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Abstract

This papers deals with the large time behavior of solutions of the incompressible
Euler equations in dimension two. We consider a self-similar configuration of point
vortices which grows like the square root of the time. We study the confinement
properties of a blob of vorticity initially located around the first point vortex and
moving in the velocity field produced by itself and by the other point vortices. We
find a sufficient condition on the point vortices such that the vorticity stays confined
around the first point vortex at a rate better than the square root of the time. The
relevance to the large time behavior of the Euler equations is discussed.

1 Introduction

We consider in this paper the incompressible Euler equations in R2:

∂tu+ u · ∇u = −∇p, div u = 0.

An important quantity is the vorticity

ω = ∂1u2 − ∂2u1

which is transported by the flow

∂t ω + u · ∇ω = 0.

The velocity can be recovered from the vorticity through the so-called Biot-Savart law

u(x) =

∫
R2

(x− y)⊥

2π|x− y|2
ω(y) dy

where x⊥ = (−x2, x1).
The large time behavior of a perfect incompressible fluid with planar symmetry

is still largely unknown. There are only few examples of smooth solutions giving us
insight into this matter. A compactly supported radial vorticity is a stationary solution.
Vortex patches with elliptical symmetry and the so-called V-states rotate with constant
speed. A very important example of vorticity going to infinity is given by the so-called
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vortex pairs. A vortex pair is a couple of two symmetric vortices with opposite sign
which travel with constant speed along the axis of symmetry. They are travelling wave
solutions and their existence was known for a long time, see for example [14] and [2].

In absence of sufficient examples of smooth solutions, one can look at the point
vortex system which is a discrete version of the Euler equations. In the point vortex
model it is assumed that the vorticity is a sum of Dirac masses

ω(x, t) =
n∑
j=1

mjδzj(t)

and the positions zj(t) ∈ R2 must satisfy

z′j(t) =
n∑

k=1;k 6=j
mk

(zj − zk)⊥

2π|zj − zk|2
. (1.1)

The point vortex system have been introduced in the 1800 century by Helmholtz
[7] (see also [13, 27, 12]) and it approximates reasonably well a state with a very large
vorticity concentration. Indeed, assume that the initial vorticity is supported in n
blobs:

ωε(x, 0) =
n∑
i=1

ωε;i(x, 0) ,

where ωε;i(x, 0) is a function with a definite sign supported in a region Λε;i such that

Λε;i = supp ωε;i ⊂ D(zi, ε) ; D(zi, ε) ∩D(zj , ε) = 0 if i 6= j ,

for ε small enough. Here D(z, r) denotes the disk of center z and radius r.
It has been proved that the time evolution of these states via the Euler equation

has, for small ε, a similar form:

Λε;i(t) = suppωε;i(t) ⊂ D(zi(t), f(ε, t)) ;

D(zi(t), f(ε, t)) ∩D(zj(t), f(ε, t)) = 0 if i 6= j ,

where the zi are the solutions of the point vortex system and f(ε, t) is a positive
function.

In general the point vortex system has a global solution, but in some cases collapses
can happen (for a review on this point see [1]). Moreover there are initial situations in
which the point vortices go away indefinitely. It can be proved that the intensity of the
vortices and the initial data that produce a collapse are exceptional (see [4], [24]) and
hence in general there is a minimal distance between the vortices. Until the time of a
possible collapse it can be proved that for ε→ 0 we have f(ε, t)→ 0 and therefore the
fluid converges to the point vortex system [23, 24, 19, 3]. For the connection between
the Euler flow and the point vortices see also [5, 16, 18, 20, 21, 29].

When studying the large time behavior of the point vortex system, several impor-
tant facts can be observed:

• If the masses mj are positive then the positions zj are bounded. This follows
from the conservation of the moment of inertia.

• Two point vortices with opposite masses will translate with constant speed (trav-
elling wave solutions).

2



• There are examples of four point vortices whose diameter spreads linearly in time.
These can be viewed as a superposition of two vortex pairs. In this case the total
mass is zero.

• There exists the so-called self-similar point vortices. The configuration of point
vortices have a spiral motion, evolving by rotation and dilation of order O(

√
t).

