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Abstract

We consider the Navier-Stokes equations with Navier friction boundary conditions
and prove two results. First, in the case of a bounded domain we prove that weak
Leray solutions converge (locally in time in dimension ≥ 3 and globally in time in
dimension 2) as the viscosity goes to 0 to a strong solution of the Euler equations
provided that the initial data converges in L2 to a sufficiently smooth limit. Second,
we consider the case of a half-space and anisotropic viscosities: we fix the horizontal
viscosity, we send the vertical viscosity to 0 and prove convergence to the expected
limit system under weaker hypothesis on the initial data.

Introduction

We consider in this paper the vanishing viscosity limit for the incompressible Navier-
Stokes equations in a domain Ω:

∂tu− ν4u+ u · ∇u = −∇p, in Ω× (0,+∞),

div u = 0, in Ω× [0,+∞),

u
∣∣
t=0

= u0, in Ω.

(1)

The vanishing viscosity limit for the incompressible Navier-Stokes equations, in the
case where there exist physical boundaries, is a challenging problem due to the formation
of a boundary layer which is caused by the classical no-slip boundary condition. A partial
result, in the case of half-space, was given in [17, 18] by imposing analyticity on the initial
data. The authors proved in these papers that the Navier-Stokes solution goes to an Euler
solution outside a boundary layer, and it is close to a solution of the Prandtl equations
within the boundary layer. Concerning the anisotropic Navier-Stokes equations, in some
particular domains such as the half-space, it was showed in [10] that if the ratio of vertical
viscosity to horizontal viscosity also goes to zero, then the weak solutions converge to the
solution of the Euler system.
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From a physical point of view, the no-slip condition is only justified where the molecular
viscosity is concerned. In [14] Navier claimed that the tangential component of the viscous
stress at the boundary should be proportional to the tangential velocity. We call Navier
friction boundary conditions the following conditions:

u · n = 0, [D(u)n+ αu]tan = 0, on ∂Ω× (0,+∞). (2)

Here, D(u) = 1
2
(∂iuj +∂jui)1≤i,j≤n denotes the deformation tensor, n is the exterior normal

to Ω, α ≥ 0 is a material constant (the friction coefficient) and [D(u)n + αu]tan is the
tangential component of the vector D(u)n+ αu.

The Navier friction condition was rigorously justified as a homogenization of the no-
slip condition on a rough boundary, see [6]. The Navier-Stokes equations, and also other
equations in fluid mechanics, with Navier and other similar boundary conditions were
studied in the mathematical literature, see for example [1, 5, 13] and the references therein.
Recently, in [3] and [9] was studied the inviscid limit of the two dimensional incompressible
Navier-Stokes equations in a bounded domain subject to Navier friction-type boundary
conditions, see also [12] for the case of permeable boundary. These works show that the
boundary layers arising from the inviscid limit can be controlled in dimension two, thus
proving convergence to solutions of the Euler equations.

In the first part of this paper, we extend these bidimensional convergence results to
higher dimensions by proving convergence to solutions of the Euler equations on the time
interval where (strong) solutions are known to exist. More precisely, we have the following
theorem:

Theorem 1 Let Ω be a bounded smooth open domain in Rn, n ≥ 2, and v0 ∈ Hs(Ω),
s > 1 + n

2
, a divergence free vector field tangent to the boundary. For each ν > 0, we

consider uν
0 ∈ L2(Ω) a divergence free vector field tangent to the boundary such that uν

0 → v0

strongly in L2(Ω) as ν → 0. Let uν be a (global) weak Leray solution of the Navier-Stokes
equations (1)-(2) with initial data uν

0 and v ∈ C0
(
[0, T );Hs

)
the local strong solution of

the Euler equations defined up to the maximal time-existence T . Then, uν converges to v
strongly in L∞loc

(
[0, T );L2

)
as ν → 0.

Let us comment this result. First of all, the hypothesis that the limit velocity belongs
to Hs seems hard to be improved. Indeed, since we expect to obtain the Euler equations in
the limit, we should have a limit initial velocity compatible to known solutions of the Euler
equation. But, in general n-domains with n ≥ 3, only strong solutions (which belong to
Hs, s > 1+ n

2
) are known to exist. Next, even in dimension two this result says something

new over the results of [3] and [9]. Indeed, these articles assume that the initial velocity is
fixed and belongs to W 1,p, with p > 2 in [9] and p = ∞ in [3]. The bidimensional case of
Theorem 1 assumes stronger regularity on the limit solution than [3] and [9], but applies
to weaker solutions of the Navier-Stokes equations.

The proofs of [3, 9, 12] consist in making a priori estimates and pass to the limit with
compactness methods. A similar approach does not seem to work in dimension three. The
reason is that the a priori estimates to prove should hold true for the limit system. But on
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the limit system, one has in general only Hs estimates with s = 0 or s > 5/2. L2 estimates
are not sufficient to make a compactness method work while a priori estimates in Hs with
s > 5/2 cannot be true. Indeed, that would imply that the limit equation also verifies the
Navier boundary conditions. We shall see in the last section that in general this is not the
case. Our proof of Theorem 1 consist in a direct estimate of the L2 norm of the difference
which turns out to be surprisingly easy.

The second part of this paper is our main contribution. Here, we will consider the
anisotropic inviscid limit for the following anisotropic Navier-Stokes equations in the half-
space H = {x ∈ R3; x3 > 0},

∂tu− ν(∂2
1 + ∂2

2)u− ε∂2
3u+ u · ∇u = −∇p, in H× (0,+∞),

div u = 0, in H× [0,+∞),

u
∣∣
t=0

= u0, in H,
(3)

supplemented with the Navier boundary conditions that can be written in this particular
case under the following form:

u3 = 0, ∂3u1 = α′u1, ∂3u2 = α′u2 on ∂H× (0,+∞), (4)

where α′ = 2α. The constants ν > 0 and ε ≥ 0 represent respectively the horizontal and
vertical viscosities.

The anisotropic Navier-Stokes equations are widely used in geophysical fluid dynamics
as a mathematical model for water flow in lakes and oceans, and also in the study of the
Ekman boundary layers for rotating fluids, see for instance [16, 4]. These equations appear
when the domain in use has very different horizontal and vertical dimensions; the turbulent
viscosity coefficients may not be isotropic in this case.

In the absence of physical boundary, i.e., when the fluid occupies the whole space,
the Navier-Stokes equations with vanishing vertical viscosity were primarily studied in [2].
The authors proved results of local existence for large data in anisotropic Sobolev spaces
H0,s, s > 1/2, and of global existence for small initial data, compared with the horizontal
viscosity, in the same space. The uniqueness was showed for s > 3/2. The gap between
the existence result and the uniqueness result was closed in [8]. The anisotropic space H0,s

is a space with L2 regularity in the horizontal variable and Hs regularity in the vertical
variable. In the case of null vertical viscosity, similar results were obtained by [15] in
anisotropic Besov-Sobolev spaces which contain the spaces H0,s, s > 1/2. These results are
very similar to results known for the isotropic Navier-Stokes equations, we refer to [8] for
a discussion of this subject.

In this part, our aim is to prove that the limit when the vertical viscosity ε goes to 0
is what one should expect, i.e. the solution of the system of equations obtained by setting
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ε = 0 in (3) and taking only the first boundary condition in (4):

∂tu− ν(∂2
1 + ∂2

2)u+ u · ∇u = −∇p, in H× (0, T ),

div u = 0, in H× [0, T ),

u
∣∣
t=0

= u0, in H,
u3 = 0 on ∂H× [0, T ).

