Master de Mathématiques, 1re année Parcours «Mathématiques générales» Analyse Contrôle continu 1 Jeudi 17 octobre 2019 – Durée : 1h30

Le matériel électronique (smartphone, calculatrice, etc.) et les documents sont interdits.

Question de cours. Montrer le résultat suivant en énonçant soigneusement les théorèmes utilisés :

Soit E un espace vectoriel et $\|\cdot\|_1$ et $\|\cdot\|_2$ deux normes sur E telles que $(E, \|\cdot\|_1)$ et $(E, \|\cdot\|_2)$ sont des espaces de Banach. Si $\|\cdot\|_1 \le C\|\cdot\|_2$ pour une certaine constante C, alors les normes $\|\cdot\|_1$ et $\|\cdot\|_2$ sont équivalentes.

Exercice 1. On désigne par ℓ^2 l'espace des suites réelles de carré sommable muni de la norme $\|\cdot\|_2$. L'ensemble des suites réelles sommables est noté par ℓ^1 et sa norme est notée par $\|\cdot\|_1$.

- a) Montrer que $\ell^1 \subset \ell^2$. Cette injection est-elle continue? Si oui, quelle est sa norme?
- b) Montrer que ℓ^1 n'est pas fermé dans ℓ^2 . Quelle est son adhérence dans ℓ^2 ?
- c) Soit $x^k \in \ell^1$ et $x = (x_n)$ une suite telle que $x^k \to x$ composante par composante quand $k \to \infty$. On suppose qu'il existe une constante $M \ge 0$ telle que $||x^k||_1 \le M$ pour tout k.
 - (i) Montrer que les sommes partielles de la série $\sum_{n} |x_n|$ sont toutes majorées par M.
 - (ii) En déduire que $x \in \ell^1$ et que $||x||_1 \le M$.
- d) On considère pour chaque $p \ge 1$ l'ensemble

$$F_p = \{x = (x_n) \in \ell^2 ; \sum_n |x_n| \le p\}.$$

Montrer que l'ensemble F_p est fermé dans ℓ^2 .

- e) Montrer maintenant que F_p est d'intérieur vide dans ℓ^2 .
- f) Montrer que ℓ^1 est d'intérieur vide dans ℓ^2 .

Exercice 2. Soit E un espace normé réel et (x_n) une suite d'éléments de E qui sont linéairement indépendants. Soit également (a_n) une suite de réels. On considère les deux propriétés suivantes :

- (*) Il existe $f \in E'$ tel que $f(x_n) = a_n$ pour tout $n \in \mathbb{N}$.
- (**) Il existe une constante C telle que

$$\forall n \in \mathbb{N}, \ \forall \lambda_0, \dots, \lambda_n \in \mathbb{R} : \left| \sum_{k=0}^n \lambda_k a_k \right| \le C \left\| \sum_{k=0}^n \lambda_k x_k \right\|.$$

a) Montrer que (*) implique (**).

Soit X le s.e.v. engendré par la suite (x_n) muni de la norme induite de E.

- b) Montrer qu'il existe exactement une application linéaire $g: X \to \mathbb{R}$ telle que $g(x_n) = a_n$ pour tout $n \in \mathbb{N}$.
- c) On suppose maintenant que la relation (**) est vraie. Montrer que l'application g de la question précédente est aussi continue sur X.
- d) Montrer enfin que (**) implique (*).