In this case the total mass is non zero.

It appears from these examples that three cases must be distinguished: (a) single
signed masses, (b) total mass zero and (c) total mass non zero, not single signed masses.

Let us now turn to the existing results in the case of smooth vorticity. There are
results for the cases (a) and (b) but not so much about case (c). In the case of single-

signed vorticity, confinement of the vorticity like O(t
1
3 ) was proved by [17], see also

[15], and confinement like O(t log t)
1
4 was proved in [11, 28]). A smooth example of

vorticity whose diameter spreads linearly in time (and vanishing mass) was constructed
in [11]. As far we know, the only result pertaining to case (c) is proved in [9, 10] where
the authors make the rescaling x ∼ ta and show that for all a > 1

2

t2aω(tax, t) ⇀
(∫

ω0

)
δ0 as t→∞. (1.2)

This is a weak confinement result for the imbalance between the positive and negative
parts of vorticity. One could imagine that a part of the vorticity of mass

∫
ω0 stays

confined like O(t
1
2 ) while the rest may go fast to infinity via the vortex pair mechanism.

A review of these results can be found in [8].
Our initial motivation in writing this paper was to see if the convergence stated

in (1.2) holds true for a = 1
2 . Because of the example of self-similar point vortices,

it does not hold true for the point vortex system. One way to prove that for smooth
vorticity it does not hold true either would be to consider smooth vorticity sharply
concentrated around self-similar point vortices and show confinement for the evolved
vorticity around the point vortices at a rate better than t

1
2 . In doing that, two problems

must be dealt with. The first one is the instability of the self-similar configurations. A
tiny modification of the initial configuration makes it non self-similar and the spreading
of the point vortices like t

1
2 is not guaranteed anymore. The second problem is be to

prove the confinement itself.
In this paper we consider only the confinement problem and do not deal with

the instability issue. More precisely, we consider a toy model where the instability
is removed. This is an intermediate model between the point vortex model and the
Euler flow with concentrated vorticity. We have n point vortices obeying Eq. (1.1);
we consider a blob of vorticity initially posed around a point vortex (for instance the
first one) and moving in the velocity field produced by the other ones. Vice versa its
motion does not perturb the motion of the other point vortices (hence the instability
is removed) that remain governed by the point vortex system. The main result of this
article is that we find a condition on the point vortices such that confinement better
than t

1
2 occurs for this toy model, see Theorem 3.1 below.

Even though the initial motivation was to find a counter-example for (1.2) when a =
1
2 , our result may be interesting for other reasons. For instance, long time confinement
around point vortices is interesting in itself. Because for positive vorticity we don’t
know how to prove confinement better than t

1
4 , it seems that we need to have spreading

of the point vortices at least like t
1
4 in order to be able to show long-time confinement.
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But the only examples of point vortices that spread at least like t
1
4 that we know of

are the self-similar point vortices.
The plan of the article is the following. In the next section we recall some facts

about self-similar point vortices. In Section 3 we introduce our toy model and we prove
our main result, Theorem 3.1 below. Finally, in Section 4 we discuss the condition we
require on the point vortices for confinement to occur.

2 Self-similar point vortices

A configuration of point vortices is called self-similar if

zj(t)−X = f(t)
(
zj(0)−X

)
∀j ∈ {1, . . . , n} (2.1)

where X is independent of the time (the center of mass), and if it verifies the point
vortex system:

z′j(t) =
∑

k∈{1,...,n}
k 6=j

mk
(zj − zk)⊥

2π|zj − zk|2
∀j ∈ {1, . . . , n}. (2.2)

Above, f is a complex-valued function and the multiplication f(t)zj(0) must be under-
stood as complex numbers.

Such self-similar configurations are known to exist. For n = 3 see [6] (see also [1]),
for n = 4, 5 see [25] and for n > 6 there is a discussion in [26].

Let us replace the formulae for zj given in (2.1) into one of the equations of (2.2),
say in the first one and use complex notation:

f ′(t)
(
z1(0)−X

)
=

n∑
j=2

mj
(z1 − zj)⊥

2π|z1 − zj |2
=

n∑
j=2

imj

2π(z1 − zj)
=

1

f

n∑
j=2

imj

2π(z1(0)− zj(0))
.