(5)

We observe that the boundary condition above is sufficient to solve (5). Indeed, the
second order derivatives are only in the tangential direction and can be integrated by parts.
Moreover, this system of equations can be reduced to the case of full plane. Indeed, if we
extend u1 and u2 to R3 by even reflection and u3 by odd reflection with respect to the plane
x3 = 0, then the resulting vector field verifies the first two equations of (5) with H = R3.
Conversely, a solution of the first two equations of (5) in R3 preserves this special symmetry
structure, so if the initial data has this structure, then the restriction to H is a solution
of (5). Therefore the study of (5) reduces to the one of the anisotropic Navier-Stokes
equations studied in [2, 8, 15]. Exactly the same observation holds true for the system
of equations (3)-(4) in the case α′ = 0. Using precisely the same reflection extension, we
observe that the study of (3)-(4) with α′ = 0 reduces to the study of the Navier-Stokes
equations in the full space with an initial data having the above special structure.

Our main result on the second part is stated in the following theorem.

Theorem 2 Let u0 ∈ L2(H) be a divergence free vector field, independent of ε, tangent
to the boundary and such that ∂3u0 ∈ L2(H). For ε ∈ (0, 1], there exist a positive time T
independent of ε and a solution uε of system (3)-(4) up to time T such that

uε, ∂3u
ε ∈ L∞(0, T ;L2), ∂iu

ε, ∂i∂3u
ε ∈ L2

(
(0, T )×H

)
, i = 1, 2.

Moreover, uε converges up to a subsequence to a solution of the limit system (5) as ε→ 0.
Furthermore, there exists a constant K independent of ε and ν such that if the smallness

assumption ‖u0‖L2 + ‖u0‖
1
2

L2‖∂3u0‖
1
2

L2 ≤ Kν holds true, then the existence and convergence
of uε hold true globally in time, i.e. one can take T = +∞.

The key point of the proof is the use of the special structure of the incompressible
Navier-Stokes system in obtaining a priori estimates.

The second part is organized as follows. In the first section, after introducing the basic
notation, we prove some anisotropic inequalities and a result for a linearized problem which
we will use in later proofs. The second section is devoted to obtaining a priori estimates
independent of ε, which are the core of the proof of our main Theorem. In the third section
we prove Theorem 2, which is a trivial consequence of the a priori estimates. The last
section contains a final remark.
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Part I

The classical inviscid limit
Throughout this part, Ω denotes a bounded smooth domain of Rn. We denote by

H1
σ(Ω), respectively L2

σ(Ω), the space of H1, respectively L2, divergence free vector fields
tangent to the boundary. We recall the following formula:

Lemma 3 Let f be a divergence free vector field verifying the Navier boundary conditions
and g a divergence free vector field tangent to the boundary. Then

−
∫

Ω

4f · g dx = 2α

∫
∂Ω

f · g dx+ 2

∫
Ω

D(f) ·D(g) dx.

The proof of this identity consists in an integration by parts, see for instance [20] or [19].
We next give the definition of a weak Leray solution.

Definition 4 We call weak Leray solution of (1)-(2) a time dependent vector field u(t, x) :
[0,∞)× Ω → Ω verifying:

• u ∈ Cw

(
[0,∞);L2

σ

)
∩ L2

loc

(
[0,∞);H1

σ

)
;

• u verifies the system of equations (1)-(2) under the following weak form:

−
∫ ∞

0

∫
Ω

u · ∂tϕ+ 2αν

∫ ∞

0

∫
∂Ω

u · ϕ+ 2ν

∫ ∞

0

∫
Ω

D(u) ·D(ϕ) +

∫ ∞

0

∫
Ω

u · ∇u · ϕ

=

∫
Ω

u(0) · ϕ(0),

for all divergence free test vector fields ϕ ∈ C∞0
(
[0,∞)×Ω

)
tangent to the boundary;

• u verifies the energy inequality

‖u(t)‖2
L2 + 4αν

∫ t

0

∫
∂Ω

|u|2 + 4ν

∫ t

0

∫
Ω

|D(u)|2 ≤ ‖u(0)‖2
L2 , for all t ≥ 0. (6)

Let us remark that a standard density argument allows to take less smooth test vector
fields ϕ in the above weak formulation. We next observe that the definition above encodes
the information contained in both (1) and (2). Indeed, choosing first ϕ ∈ C∞0

(
(0,∞)×Ω

)
we deduce that (1) is verified in the distributional sense of (0,∞) × Ω. The boundary
condition is also verified in a weak sense. Indeed, if we assume u more regular, then one
can make an integration by parts in the weak formulation and use Lemma 3 to obtain that∫ ∞

0

∫
∂Ω

[D(u)n− αu] · ϕ = 0.
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Since ϕ is an arbitrary test function tangent to the boundary, we must necessarily have that
D(u)n−αu is normal to the boundary. Next, we note that the energy inequality (6) follows
after multiplying formally (1) by u, integrating on Ω and from 0 to t and using Lemma 3 to
integrate by parts the Laplacian term. Finally, we observe that global solutions in the sense
of Definition 4 are well-known to exist in the case of Dirichlet boundary conditions for any
divergence free square integrable initial data tangent to the boundary. The extension of
this classical existence result to the case of Navier boundary conditions is straightforward.

Let v be the local strong solution of the Euler equation

∂tv + v · ∇v = −∇q, in Ω× (0, T ), (7)

div v = 0, in Ω× [0, T ),

v
∣∣
t=0

= v0, in Ω,

v · n = 0 on ∂Ω× [0, T ).

We prove now Theorem 1. With the notations of Theorem 1, the difference w = wν =
uν − v verifies the equation

∂tw + uν · ∇w + w · ∇v − ν4uν = −∇(p− q) in Ω. (8)

We assume in the sequel that t ∈ [0, T ). Let us multiply the above equation by w,
integrate in space and time from 0 to t and finally integrate by parts the Laplacian term
using Lemma 3 to obtain

1

2
‖w(t)‖2

L2 +

∫ t

0

∫
Ω

w ·∇v ·w+2να

∫ t

0

∫
∂Ω

uν ·w+2ν

∫ t

0

∫
Ω

D(uν)·D(w) ≤ 1

2
‖w(0)‖2

L2 . (9)

We used above that w is divergence and tangent to the boundary to deduce that the

pressure term vanishes and that

∫ t

0

∫
Ω

uν · ∇w · w = 0. In fact, a little discussion is

required here. Indeed, if the space dimension is ≥ 3, then the a priori regularity of uν

and w does not allow to deduce that the integral

∫ t

0

∫
Ω

uν · ∇w · w = 0 converges, and

therefore to infer that it vanishes. In fact, one cannot multiply directly (8) by w since
the regularity at hand is not sufficient. However, there is a classical trick that allows to
deduce that (9) is still true at the price of assuming the energy inequality for uν , see for
example [21]. The idea is the following. Let us denote by E(uν), respectively E(v), the
left-hand side of (1), respectively (7). Formally multiplying (8) by w is the same as writing∫ t

0

∫
Ω

[E(uν)− E(v)] · (uν − v) = 0, that is

∫ t

0

∫
Ω

E(uν) · uν +

∫ t

0

∫
Ω

E(v) · v −
∫ t

0

∫
Ω

E(uν) · v −
∫ t

0

∫
Ω

E(v) · uν = 0. (10)
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Since v has sufficient regularity, we see that, for t ∈ [0, T ), all the terms above make

sense except for

∫ t

0

∫
Ω

E(uν) · uν . The observation is that multiplying the equation of

uν by itself formally yields the energy inequality (6). Since we assumed that the energy

inequality holds true, we can therefore say that

∫ t

0

∫
Ω

E(uν) · uν ≤ 0. The relation (10)

must be modified accordingly in an inequality instead of an equality and this explains why
there is an inequality in (9) instead of an equality. In short, the rigorous derivation of
(9) goes like that: add the energy inequality (6) to the equation of v multiplied by v and
subtract the equation of uν multiplied by v and the equation of v multiplied by uν .

