

|x− y|2
− 1

|x|2

)
.

Since the center of mass is at the origin, we can write

m′n(t) =
2n

π

∫∫
K(x, y)|x|4n−2ω(t, x)ω(t, y) dx dy.

Let us consider the following partition of the plane:

A1 =

{
(x, y) : |y| ≤

(
1− 1

2n

)
|x|
}
,

A2 =

{
(x, y) :

(
1− 1

2n

)
|x| < |y| <

(
1− 1

2n

)−1

|x|

}
,

A3 =

{
(x, y) : |x| ≤

(
1− 1

2n

)
|y|
}
.

Then, we have

m′n(t) = α1(t) + α2(t) + α3(t)

with

αi =
2n

π

∫∫
Ai

K(x, y)|x|4n−2ω(t, x)ω(t, y) dx dy.

We will study each of these three terms.

First, assume that (x, y) ∈ A1 and write

K(x, y) = 〈y, (x− y)⊥〉 〈y, 2x− y〉
|x− y|2|x|2

.

Since |x− y| ≥ |x|/2n and |2x− y| ≤ 3|x|, we have the inequality

|K(x, y)| ≤ |y|
2|2x− y|
|x|2|x− y|

≤ 6n
|y|2

|x|2
,

and we obtain the bound

|α1(t)| ≤ 12n2

π

∫∫
A1

|x|4(n−1)|y|2ω(t, x)ω(t, y) dx dy ≤ 12n2

π
i0mn−1(t).
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Now, assume that (x, y) ∈ A3. This implies that |x − y| ≥ |y|/2n and

(1− 1/2n)|y|/|x| ≥ 1. The kernel K(x, y) may be written as

K(x, y) =
〈x, (x− y)⊥〉
|x− y|2

+
〈x, y⊥〉
|x|2

,

and we deduce that on A3

|K(x, y)| ≤ |x|
|x− y|

+
|y|
|x|
≤ 2n

|y|2

|x|2
.

It follows that

|α3(t)| ≤ 4n2

π
i0mn−1(t).

Finally, we split the integral over A2 into two terms

α2(t) = I1(t) + I2(t)

where

I1(t) = −2n

π

∫∫
A2

|x|4n−2 〈x, y⊥〉
|x− y|2

ω(t, x)ω(t, y) dx dy,

I2(t) =
2n

π

∫∫
A2

|x|4(n−1)〈x, y⊥〉ω(t, x)ω(t, y) dx dy.

In the region A2, we have |x| ≤ 2|y|, and we can bound the second contribution,

I2(t), by

|I2(t)| ≤ 4n

π
i0mn−1(t).

Now, observe that the region A2 is symmetric with respect to the diagonal and

that

H(x, y) ≡ 〈x, y
⊥〉

|x− y|2
= −H(y, x).

The integral I1(t) can be therefore rewritten as

I1(t) = −n
π

∫∫
A2

H(x, y)
(
|x|4n−2 − |y|4n−2

)
ω(t, x)ω(t, y) dx dy.

To evaluate this integral, we first use the following identity

|x|4n−2 − |y|4n−2 = 〈x− y, x+ y〉
2n−2∑
j=0

|x|4n−4−2j|y|2j.
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Thus, in the region A2, we find∣∣|x|4n−2 − |y|4n−2
∣∣ ≤ 3|y||x− y||x|4(n−1)

2n−2∑
j=0

(
1− 1

2n

)−2j

≤ 6n |y||x− y||x|4(n−1).

On the other hand, we note that

|H(x, y)| =
∣∣〈x− y, y⊥〉∣∣
|x− y|2

≤ |y|
|x− y|

.

Combining the two last estimates yields

|I1(t)| ≤ 6n2

π
i0mn−1(t).

Summing up the bounds for α1, α3, I1, and I2, and then using Hölder’s

inequality we get

m′n(t) ≤ C0i0n
2mn−1(t) ≤ C0i0n

2m
1/n
0 mn(t)1−1/n.

It follows that mn(t) can be estimated as claimed in (26).
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