We write the above equation under the form

f ′(t) =
1

f
(
a

2
+ ib) where

a

2
+ ib =

1

z1(0)−X

n∑
j=2

imj

2π(z1(0)− zj(0))
.

Using polar coordinates we write f(t) = r(t)eiθ(t) and we deduce from the above relation
that

r′(t) =
a

2r
and θ′(t) =

b

r2
.

Integrating this system of ODE shows that we have that

f(t) =
√
at+ 1ei

b
a
ln(at+1)

When a < 0 we have that the point vortices collapse into the center of mass X at
time t = −1/a. If a = 0 then the point vortices just rotate with constant speed. If
a > 0 then the point vortices spread like

√
t. This is the case we are interested in, so

we will assume in the sequel that a > 0.
Let

F (x) =

n∑
j=2

mj
(x− zj)⊥

2π|x− zj |2
· (2.3)
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be the velocity induced by the z2, . . . , zn point vortices. Using complex notation, we
observe that we can write

F (z) =
n∑
j=2

imj

2π(z − zj)
(2.4)

where i is the imaginary unit. Clearly F is a holomorphic function so we can derive it
with respect to z as a holomorphic function

∂F

∂z
(z1) =

n∑
j=2

imj

2π(z1 − zj)2
=

1

f2(t)

n∑
j=2

imj

2π(z1(0)− zj(0))2
=
e−2i

b
a
ln(at+1)

1 + at
v (2.5)

where

v =
n∑
j=2

imj

2π(z1(0)− zj(0))2
(2.6)

does not depend on the time. We define

α =
|v|
a

and observe that ∣∣∣∂F
∂z

(z1)
∣∣∣ =

|v|
1 + at

so that

α = lim
t→∞

t
∣∣∣∂F
∂z

(z1)
∣∣∣.

3 The toy model and the confinement result

We introduce now our toy model. Consider a system of self-similar point vortices
of intensities mi posed in zi(t). We consider a blob of vorticity initially supported
on a small region around the point z1(0) and total vorticity m1 moving via the Euler
Equation in the external velocity field F (x, t) produced by the other point vortices.
The vortices move according the point vortex law (1.1).

We have that

ω > 0,

∫
R2

ω = m1, supp ω0 ⊂ D(z1(0), ε)

where ε 6 1. The PDE verified by ω is the following

∂tω + div((u+ F )ω) = 0

where

u(x) =

∫
R2

(x− y)⊥

2π|x− y|2
ω(y) dy

and F is given in (2.3).
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Remark 3.1. The toy model described above is not the vortex-wave model which de-
scribes the evolution of a mixture of smooth vorticity and discrete vorticity, see [22]. In
the vortex-wave system, the point vortices are perturbed by the smooth vorticity ω. More
precisely, the equation for ω does not change but the equations of the point-vortices are
modified by replacing the terms

m1
(zj − z1)⊥

2π|zj − z1|2

from (2.2) by ∫
R2

(zj − y)⊥

2π|zj − y|2
ω(y) dy.

We will prove the following theorem:

Theorem 3.1. Assume that α < 1
2 . If ε is small enough and ‖ω0‖L∞ not too large,

then the vorticity stays localized close to z1 for future times. More precisely, for any
β ∈

(
α+1
3 , 12

)
and for any N0 ∈ N there exists some M > 0 and ε0 > 0 such that if

‖ω0‖L∞ 6 ε−N0 and ε 6 ε0 then

supp ω(·, t) ⊂ D(z1(t),M(1 + t)β) ∀t > 0.

We prove now this result. We will denote by C a generic constant which does not
depend on ε, t and n. Changing if necessary the time scale, we can assume that a = 1
so that ∣∣∣∂F

∂z
(z1)

∣∣∣ =
α

1 + t
(3.1)

We denote by κ0 the minimum distance between the point vortices at the initial time
so that

|zj(t)− zk(t)| > κ0(1 + t)
1
2 ∀j 6= k, t > 0.

We choose some M ∈ (0, κ02 ).