We now go back to (9). We write

2να

∫ t

0

∫
∂Ω

uν · w + 2ν

∫ t

0

∫
Ω

D(uν) ·D(w)

= 2να

∫ t

0

∫
∂Ω

∣∣w +
v

2

∣∣2 + 2ν

∫ t

0

∫
Ω

∣∣D(
w +

v

2

)∣∣2 − να

2

∫ t

0

∫
∂Ω

|v|2 − ν

2

∫ t

0

∫
Ω

|D(v)|2.

On the other hand,
∣∣∣∫

Ω

w · ∇v · w
∣∣∣ ≤ ‖w‖2

L2‖∇v‖L∞ . We deduce from the above relations

plugged in (9) that

‖w(t)‖2
L2 ≤ ‖w(0)‖2

L2 + 2

∫ t

0

‖w‖2
L2‖∇v‖L∞ + να

∫ t

0

∫
∂Ω

|v|2 + ν

∫ t

0

∫
Ω

|D(v)|2.

Since ‖v‖L2(∂Ω) ≤ C‖v‖H1(Ω) and w = uν − v, the Gronwall inequality implies that

‖uν(t)− v(t)‖2
L2 ≤

[
‖uν(0)− v(0)‖2

L2 + νC(Ω, α)

∫ t

0

‖v‖2
H1

]
exp

(
2

∫ t

0

‖∇v‖L∞

)
.

As v ∈ L∞loc

(
[0, T );Hs

)
and Hs(Ω) ↪→ Lip(Ω), we deduce the desired conclusion:

sup
[0,t]

‖uν − v‖L2
ν→0−→ 0 for all t ∈ [0, T ).

This completes the proof of Theorem 1.

Part II

The anisotropic inviscid limit

II.1 Notations and preliminary estimates

For a vector field u = (u1, u2, u3) we denote the horizontal component by uh = (u1, u2).
We also define the horizontal variable xh = (x1, x2), we denote by ∇h = (∂1, ∂2) the
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horizontal gradient, by ∆h = ∂2
1 + ∂2

2 the horizontal Laplacian and by D3 the operator
D3 = (Id, ∂3). All norms with respect to x are supposed to be taken in H unless otherwise
specified. We will use the following anisotropic Lebesgue spaces:

Lp,q =
{
f measurable ; ‖f‖Lp,q =

∥∥‖f‖Lp(dxh)

∥∥
Lq(dx3)

<∞
}
.

The following remark shows that the order of integrations is important.

Remark 5 Let (X1;µ1), (X2;µ2) be two measure spaces, 1 ≤ p ≤ q ≤ ∞ and f : X1 ×
X2 → R. Then ∥∥‖f‖Lp(X1,µ1)

∥∥
Lq(X2,µ2)

≤
∥∥‖f‖Lq(X2,µ2)

∥∥
Lp(X1,µ1)

.

For a proof see [7]. We continue with a version of the Gagliardo-Nirenberg inequality for
the anisotropic Lebesgue spaces.

Lemma 6 Suppose that p ∈ [2,+∞), q ∈ [2,+∞] and choose a number a in the interval

a ∈
[
max

(
1
p
, 1

q
+ 2

p
− 1

2

)
,min

(
2
p
, 1

p
+ 1

q

)]
. There exists a constant C such that

‖f‖Lp,q ≤ C‖f‖a
L2‖∇hf‖

1
2
+ 1

q
−a

L2 ‖D3f‖
2
p
−a

L2 ‖∇hD3f‖
1
2
− 2

p
− 1

q
+a

L2 .

Proof. We consider first the case p > 2. We use the well-known Gagliardo-Nirenberg
inequality in R2 to write, for fixed x3,

‖f(xh, x3)‖Lp(dxh) ≤ C‖f(xh, x3)‖λ
L2(dxh)‖∇hf(xh, x3)‖1−λ

L2(dxh), λ =
2

p
.

We next apply the Hölder inequality in the vertical direction and use Remark 5,

‖f‖Lp,q ≤ C
∥∥‖f‖λ

L2(dxh)‖∇hf‖1−λ
L2(dxh)

∥∥
Lq(dx3)

≤ C
∥∥‖f‖L2(dxh)

∥∥λ

Lλq1 (dx3)

∥∥‖∇hf‖L2(dxh)

∥∥1−λ

L(1−λ)q2 (dx3)

≤ C
∥∥‖f‖Lλq1 (dx3)

∥∥λ

L2(dxh)

∥∥‖∇hf‖L(1−λ)q2 (dx3)

∥∥1−λ

L2(dxh)
,

(11)

where q1, q2 ∈ [1,∞] are such that

1

q
=

1

q1
+

1

q2
, 2 ≤ λq1 ≤ +∞, 2 ≤ (1− λ)q2 ≤ +∞.

We now recall the Gagliardo-Nirenberg inequality in the vertical direction

‖f‖Lλq1 (dx3) ≤ C‖f‖β1

L2(dx3)‖D3f‖1−β1

L2(dx3), β1 =
1

2
+

1

λq1
,

so that, after applying the Hölder inequality,∥∥‖f‖Lλq1 (dx3)

∥∥λ

L2(dxh)
≤ C

∥∥‖f‖β1

L2(dx3)‖D3f‖1−β1

L2(dx3)

∥∥λ

L2(dxh)
≤ C‖f‖λβ1

L2 ‖D3f‖λ(1−β1)

L2 .

8



We obtain in a similar manner that∥∥‖∇hf‖L(1−λ)q2 (dx3)

∥∥1−λ

L2(dxh)
≤ C‖∇hf‖(1−λ)β2

L2 ‖∇hD3f‖(1−λ)(1−β2)

L2 , β2 =
1

2
+

1

(1− λ)q2
.

For a in the given range, we choose q1 and q2 such that a = 1
p

+ 1
q1

and 1
q

= 1
q1

+ 1
q2

.
We observe that for this choice of constants, the various restrictions that appear in the
proof are satisfied. The conclusion in the case p > 2 now follows by plugging the last two
equations into (11). The case p = 2 is entirely similar except that we choose q1 = q and
q2 = ∞. This implies at the end the desired conclusion for a = 1

2
+ 1

q
. We finally observe

that the choice a = 1
2
+ 1

q
is the only one allowed by the hypothesis in the case p = 2. This

completes the proof. �

As an immediat consequence of the previous lemma and of the inequality ‖f‖L2 ≤
‖D3f‖L2 = (‖f‖2

L2 + ‖∂3f‖L2)
1
2 we deduce the following corollary.

Corollary 7 There exists a constant C such that

‖f‖L4 ≤ C‖f‖
1
2

L2‖∇hf‖
1
4

L2‖∇hD3f‖
1
4

L2 ,

‖f‖L4,∞ ≤ ‖f‖
1
4

L2‖∇hf‖
1
4

L2‖D3f‖
1
4

L2‖∇hD3f‖
1
4

L2 ≤ C‖D3f‖
1
2

L2‖∇hD3f‖
1
2

L2 ,

‖f‖L4,2 ≤ C‖f‖
1
2

L2‖∇hf‖
1
2

L2 ,

‖f‖L2,∞ ≤ C‖f‖
1
2

L2‖D3f‖
1
2

L2 ≤ C‖D3f‖L2 .

As a consequence of Lemma 6 combined with the anisotropic Hölder inequality we have
the following lemma.

Lemma 8 There exists a constant C such that∣∣∣∫
H
fgh dx

∣∣∣ ≤ C‖f‖
1
2

L2‖∇hf‖
1
2

L2‖h‖
1
2

L2‖∇hh‖
1
2

L2‖g‖
1
2

L2‖D3g‖
1
2

L2 .

Proof. Simply write∣∣∣∫
H
fgh dx

∣∣∣ ≤ ‖f‖L4,2‖g‖L2,∞‖h‖L4,2 ≤ C‖f‖
1
2

L2‖∇hf‖
1
2

L2‖h‖
1
2

L2‖∇hh‖
1
2

L2‖g‖
1
2

L2‖D3g‖
1
2

L2 .

�

We end this section with a result on the anisotropic Stokes problem that will be used
in a later proof.

Proposition 9 Let 0 < ε ≤ 1 and u0 ∈ L2(H) be a divergence free vector field, tangent to
the boundary and such that ∂3u0 ∈ L2(H). Let v be the solution of the Stokes problem with
initial data u0:

∂tv − ν(∂2
1 + ∂2

2)v − ε∂2
3v = −∇q, div v = 0, v

∣∣
t=0

= u0,
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supplemented with the Navier boundary conditions,

v3 = 0, ∂3v1 = α′v1, ∂3v2 = α′v2 on ∂H,

where α′ ≥ 0 and ν > 0. For any η, there exists a time Tη independent of ε such that∫ Tη

0

‖∇hv(τ)‖2
L2dτ ≤ η.

Moreover, the following inequality holds true:

‖D3v(t)‖2
L2 +

∫ t

0

‖∇hD3v(τ)‖2
L2dτ

≤ max
(
1,

1

2ν

)[
‖∂3u0‖2

L2 + (1 + α′
2
)‖u0‖2

L2 + α′‖uh(0)‖2
L2(∂H)

]
. (12)

Proof. The existence of Tη for fixed ε is trivial. We will prove that it is independent of ε.
Let w be the solution of the following system

∂tw − ν(∂2
1 + ∂2

2)w = 0 on H, w
∣∣
t=0

= u0.

Obviously, w is given explicitly as a convolution integral in terms of the fundamental
solution of the Laplacian in R2:

w(t, x) =

∫
R2

1

4πtν
e−

|y|2
4tν u0(xh − y, x3) dy.

From this explicit formula, it is clear that w(t) is divergence free and tangent to the
boundary for all times t. The difference ψ = v − w verifies then the following equation

∂tψ − ν(∂2
1 + ∂2

2)ψ − ε∂2
3v = −∇q, divψ = 0, ψ

∣∣
t=0

= 0,

and ψ is tangent to the boundary. We now take the L2 scalar product with ψ to obtain

1

2

d

dt
‖ψ‖2

L2 + ν‖∇hψ‖2
L2 − ε

∫
H
∂2

3v · ψ dx = 0. (13)

Integrating by parts the last integral yields

−ε
∫

H
∂2

3v · ψ dx = ε

∫
H
∂3v · ∂3ψ dx+ ε

∫
∂H
∂3v · ψ ds.

We use that ψ3 = 0 and v verifies the Navier boundary conditions on the boundary to
replace the term ∂3v ·ψ with α′vh ·ψh. We further replace v by w+ψ and observe that we
can write

−ε
∫

H
∂2

3v · ψ dx = ε‖∂3ψ +
1

2
∂3w‖2

L2 −
ε

4
‖∂3w‖2

L2 + εα′‖ψh +
1

2
wh‖2

L2(∂H) −
εα′

4
‖wh‖2

L2(∂H).

10



Using this relation in (13) and integrating in time we get∫ t

0

‖∇hψ(τ)‖2
L2dτ ≤

ε

4ν

∫ t

0

‖∂3w(τ)‖2
L2dτ +

εα′

4ν

∫ t

0

‖wh(τ)‖2
L2(∂H)dτ

≤ tε

4ν
‖∂3u0‖2

L2 +
tεα′

4ν
‖uh(0)‖2

L2(∂H),

where we used the explicit formula for w to deduce that ‖∂3w‖L2 ≤ ‖∂3u0‖L2 and that
‖wh‖L2(∂H) ≤ ‖uh(0)‖L2(∂H). Observe that the hypothesis together with standard trace
results implies that the trace of the initial data on the boundary is square-integrable. We
finally obtain that∫ t

0

‖∇hv(τ)‖2
L2dτ ≤ 2

∫ t

0

‖∇hw(τ)‖2
L2dτ +

t

2ν
‖∂3u0‖2

L2 +
tα′

2ν
‖uh(0)‖2

L2(∂H).

The first part of the proposition follows immediately since w is independent of ε and it

clearly verifies that lim
t→0

∫ t

0

‖∇hw(τ)‖2
L2dτ = 0.

To prove (12), we multiply the equation for v by −∂2
3v and integrate in space to obtain,

−
∫

H
∂tv · ∂2

3v dx+ ν

∫
H
4hv · ∂2

3v dx+ ε

∫
H
|∂2

3v|2 dx =

∫
H
∂2

3v · ∇q dx. (14)

Using the Navier boundary conditions and integrating by parts we get

−
∫

H
∂tv · ∂2

3v dx =

∫
H
∂t∂3v · ∂3v dx+

∫
∂H
∂tv · ∂3v ds

=
1

2

d

dt

∫
H
|∂3v|2 dx+

∫
∂H
∂tvh · ∂3vh ds

=
1

2

d

dt

(
‖∂3v‖2

L2 + α′‖vh‖2
L2(∂H)

)
.

(15)

The second term on the left hand side of (14) can be written as∫
H
4hv · ∂2

3v dx = −
∫

H
∇hv · ∇h∂

2
3v dx =

∫
H
|∇h∂3v|2 dx+

∫
∂H
∇hv · ∂3∇hv ds.

From the Navier boundary conditions we have ∇hv3 = 0 and ∇h∂3vh = α′∇hvh on ∂H, so
we deduce that ∇hv · ∇h∂3v = ∇hvh · ∇h∂3vh = α′|∇hvh|2 on ∂H. Therefore,∫

H
4hv · ∂2

3v dx = ‖∇h∂3v‖2
L2 + α′‖∇hvh‖2

L2(∂H). (16)

Integrating by parts and using that div v = 0, the pressure term can be written as∫
H
∂2

3v · ∇q dx = −
∫

∂H
∂2

3v3q ds = −α′
∫

∂H
∂3v3q ds.

11



Therefore, from (14),(15) and (16) we have

1

2

d

dt

(
‖∂3v‖2

L2 + α′‖vh‖2
L2(∂H)

)
+ ν‖∇h∂3v‖2

L2 + α′ν‖∇hvh‖2
L2(∂H) + ε‖∂2

3v‖2
L2

= −α′
∫

∂H
∂3v3q ds. (17)

To estimate the pressure term, observe that q verifies the system of equations

4q = 0 in H
∂3q = ε∂2

3v3 = εα′∂3v3 on ∂H.