We will show that the following implication holds true for all times T : if

supp ω(·, t) ⊂ D(z1(t),M(1 + t)β) ∀t ∈ [0, T ] (3.2)

then

supp ω(·, t) ⊂ D(z1(t),
M

2
(1 + t)β) ∀t ∈ [0, T ] (3.3)

By time continuity and assuming M > ε, it follows that (3.2) must hold true for all
times.

In what follows we assume (3.2) and we show (3.3). We prove first a bound on the
moment of inertia of the vorticity with respect to z1:

I(t) =
1

m1

∫
R2

|x− z1|2ω(x, t) dx

Lemma 3.1. We have that

I(t) 6 ε2(1 + t)2α exp
(4M

∑
j>2 |mj |

πκ30(1− 2β)

)
.
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Proof. We differentiate I:

I ′(t) =
1

m1

∫
R2

|x− z1|2∂tω(x, t) dx+
2

m1

∫
R2

z′1(t) · (z1 − x)ω(x, t) dx

= − 1

m1

∫
R2

|x− z1|2 div((u+ F )ω) dx+
2

m1

∫
R2

z′1(t) · (z1 − x)ω(x, t) dx

=
1

m1

∫
R2

∇(|x− z1|2) · (u+ F )ω dx+
2

m1

∫
R2

z′1(t) · (z1 − x)ω(x, t) dx

=
2

m1

∫
R2

(x− z1) · (u+ F )ω dx+
2

m1

∫
R2

z′1(t) · (z1 − x)ω(x, t) dx.

The usual cancellation properties imply that∫
R2

(x− z1) · u ω dx = 0.

Recalling that z′1 = F (z1) and relation (3.2) we infer that

I ′(t) =
2

m1

∫
R2

(F (z1)− F (x)) · (z1 − x)ω(x, t) dx

6 2I sup
|x−z1|6M(1+t)β

|F (x)− F (z1)|
|x− z1|

.
(3.4)

From (2.4), (2.5) and (3.1) and using complex notation (viewing everything as
complex numbers) we observe that

|F (x)− F (z1)|
|x− z1|

=
∣∣∣F (x)− F (z1)

x− z1

∣∣∣
=
∣∣∣∑
j>2

mj

2π(x− zj)(z1 − zj)

∣∣∣
=
∣∣∣∑
j>2

( mj

2π(z1 − zj)2
− mj(x− z1)

2π(x− zj)(z1 − zj)2
)∣∣∣

6
∣∣∣∑
j>2

mj

2π(z1 − zj)2
∣∣∣+
∑
j>2

∣∣∣ mj(x− z1)
2π(x− zj)(z1 − zj)2

∣∣∣
6
∣∣∣∂F
∂z

(z1)
∣∣∣+
∑
j>2

|mj ||x− z1|
2π|x− zj ||z1 − zj |2

=
α

1 + t
+
∑
j>2

|mj ||x− z1|
2π|x− zj ||z1 − zj |2

.

Recall that
|z1 − zj | > κ0(1 + t)

1
2 ∀j > 2.

Since M 6 κ0
2 , if |x− z1| 6M(1 + t)β we have that

|x− z1| 6M(1 + t)β 6
κ0
2

(1 + t)
1
2 6
|z1 − zj |

2

so

|x− zj | > |z1 − zj | − |x− z1| >
|z1 − zj |

2
>
κ0
2

(1 + t)
1
2
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We infer from the previous bounds that

sup
|x−z1|6M(1+t)β

|F (x)− F (z1)|
|x− z1|

6
α

1 + t
+
M
∑

j>2 |mj |
πκ30

(1 + t)β−
3
2 . (3.5)

Relation (3.4) implies that

I ′(t) 6 2I
( α

1 + t
+
M
∑

j>2 |mj |
πκ30

(1 + t)β−
3
2

)
.

The Gronwall lemma gives

I(t) 6 I(0)(1 + t)2αe

4M
∑
j>2 |mj |

πκ30(1−2β)

Clearly
I(0) 6 ε2

and the conclusion follows.

Remark 3.2. To prove this lemma we used the hypothesis (3.2). The important thing
to note is that the bound found in Lemma 3.1 is better than the trivial bound obtained
by using directly (3.2) in the formula of the moment of inertia.