On one hand

−α′
∫

∂H
∂3v3 q ds = −1

ε

∫
∂H
q ∂3q ds =

1

ε
‖∇q‖2

L2

and on the other hand

‖∇q‖2
L2 = −α′ε

∫
∂H
∂3v3 q ds = α′ε

∫
H
∂3v · ∇q dx ≤ α′ε‖∇q‖L2‖∂3v‖L2 .

We deduce first that ‖∇q‖L2 ≤ α′ε‖∂3v‖L2 and secondly that

−α′
∫

∂H
∂3v3q ds ≤ α′

2
ε‖∂3v‖2

L2 .

Plugging this into (17) and integrating in time yields

‖∂3v(t)‖2
L2 + 2ν

∫ t

0

‖∇h∂3v(τ)‖2
L2dτ ≤ ‖∂3u0‖2

L2 + α′‖uh(0)‖2
L2(∂H)

+ 2α′
2
ε

∫ t

0

‖∂3v(τ)‖2
L2dτ. (18)

On the other hand, the standard L2 energy estimate for v (obtained by multiplying the
equation for v by v) implies that

‖v(t)‖2
L2 + 2ν

∫ t

0

‖∇hv(τ)‖2
L2 dτ + 2ε

∫ t

0

‖∂3v(τ)‖2
L2 dτ ≤ ‖u0‖2

L2 . (19)

Using first this relation to bound the last term in (18) and adding the resulting inequality
to (19) yields equation (12). This completes the proof. �

Remark 10 It is not difficult to see by a density argument that the hypothesis ∂3u0 ∈ L2

is in fact not necessary to prove the existence of Tη.
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II.2 A priori estimates

We will now deduce some a priori estimate for the velocity. For the sake of conciseness,
we write u for uε. In the following, C, C1, C2, C3 will denote some constants independent
of ε that may change from one relation to another. Multiplying the equation of u by u,
integrating in space and performing some straightforward integrations by parts we get the
following L2 energy estimate

1

2

d

dt
‖u‖2

L2 + ν‖∇hu‖2
L2 + ε‖∂3u‖2

L2 + εα′‖uh‖2
L2(∂H) = 0. (20)

Integrating in time implies that

‖u(t)‖2
L2 + 2ν

∫ t

0

‖∇hu(τ)‖2
L2 dτ + 2ε

∫ t

0

‖∂3u(τ)‖2
L2 dτ ≤ ‖u0‖2

L2 . (21)

Now we multiply (3) by −∂2
3u and integrate in space to obtain

−
∫

H
∂tu·∂2

3u dx+ν

∫
H
4hu·∂2

3u dx+ε

∫
H
|∂2

3u|2 dx =

∫
H
u·∇u·∂2

3u dx+

∫
H
∂2

3u·∇p dx. (22)

The first two terms can be treated as in the proof of Proposition 9:

−
∫

H
∂tu · ∂2

3u dx =
1

2

d

dt

(
‖∂3u‖2

L2 + α′‖uh‖2
L2(∂H)

)
, (23)

and ∫
H
4hu · ∂2

3u dx = ‖∇h∂3u‖2
L2 + α′‖∇huh‖2

L2(∂H). (24)

We now go to the nonlinear term. We integrate by parts and write∫
H
u · ∇u · ∂2

3u dx = −
∫

H
∂3(u · ∇u) · ∂3u dx−

∫
∂H
u · ∇u · ∂3u ds. (25)

Since u is divergence free and tangent to the boundary, one has that∫
H
u · ∇∂3u · ∂3u dx =

1

2

∫
H
u · ∇

(
|∂3u|2

)
dx = −1

2

∫
H

div u|∂3u|2 dx = 0.

Next we observe that

−
∫

H
∂3(u · ∇u) · ∂3u dx = −

∫
H
∂3u · ∇u · ∂3u dx

= −
∫

H
∂3uh · ∇hu · ∂3u dx−

∫
H
∂3u3|∂3u|2 dx

= −
∫

H
∂3uh · ∇hu · ∂3u dx+

∫
H

divhuh |∂3u|2 dx.
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Since the right hand side is a sum of terms of the form

∫
H
∂3u ∂3u∇hu dx, we deduce in

view of Lemma 8 that

−
∫

H
∂3(u · ∇u) · ∂3u dx ≤ C‖∂3u‖L2‖∇hD3u‖

3
2

L2‖∇hu‖
1
2

L2 . (26)

We now go to the boundary term in (25). Since u3 = 0 on ∂H, we see that u · ∇u3 = 0 on
the boundary. Therefore

−
∫

∂H
u·∇u·∂3u ds = −

∫
∂H
u·∇uh·∂3uh ds = −α′

∫
∂H
u·∇uh·uh ds =

α′

2

∫
∂H

divhuh |uh|2 ds,

where we used the Navier boundary conditions. We now return to an integral on H

−
∫

∂H
u · ∇u · ∂3u ds = −α

′

2

∫
H
∂3(divhuh |uh|2) dx

= −α
′

2

∫
H
∂3divhuh |uh|2 dx− α′

∫
H

divhuh uh · ∂3uh dx

= α′
∫

H
∂3uh · ∇huh · uh dx− α′

∫
H

divhuh uh · ∂3uh dx

≤ C‖u‖
1
2

L2‖∇hu‖L2‖∂3uh‖
1
2

L2‖∇hD3u‖L2 ,

(27)

where we used Lemma 8.
It remains to estimate the pressure term. Taking the restriction to the boundary of the

third component of the equation for u (3), we first get that

∂3p = ε∂2
3u3 = −ε(∂1∂3u1 + ∂2∂3u2) = −εα′(∂1u1 + ∂2u2) = εα′∂3u3 on ∂H.

Next, taking the divergence of (3), we deduce that

4p = −
3∑

i,j=1

∂iuj∂jui in H.

We observe that the pressure can be written as p = p1 + p2, where p1 verifies the
Neumann problem

4p1 = −
3∑

i,j=1

∂iuj∂jui in H,

∂3p1 = 0 on ∂H.

and p2 verifies

4p2 = 0 in H, (28)

∂3p2 = εα′∂3u3 on ∂H. (29)
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Let us denote by S, respectively A, the extension operator by even, respectively odd,
reflection with respect to the plane {x3 = 0}, i.e. for f : H → R, we define S(f), A(f) :
R3 → R by

S(f)(x) =

{
f(x), x3 ≥ 0

f(xh,−x3), x3 < 0
and A(f)(x) =

{
f(x), x3 ≥ 0

−f(xh,−x3), x3 < 0.

The estimates for the Neumann problems for the Laplacian are well-known. However,
we require precise estimates, namely we want to use homogeneous Sobolev norms. For this
reason we briefly show how to obtain such estimates. We introduce the following extensions
of p1 and u defined by p̃1 = S(p1) and ũ =

(
S(u1), S(u2), A(u3)

)
. It is a well-known trick

to observe that p̃1 verifies

4p̃1 = −S
( 3∑

i,j=1

∂iuj∂jui

)
in D′(R3).

Since ũ is continuous across the boundary one has that the first order derivatives of ũ
contain no Dirac mass concentrated on the interface {x3 = 0} and are computed by dif-
ferentiating piecewise ũ for x3 < 0 and x3 > 0. This implies that div ũ = 0 in the sense of
distributions of R3. Next we observe that the function ∂iũj∂jũi is even with respect to x3

for all i, j ∈ {1, 2, 3}, so that

S
( 3∑

i,j=1

∂iuj∂jui

)
=

3∑
i,j=1

∂iũj∂jũi.

Therefore, using also that div ũ = 0, we deduce that

4p̃1 = −
3∑

i,j=1

∂iũj∂jũi = −
3∑

i,j=1

∂i∂j(ũiũj),

that is,

p̃1 = −
3∑

i,j=1

∂i∂j4−1(ũiũj).

Since the operator ∂i∂j4−1 is bounded in L2(R3), we conclude that

‖p1‖L2 ≤ ‖p̃1‖L2(R3) ≤ C‖ũ‖2
L4(R3) = C

√
2‖u‖2

L4 . (30)

We proceed similarly to deduce

‖∂3p1‖L2 ≤ ‖∂3p̃1‖L2(R3)

≤ C‖∂3(ũ⊗ ũ)‖L2(R3)

≤ C‖∂3u‖L4,2‖u‖L4,∞

≤ C‖∂3u‖
1
2

L2‖∇h∂3u‖
1
2

L2‖D3u‖
1
2

L2‖∇hD3u‖
1
2

L2 ,

(31)
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where we used Corollary 7.
Next, we estimate p2 as we did with q at the end of the proof of Proposition 9. Hence,

we conclude that

−α′
∫

∂H
p2∂3u3 ds ≤ α′

2
ε‖∂3u‖2

L2 . (32)

We can now estimate the pressure term from (22). Integrating by parts and using that
div u = 0, one has that∫

H
∂2

3u · ∇p dx = −
∫

∂H
p ∂2

3u3 ds = −α′
∫

∂H
p ∂3u3 ds

= α′
∫

H
∂3(p1 ∂3u3) dx− α′

∫
∂H
p2 ∂3u3 ds

= −α′
∫

H
∂3p1 divhuh dx− α′

∫
H
p1 ∂3divhuh dx− α′

∫
∂H
p2 ∂3u3 ds.

(33)

In view of (30), (31) and of Corollary 7 we infer that

−α′
∫

H
p1 ∂3divhuh dx ≤ α′‖p1‖L2‖∂3divhuh ‖L2 ≤ C‖u‖L2‖∇hu‖

1
2

L2‖∇hD3u‖
3
2

L2 (34)

and

−α′
∫

H
∂3p1 divhuh dx ≤ C‖∇huh‖L2‖D3u‖L2‖∇hD3u‖L2 . (35)

We deduce from (32), (33), (34) and (35) the following bound for the pressure term∫
H
∂2

3u · ∇p dx

≤ C‖u‖L2‖∇hu‖
1
2

L2‖∇hD3u‖
3
2

L2 + C‖∇huh‖L2‖D3u‖L2‖∇hD3u‖L2 + εα′
2‖∂3u‖2

L2 . (36)

Finally, by adding (20) to (22) and using relations (23), (24), (25), (26), (27) and (36),
we obtain

1

2

d

dt

(
‖D3u‖2

L2 + α′‖uh‖2
L2(∂H)

)
+ ν‖∇hD3u‖2

L2 + α′ν‖∇huh‖2
L2(∂H)

+ ε‖∂3u‖2
L2 + εα′‖uh‖2

L2(∂H) + ε‖∂2
3u‖2

L2

≤ C‖D3u‖L2‖∇hu‖
1
2

L2‖∇hD3u‖
3
2

L2 + εα′
2‖∂3u‖2

L2 , (37)

where the constant C is independent of ε and ν.
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II.2.1 Global estimates for small data

We now prove that there exists a constant K such that if ‖u0‖
1
2

L2‖D3u0‖
1
2

L2 ≤ Kν, then
one has a priori estimates that show that, for ε ≥ 0 the quantity D3u is bounded in time
with values in L2 and ∇hD3u is square integrable in time and space. For the sake of con-
ciseness, we introduce the notation G2(t) = ‖D3u(t)‖2

L2 + α′‖uh(t)‖2
L2(∂H). From standard

trace theorems, we know that ‖uh‖L2(∂H) ≤ C‖D3u‖L2 , so the norm G is equivalent to
‖D3u‖L2 . Using that

C‖D3u‖L2‖∇hu‖
1
2

L2‖∇hD3u‖
3
2

L2 ≤
ν

2
‖∇hD3u‖2

L2 +
C1

2ν3
‖D3u‖4

L2‖∇hu‖2
L2

in (37), we get

d

dt
G2 + ν‖∇hD3u‖2

L2 ≤
C1

ν3
G4‖∇hu‖2

L2 + 2εα′
2‖∂3u‖2

L2 . (38)

Gronwall’s lemma together with relation (21) implies that

G2(t) + ν

∫ t

0

‖∇hD3u(τ)‖2
L2 dτ

≤
(
G2(0) + 2εα′

2

∫ t

0

‖∂3u(τ)‖2
L2 dτ

)
exp

(C1

ν3

∫ t

0

G2(τ)‖∇hu(τ)‖2
L2 dτ

)
≤ (1 + α′

2
)G2(0) exp

( C1

2ν4
‖u0‖2

L2 sup
[0,t]

G2
)
.

We argue by contradiction assuming that

T = sup{t ≥ 0; G(τ) ≤ 2
√

1 + α′2G(0) ∀τ ∈ [0, t]}

is finite. Then from the above relation we get that

G2(T ) ≤ (1 + α′
2
)G2(0) exp

(2C1(1 + α′2)

ν4
‖u0‖2

L2G2(0)
)
.

Therefore, if we choose K1 small enough such that exp(2C1(1 + α′2)K4
1) < 4 and if we

assume that ‖u0‖
1
2

L2G
1
2 ≤ K1ν, then we deduce that G(T ) < 2

√
1 + α′2G(0) and this

contradicts the maximality of T . We conclude that, for such a choice of K1, one has that

G2(t) + ν

∫ t

0

‖∇hD3u(τ)‖2
L2 dτ ≤ 4(1 + α′

2
)G2(0) ∀t ≥ 0.

Since G is equivalent to ‖D3u‖L2 , these are the desired a priori estimates under the
desired smallness assumption.
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II.2.2 Local estimates for large data

To obtain local estimates for large data we proceed as in the previous subsection and
define

T = sup{t ≥ 0; G(τ) ≤ 2
√

1 + α′2G(0) ∀τ ∈ [0, t]}. (39)

We prove that, for fixed initial data u0, there exists a time T0 independent of ε such that
T ≥ T0. The local time existence T0 will be constructed in (43). We assume in the sequel
that t ∈ [0, T ].

Let us go back to (38) and use that G ≤ 2
√

1 + α′2G(0) to deduce that

d

dt
G2 ≤ 16

C1

ν3
(1 + α′

2
)2G4(0)‖∇hu‖2

L2 + 2εα′
2‖∂3u‖2

L2 .

We now integrate in time and use estimate (21) to deduce that

G2(t) ≤ (1 + α′
2
)G2(0) + 16

C1

ν3
(1 + α′

2
)2G4(0)

∫ t

0

‖∇hu(τ)‖2
L2 dτ (40)

for all t ∈ [0, T ]. We now estimate

∫ t

0

‖∇hu(τ)‖2
L2 dτ and prove that it can be made as

small as we want independently of ε. To do that, we compare it with the solution of the
Stokes equation and use Proposition 9.