We continue with the proof of the theorem. Let Y be a point of suppω(·, t) which
is the farthest from z1. The velocity of Y is u(x, t) + F (Y ). To estimate the evolution
of

R(t) = max
x∈suppω(t)

|x− z1| = |Y − z1|

we need to bound

∂t|Y − z1| =
Y − z1
|Y − z1|

· (∂tY − z′1) =
Y − z1
|Y − z1|

· (u(x, t) + F (Y )− F (z1)).

From (3.5) we deduce that

Y − z1
|Y − z1|

· (F (Y )− F (z1)) 6 |Y − z1|
( α

1 + t
+
M
∑

j>2 |mj |
πκ30

(1 + t)β−
3
2

)
.

Next,

Y − z1
|Y − z1|

· u(x, t) =
Y − z1
|Y − z1|

·
∫
R2

(Y − y)⊥

2π|Y − y|2
ω(y, t) dy

=
Y − z1
|Y − z1|

·
∫
|y−z1|<R/2

(z1 − y)⊥

2π|Y − y|2
ω(y, t) dy

+
Y − z1
|Y − z1|

·
∫
|y−z1|>R/2

(Y − y)⊥

2π|Y − y|2
ω(y, t) dy

6
∫
|y−z1|<R/2

|z1 − y|
2π|Y − y|2

ω(y, t) dy +

∫
|y−z1|>R/2

1

2π|Y − y|
ω(y, t) dy

6
2

πR2

∫
|y−z1|<R/2

|z1 − y|ω(y, t) dy + C‖ω‖
1
2
L∞‖ω(y, t)‖

1
2

L1(|y−z1|>R/2).
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From the estimate of the moment of inertia given in the Lemma we can bound∫
R2

|z1 − y|ω(y, t) dy 6
(∫

R2

ω
) 1

2
(∫

R2

|z1 − y|2ω
) 1

2
6 Cε(1 + t)α.

We conclude from the previous relations that

∂tR 6 R
( α

1 + t
+C(1 + t)β−

3
2

)
+
Cε

R2
(1 + t)α +C‖ω0‖

1
2
L∞‖ω(y, t)‖

1
2

L1(|y−z1|>R/2). (3.6)

It remains to bound ‖ω(y, t)‖L1(|y−z1|>R/2). This will be done by estimating the
higher momenta of the vorticity. More precisely, let

In(t) =

∫
R2

|x− z1|nω(x, t) dx

We have the following proposition.

Proposition 3.1. There exists a constant C such that

In(t) 6 (Cnε)
n
3 (1 + t)(α+1)n

3 .

Proof. We derive In:

I ′n(t) =

∫
R2

|x− z1|n∂tω(x, t) dx+ n

∫
R2

z′1 · (z1 − x)|x− z1|n−2ω(x, t) dx

= −
∫
R2

|x− z1|n div((u+ F )ω) dx+ n

∫
R2

F (z1) · (z1 − x)|x− z1|n−2ω(x, t) dx

= n

∫
R2

|x− z1|n−2(x− z1) · (u+ F )ω dx− n
∫
R2

F (z1) · (x− z1)|z1 − x|n−2ω(x, t) dx

= n

∫
R2

|x− z1|n−2(x− z1) · uω dx+ n

∫
R2

(F (x)− F (z1)) · (x− z1)|x− z1|n−2ω(x, t) dx

The last integral above can be bounded using relation (3.5):

n

∫
R2

(F (x)− F (z1)) · (x− z1)|x− z1|n−2ω(x, t) dx 6 n
( α

1 + t
+ C(1 + t)β−

3
2
)
In

We consider now the other integral:

n

∫
R2

|x− z1|n−2(x− z1) · uω dx =
n

2π

∫∫
(x− z1) · (x− y)⊥

|x− y|2
|x− z1|n−2ω(x, t)ω(y, t) dx dy

=
n

2π

∫∫
x · (x− y)⊥

|x− y|2
|x|n−2f(x)f(y) dx dy

where we used the notation
f(x) = ω(x, t+ z1).

Using the skew-symmetry of x·(x−y)⊥
|x−y|2 when exchanging x and y we further deduce that

n

∫
R2

|x− z1|n−2(x− z1) · uω dx =
n

4π

∫∫
x · (x− y)⊥

|x− y|2
(|x|n−2 − |y|n−2)f(x)f(y) dx dy

6 Cn2
∫∫
|x · (x− y)⊥|(|x|n−3 + |y|n−3)

|x− y|
f(x)f(y) dx dy

6 Cn2
∫
|x|n−3f(x) dx

∫
|y|f(y) dy

= Cn2
∫
|x− z1|n−3ω(x, t) dx

∫
|y − z1|ω(y, t) dy
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By the Hölder inequality and by Lemma 3.1 we have that∫
|x− z1|n−3ω(x, t) 6

(∫
ω(x, t)

) 3
n
(∫
|x− z1|nω(x, t)

)1− 3
n

and ∫
|z1 − y|ω(y, t) dy 6

(∫
ω(y, t) dy

) 1
2
(∫
|z1 − y|2ω(y, t) dy

) 1
2
6 Cε(1 + t)α.

Putting together the above estimates yields the following differential inequality for
In:

I ′n(t) 6
( αn

1 + t
+ Cn(1 + t)β−

3
2
)
In + Cn2ε(1 + t)αIn(t)1−

3
n .

This is a Bernoulli differential inequality. The function

gn(t) = In(t)
3
n

verifies the following linear differential inequality:

g′n 6 gn
( 3α

1 + t
+ C(1 + t)β−

3
2
)

+ Cnε(1 + t)α.

Observing that gn(0) 6 Cε3, the Gronwall inequality gives

gn(t) 6 Cnε(1 + t)α+1 + Cε3(1 + t)3α 6 Cnε(1 + t)α+1

where we used that α < 1
2 and ε 6 1. Since In = g

n
3
n , this completes the proof of the

proposition.

We can now estimate ‖ω(x, t)‖L1(|x−z1|>R/2). Starting from this point, the constant
C may depend on n but remains independent of ε and t. We use Proposition 3.1 for
2n to bound

‖ω(x, t)‖L1(|x−z1|>R/2) 6
( 2

R

)2n
I2n(t) 6

Cε
2n
3

R2n
(1 + t)

2n(α+1)
3 .

We plug this bound in relation (3.6) to obtain

∂tR 6 R
( α

1 + t
+ C(1 + t)β−

3
2

)
+
Cε

R2
(1 + t)α +

Cε
n
3
−N0

2

Rn
(1 + t)

n(α+1)
3 .

where we used the hypothesis ‖ω0‖L∞ 6 ε−N0 . The function

g(t) = R(t)e−
∫ t
0 (

α
1+s

+C(1+s)β−
3
2 )ds = R(t)(1 + t)−αe

2C
1−2β

((1+t)β−
1
2−1)

verifies

g′(t) 6
[Cε
R2

(1 + t)α +
Cε

n
3
−N0

2

Rn
(1 + t)

n(α+1)
3

]
(1 + t)−αe

2C
1−2β

((1+t)β−
1
2−1)

. (3.7)

Clearly

1 > e
2C

1−2β
((1+t)β−

1
2−1) > e

− 2C
1−2β

10



so the quantity e
2C

1−2β
((1+t)β−

1
2−1)

is of the order of a constant for all times t and can
effectively be neglected. So g(t) and R(t)(1 + t)−α are of the same order:

g(t) 6 R(t)(1 + t)−α 6 C1g(t) (3.8)

where C1 = e
2C

1−2β . We further deduce from (3.7) that

g′ 6
C2ε

g2
(1 + t)−2α +

C2ε
n
3
−N0

2

gn
(1 + t)

n(1−2α)
3

−α (3.9)

for some constant C2. We show that this differential inequality implies the following
bound for g:

g(t) < Kε(1 + t)
1

n+1
(n 1−2α

3
+1) (3.10)

for some constant Kε to be determined later.
We first impose that (3.10) holds true at the initial time. In view of (3.8) and

recalling that R(0) 6 ε, the condition

Kε > ε (3.11)

ensures that (3.10) holds true at time t = 0. We assume this condition on K. If (3.10)
does not globally hold true, let T ∗ be the first time when it breaks down. We show
that, up to time T ∗, we have that