Let v be the solution of the anisotropic Stokes equation

∂tv − ν(∂2
1 + ∂2

2)v − ε∂2
3v = −∇q, div v = 0, v

∣∣
t=0

= u0,

supplemented with the Navier boundary conditions. Then w = u− v satisfies the equation

∂tw − ν(∂2
1 + ∂2

2)w − ε∂2
3w + (v + w) · ∇(v + w) = −∇(p− q), divw = 0, w

∣∣
t=0

= 0,

and also the Navier boundary conditions. We multiply this equation by w and integrate
by parts to obtain

1

2

d

dt
‖w‖2

L2 + ν‖∇hw‖2
L2 + ε‖∂3w‖2

L2 + εα′‖wh‖2
L2(∂H) = −

∫
H
v · ∇v ·w dx−

∫
H
w · ∇v ·w dx.

We can bound the above nonlinear terms in the following manner: we split the first integral
in two parts

−
∫

H
v · ∇v · w dx = −

∫
H
v3∂3v · w dx−

∫
H
vh · ∇hv · w dx.

Using the anisotropic Hölder inequality and Corollary 7 we get

−
∫

H
v3∂3v · w dx ≤ ‖v‖L4,∞‖∂3v‖L4,2‖w‖L2 ≤ C‖D3v‖L2‖∇hD3v‖L2‖w‖L2 ,

18



and

−
∫

H
vh · ∇hv · w dx ≤ ‖v‖L4,∞‖∇hv‖L2‖w‖L4,2

≤ C‖D3v‖
1
2

L2‖∇hD3v‖
1
2

L2‖∇hv‖L2‖w‖
1
2

L2‖∇hw‖
1
2

L2

≤ ν

6
‖∇hw‖2

L2 +
C

ν
1
3

‖D3v‖
2
3

L2‖∇hD3v‖
2
3

L2‖∇hv‖
4
3

L2‖w‖
2
3

L2 .

Similarly for the second integral,

−
∫

H
w3∂3v · w dx ≤ C‖D3v‖L4,2‖w‖L2,∞‖w‖L4,2

≤ C‖D3v‖
1
2

L2‖∇hD3v‖
1
2

L2‖D3w‖L2‖w‖
1
2

L2‖∇hw‖
1
2

L2

≤ ν

6
‖∇hw‖2

L2 +
C

ν
1
3

‖D3v‖
2
3

L2‖∇hD3v‖
2
3

L2‖D3w‖
4
3

L2‖w‖
2
3

L2 ,

and

−
∫

H
wh · ∇hv · w dx ≤ C‖∇hv‖L2,∞‖w‖2

L4,2

≤ C‖∇hD3v‖L2‖w‖L2‖∇hw‖L2

≤ ν

6
‖∇hw‖2

L2 +
C

ν
‖∇hD3v‖2

L2‖w‖2
L2 .

We deduce from the above relations that

d

dt
‖w‖2

L2 + ν‖∇hw‖2
L2 ≤ C2‖D3v‖L2‖∇hD3v‖L2‖w‖L2 +

C2

ν
‖∇hD3v‖2

L2‖w‖2
L2

+
C2

ν
1
3

‖D3v‖
2
3

L2‖∇hD3v‖
2
3

L2‖∇hv‖
4
3

L2‖w‖
2
3

L2

+
C2

ν
1
3

‖D3v‖
2
3

L2‖∇hD3v‖
2
3

L2‖D3w‖
4
3

L2‖w‖
2
3

L2 ,

(41)

for some constant C2 independent of ε. Next, since t ∈ [0, T ] one has that ‖D3u‖L2 ≤
2
√

1 + α′2G(0) so
‖D3w‖2

L2 ≤ 8(1 + α′
2
)G2(0) + 2‖D3v‖2

L2 .

Set now

K2
0 = 2 max

(
1,

1

2ν

)[
‖∂3u0‖2

L2 + (1 + α′
2
)‖u0‖2

L2 + α′‖uh(0)‖2
L2(∂H)

]
+ 8(1 + α′

2
)G2(0).

In view of (12), we have that

‖D3v(t)‖L2 ≤ K0, ‖D3w(t)‖L2 ≤ K0,

∫ t

0

‖∇hD3v(τ)‖2
L2dτ ≤ K2

0 ,
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for all t ∈ [0, T ]. We therefore deduce from (41) that

d

dt
‖w‖2

L2 + ν‖∇hw‖2
L2 ≤ C3K

2
0‖∇hD3v‖L2 + C3‖∇hD3v‖2

L2‖w‖2
L2

+ C3K
4
3
0 ‖∇hD3v‖

2
3

L2‖∇hv‖
4
3

L2 + C3K
8
3
0 ‖∇hD3v‖

2
3

L2 .

Gronwall’s lemma now implies that

ν

∫ t

0

‖∇hw(τ)‖2
L2dτ ≤ C3 exp

(
C3

∫ t

0

‖∇hD3v(τ)‖2
L2dτ

)[
K2

0

∫ t

0

‖∇hD3v(τ)‖L2dτ

+K
4
3
0

∫ t

0

‖∇hD3v(τ)‖
2
3

L2‖∇hv(τ)‖
4
3

L2dτ +K
8
3
0

∫ t

0

‖∇hD3v(τ)‖
2
3

L2dτ
]
.

By the Hölder inequality, we have that∫ t

0

‖∇hD3v(τ)‖L2dτ ≤ K0t
1
2 ,

∫ t

0

‖∇hD3v(τ)‖
2
3

L2dτ ≤ K
2
3
0 t

2
3 ,

and that ∫ t

0

‖∇hD3v(τ)‖
2
3

L2‖∇hv(τ)‖
4
3

L2dτ ≤ K
2
3
0

(∫ t

0

‖∇hv(τ)‖2
L2dτ

) 2
3
.

We finally get the following bound

ν

∫ t

0

‖∇hw(τ)‖2
L2dτ ≤ C3 exp

(
C3K

2
0

)[
K3

0 t
1
2 +K

10
3

0 t
2
3 +K2

0

(∫ t

0

‖∇hv(τ)‖2
L2dτ

) 2
3
]
.

Consequently,∫ t

0

‖∇hu(τ)‖2
L2dτ ≤ 2

∫ t

0

‖∇hv(τ)‖2
L2dτ + 2

∫ t

0

‖∇hw(τ)‖2
L2dτ

≤ 2

∫ t

0

‖∇hv(τ)‖2
L2dτ

+ 2
C3

ν
exp

(
C3K

2
0

)[
K3

0 t
1
2 +K

10
3

0 t
2
3 +K2

0

(∫ t

0

‖∇hv(τ)‖2
L2dτ

) 2
3
]

≡ A(t).

(42)

Proposition 9 tells us that lim
t→0

∫ t

0

‖∇hv(τ)‖2
L2dτ = 0 uniformly with respect to ε. From

the formula for A(t), we see that

lim
t→0

A(t) = 0 uniformly with respect to ε.

We also observe that even though the strong solution may exist only locally in time, the
expression A(t) is globally defined since v is globally defined. We conclude that there exists
a time T0 independent of ε such that

16
C1

ν3
(1 + α′

2
)G2(0)A(T0) < 1. (43)

20



We prove now that T ≥ T0. Assume by contradiction that T < T0. From (40), (42)
and (43) we get

G2(T ) ≤ (1 + α′
2
)G2(0) + 16

C1

ν3
(1 + α′

2
)2G4(0)

∫ T0

0

‖∇hu(τ)‖2
L2 dτ

≤ (1 + α′
2
)G2(0) + 16

C1

ν3
(1 + α′

2
)2G4(0)A(T0)

< 2(1 + α′
2
)G2(0).