ε

g2
(1 + t)−2α 6 Lε

(1 + t)
n(1−2α)

3

gn
(3.12)

and

ε
n
3
−N0

2

gn
(1 + t)

n(1−2α)
3

−α 6 Lε
(1 + t)

n(1−2α)
3

gn
(3.13)

for some constant Lε to be determined later.
Clearly (3.12) is equivalent to

g 6
(Lε
ε

) 1
n−2

(1 + t)
1

n−2
(
n(1−2α)

3
+2α)

which follows from (3.10) if we assume that

Kε 6
(Lε
ε

) 1
n−2

. (3.14)

Indeed, one can readily check that

1

n+ 1

(
n

1− 2α

3
+ 1
)
<

1

n− 2

(n(1− 2α)

3
+ 2α

)
.

Relation (3.13) is obvious if

Lε > ε
n
3
−N0

2 . (3.15)

We deduce from (3.9), (3.12) and (3.13) that

g′ 6 2C2Lε
(1 + t)

n(1−2α)
3

gn
∀t ∈ [0, T ∗].

11



Upon integration

g(t)n+1 6 g(0)n+1 + 2C2Lε
n+ 1

n(1−2α)
3 + 1

(1 + t)
n(1−2α)

3
+1

6 εn+1 +
6C2Lε
1− 2α

(1 + t)
n(1−2α)

3
+1

6
(
εn+1 +

6C2Lε
1− 2α

)
(1 + t)

n(1−2α)
3

+1

so

g(t) 6
(
εn+1 +

6C2Lε
1− 2α

) 1
n+1

(1 + t)
1

n+1
(
n(1−2α)

3
+1) ∀t ∈ [0, T ∗].

We infer that if we further assume that(
εn+1 +

6C2Lε
1− 2α

) 1
n+1

< Kε (3.16)

then relation (3.10) holds true at time T ∗. This proves that the time T ∗ can’t be finite.
We conclude that if the conditions (3.11), (3.14), (3.15) and (3.16) hold true, then

(3.10) holds true globally. One can readily check that if ε is sufficiently small, then
there exist some Kε and Lε verifying (3.11), (3.14), (3.15) and (3.16). Indeed, one can
choose for instance

Lε = ε1+
n
4 , Kε = ε

n
4(n−2) , n > 12 + 6N0 (3.17)

and, once n is fixed, an ε small enough such that(
εn+1 +

6C2

1− 2α
ε1+

n
4

) 1
n+1

< ε
n

4(n−2)

which is possible because (
1 +

n

4

) 1

n+ 1
>

n

4(n− 2)
.

For this choice of ε, n, Kε and Lε relation (3.10) holds true. We deduce then from
(3.8) that

R(t) 6 C1g(t)(1 + t)α 6 C1Kε(1 + t)
1

n+1
(n 1−2α

3
+1)+α.

Because

lim
n→∞

1

n+ 1
(n

1− 2α

3
+ 1) + α =

1 + α

3

there exists some n such that

1

n+ 1
(n

1− 2α

3
+ 1) + α 6 β

(recall that β > 1+α
3 ). For such an n we have that

R(t) 6 C1Kε(1 + t)β

and we proved (3.3) provided that

C1Kε 6
M

2
.

To conclude the proof of Theorem 3.1 it suffices to observe that, if ε is sufficiently
small, then the value of Kε given in (3.17) satisfies the above condition.

12



4 Comments about the condition imposed on

the point vortices

A legitimate question is if there is a system of self-similar point vortices such that
α < 1/2 (otherwise our result is empty). We discuss how to realize this condition.

We know that if
m1m2 +m1m3 +m2m3 = 0 (4.1)

and
m1m2|z1 − z2|2 +m1m3|z1 − z3|2 +m2m3|z2 − z3|2 = 0 (4.2)

then ω = m1δz1 + m2δz2 + m3δz3 defines a self-similar system of point vortices. We
have

d

dt
|z2 − z3|2 =

2Am1

π

( 1

|z1 − z3|2
− 1

|z1 − z2|2
)

(4.3)

where A is the area of the triangle produced by the three vortices with orientation,
i.e., reckoned positive if (z1, z2, z3) appear counterclockwise and negative if (z1, z2, z3)
appear clockwise.