This contradicts the maximality of T given in (39) and we deduce that we must necessarily
have that T ≥ T0.

Therefore we have the desired a priori local estimates.

II.3 Passing to the limit

Once the a priori estimates completed, the existence of solutions to system (3)-(4) with
non-zero vertical viscosity follows with standard arguments, see for instance [11, 5, 3].

Now, thanks to the a priori estimates proved in Section II.2, we have at our disposal a
sequence of solutions uε of system (3)-(4) such that D3u

ε is bounded in L∞(0, T ;L2) and
∇hD3u

ε is bounded in L2([0, T ] × H) independently of ε. In particular, uε is bounded in
L2

loc

(
[0, T );H1

)
. Here, T may be finite or not, depending if we consider the case of large

or small data. We will show that, under this assumption, uε converges to a solution of the
limit system and then Theorem 2 will be proved.

Let P denote the Leray projector. From equation (3) written under the form

∂tu
ε = νP(∂2

1 + ∂2
2)u+ εP∂2

3u− P(u · ∇u)

we obtain that the sequence ∂tu
ε is bounded in L2(0, T ;H−2

loc ) independently of ε. We
deduce that the sequence uε is bounded and equicontinuous in time with values in H−2

loc .
By the Arzela-Ascoli theorem, it is precompact in L∞loc

(
[0, T );H−3

loc

)
. Since uε is bounded

in L2
loc

(
[0, T );H1

)
, standard interpolation arguments imply that it is possible to extract a

subsequence (which we still denote by uε) converging strongly to some u in L2
loc

(
(0, T )×H

)
.

Without loss of generality, this subsequence also converges weakly in L2
loc

(
[0, T );H1

)
to

u. With this information, it is trivial to pass to the limit in the first equation of (3) to
obtain that the limit velocity u verifies the first equation of (5) in the sense of distributions
D′

(
(0, T )×H

)
. We observe that since uε has a limit in the sense of distributions, so does

∂2
3u

ε; hence ε∂2
3u

ε → 0 in the sense of distributions D′
(
(0, T ) × H

)
. The second equation

of (5) is trivially verified as the divergence free condition commutes with the limit in the
sense of distributions. Next, since uε converges uniformly in time with values in H−3

loc we
obtain on one hand that u ∈ C0

(
[0, T );H−3

loc

)
, and on the other hand that the initial data

of the limit velocity is the limit of uε(0). Thus, the third condition in (5) is also verified.
Finally, the boundary condition in (5) follows from the weak convergence of uε

3 to u3 in
L2

loc

(
[0, T );H1

)
.
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II.4 A final remark

A legitimate question is if there are higher order estimates valid independently of ε up
to the boundary. We claim that it is impossible to obtain a priori estimates independent
of ε in spaces of functions for which the Navier boundary conditions make sense. For
example, H2 estimates independent of ε are not possible to obtain. Indeed, such a priori
estimates would imply that the limit velocity belongs to those spaces and therefore verifies
the Navier boundary conditions. This is a contradiction since, as we show below, in general
the limit equation (5) does not preserve the Navier boundary conditions. More precisely,
we show that there exists a C∞0 (H) divergence free vector field u0 and a sequence of times
tn → 0 such that if u denotes the solution of the limit system (5), then u(tn) does not
verify the Navier boundary conditions. We observe next that the (local) strong solution u
is very smooth. Indeed, the extension of the initial data by reflection as discussed in the
Introduction still belongs to C∞0 (R3). Furthermore, in the system (5) posed in R3 one can
ignore the Laplacian term when making energy estimates, so we see that the same theory of
existence of solutions as for the Euler equation can be deduced for equation (5). Therefore,
the local solution u belongs to C∞

(
[0, T );

⋂
s∈R

Hs(H)
)
. Note that if such a solution verifies

the Navier boundary conditions almost everywhere in time, by time continuity it actually
verifies it everywhere.

Assume by contradiction that for all C∞0 (H) divergence free vector fields u0, there exists
T0 such that u(t) verifies the Navier boundary conditions for all t ∈ [0, T0].

The pressure p verifies the following Neumann problem for the Laplacian:

4p = − div(u · ∇u) in H
∂3p = 0 on ∂H.

Using the well-known formula for the Green’s function associated to the Neumann
problem of the Laplacian in the half-space, we deduce that

p(x) =
1

4π

∫
H

( 1

|x− y|
+

1

|x− y|

)
div(u · ∇u)(y) dy, (44)

where y = (y1, y2,−y3).
We now differentiate with respect to x3 the equation for uh:

∂t∂3uh − ν(∂2
1 + ∂2

2)∂3uh + ∂3(u · ∇uh) = −∇h∂3p.

Taking the restriction to the boundary and using that ∂3uh = α′uh on the boundary, we
deduce that

α′∂tuh − α′ν(∂2
1 + ∂2

2)uh + ∂3(u · ∇uh) = −∇h∂3p = 0 on ∂H.

On the other hand, taking the restriction to the boundary of the equation of uh and
multiplying by α′ gives

α′∂tuh − α′ν(∂2
1 + ∂2

2)uh + α′u · ∇uh = −α′∇hp on ∂H.
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We infer that we must necessarily have that

∂3(u · ∇uh)− α′u · ∇uh = α′∇hp on ∂H

for all t ∈ [0, T0]. Using the formula for p given in (44), letting t → 0 and using that u0

vanishes in a neighborhood of the boundary we deduce that the initial data must verify
the following relation

∇xh

∫
H

1

|x− y|
div(u0 · ∇u0)(y) dy = 0 for all x ∈ ∂H. (45)

Therefore, the initial data must verify the above relation if we want the solution to
verify the Navier boundary conditions. It is not difficult to see that there exists initial
data for which (45) is not verified. Indeed, integrating twice by parts in (45) implies

3∑
i,j=1

∫
H
F ij

x (y)u0,i(y)u0,j(y) dy = 0 for all x ∈ ∂H, (46)

where

F ij
x (y) = ∇xh

[ ∂2

∂yi ∂yj

( 1

|x− y|

)]
. (47)

Let g be a fixed non-trivial C∞0 (H) divergence free vector field and z ∈ H be arbitrary.
Replacing u0 by the function y 7→ g

(
y−z

ε

)
in (46) and changing variables we get

3∑
i,j=1

∫
H
F ij

x (z + εη)gi(η)gj(η) dη = 0 for all x ∈ ∂H.

Letting ε→ 0 we finally get that

3∑
i,j=1

γijF
ij
x (z) = 0 for all x ∈ ∂H and z ∈ H,

where γij =

∫
H
gi(η)gj(η)dη. From the explicit formula for F given in (47), we infer that

for every z ∈ H, the function

x 7−→
3∑

i,j=1

γij
∂2

∂zi ∂zj

( 1

|x− z|

)
must be constant on the boundary ∂Ω. Since this function can be bounded by C|x− z|−3,
it vanishes when |x| → ∞ and z is fixed. Since it is constant on the boundary, it must
actually vanish on the boundary. Writing that it vanishes at x = 0, we obtain that

tr(Γ)|z|2 = 3Γz · z for all z ∈ H,

where Γ is the matrix Γ = (γij). Obviously, the above relation can hold true only if Γ is a
multiple of the identity. Clearly, there exists g such that Γ is not a multiple of the identity.
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