We choose the following system of point vortices:

z1(0) = 0, m1 = 1, z2(0) = λ− i, m2 = − 1

λ2
, z3(0) = λ, m3 =

1

λ2 − 1

where λ is a large positive number. One can check that conditions (4.1) and (4.2) are
verified, so this is a self-similar system of point vortices.

With the notations from Section 2, we have that

|z2(t)− z3(t)|2 = |f(t)|2|z2(0)− z3(0)|2 = 1 + at

so
d

dt
|z2 − z3|2 = a

We deduce from (4.3) that

a =
2A(0)m1

π

( 1

|z1(0)− z3(0)|2
− 1

|z1(0)− z2(0)|2
)

=
1

πλ(λ2 + 1)
.

Next, we use the formula for v given in (2.6) to deduce that

v =
im2

2π(z1(0)2 − z2(0)2)
+

im3

2π(z1(0)2 − z3(0)2)
= − 1

πλ(λ− i)2(λ2 − 1)

We conclude that

α =
|v|
a

=
1

λ2 − 1
→ 0 as λ→ +∞.

Therefore α can be made as small as we want.

Now that we convinced ourselves that the sufficient condition α < 1
2 for confinement

can be satisfied, we could ask ourselves if this condition is also necessary. We do not
have an answer to this question but the following calculations could give us some
indications.
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Assume that α > 1
2 and that confinement occurs, i.e. suppω(·, t) ⊂ D(z1(t),M(1+

t)β) for some β < 1
2 . Let

X1(t) =
1

m1

∫
xω(x, t) dx

be the center of mass of the vorticity ω and

h(t) = z1 −X1.

Then h(t) = O
(
(1 + t)β

)
. Let us differentiate h:

h′(t) = z′1 −
1

m1

∫
x∂tω(x, t) dx

= F (z1) +
1

m1

∫
x div

[
(u(x, t) + F (x))ω(x, t)

]
dx

= F (z1)−
1

m1

∫
(u(x, t) + F (x))ω(x, t)

]
dx

=
1

m1

∫
(F (z1)− F (x))ω(x, t) dx

Recalling that |x − z1| 6 M(1 + t)β for x ∈ suppω we deduce as in the proof of
Lemma 3.1 that

F (z1)− F (x) =
∂F

∂z
(z1)(z1 − x) +O

(
(1 + t)β−

3
2
)

so

h
′
(t) = h

(∂F
∂z

(z1) +O
(
(1 + t)β−

3
2
))
≡ hu. (4.4)

If u = x + iy, then the equation for h can be written under the form of a system of 2
linear ODEs:

h′ = Ah where A =

(
x −y
−y −x

)
When we compute the eigenvalues of A we find ±|u|. Because∣∣∣∂F

∂z
(z1)

∣∣∣ ∼ α

t

as t→∞ and since β < 1
2 we deduce that

|u| ∼ α

t
as t→∞.

We infer that the largest eigenvalue of A is equivalent to α
t , so one might expect

the solution of h′ = Ah to behave, for at least some initial conditions, like tα as t→∞
(which would contradict our assumptions). But this is probably not true. In fact, if

we neglect the small remainder O
(
(1 + t)β−

3
2

)
in (4.4), then one can find the exact

asymptotic behavior of the solution. More precisely, making the change of variables
s = ln(1 + at) and using polar coordinates one can prove that the solution of

`
′
(t) = `

∂F

∂z
(z1) (4.5)
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exhibits growth like tα
√

1−b2/|v|2 if |b| < |v|, logarithmic growth if |b| = |v| and stays
bounded if |b| > |v|.

The calculations given above does not show that the hypothesis α < 1
2 is optimal

for confinement to occur. But they show that our method cannot yield a better result.
Indeed, it is hard to see how to take into account the fine oscillations that occur in
the solutions of system (4.5) and their interaction with the “small” remainder O

(
(1 +

t)β−
3
2

)
, so we must contend ourselves with the upper bounds obtained through the

eigenvalues of the matrix A.
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