Master de Mathématiques, 1re année Parcours «Mathématiques générales» Analyse Contrôle terminal Jeudi 9 janvier 2020 – Durée : 3h

Le matériel électronique (smartphone, calculatrice, etc.) et les documents sont interdits.

Exercice 1. Soit \mathcal{H} un espace de Hilbert complexe séparable et soit T une application linéaire continue de \mathcal{H} dans \mathcal{H} .

On dit que T est positif si $\langle Tx, x \rangle \ge 0$ pour tout $x \in \mathcal{H}$.

a) Montrer l'identité suivante :

$$4\langle Tx, y \rangle = \langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle - i\langle T(x+iy), x+iy \rangle + i\langle T(x-iy), x-iy \rangle.$$

b) Montrez que si T est positif alors T est autoadjoint.

On admet que si T est positif alors il existe alors une unique application linéaire continue positive S, notée \sqrt{T} , telle que $S^2 = T$.

- c) (i) Montrez que T^*T est autoadjoint positif.
 - (ii) On pose $|T| = \sqrt{T^*T}$. Montrez que $Ker(|T|) = Ker(T^*T) = Ker(T)$.

Si T est positif, et pour un choix de base orthonormée (e_n) de \mathcal{H} , on pose

$$\operatorname{Tr}(T) = \sum_{n} \langle Te_n, e_n \rangle$$

(somme éventuellement infinie).

- d) Montrez que si T est positif alors la quantité $\operatorname{Tr}(T)$ ne dépend pas du choix de la base orthonormée (e_n) . (On pourra remarquer que $\langle Te_n, e_n \rangle = \|Se_n\|^2$ où $S = \sqrt{T}$.)
- e) Soit T une application linéaire continue de $\mathcal H$ dans $\mathcal H.$ Soit (e_n) une base orthonormée de $\mathcal H.$
 - (i) Montrer que e_n converge faiblement vers 0.
 - (ii) Montrez que (Te_n) converge faiblement vers 0.
 - (iii) Montrez que si T est compact alors (Te_n) converge fortement vers 0 (raisonnez par l'absurde).

On admet la réciproque du résultat ci-dessus : si (Te_n) converge vers 0 pour toute base orthonormée (e_n) alors T est compact.

f) Montrez que si T est positif et $\mathrm{Tr}(T) < \infty$, alors \sqrt{T} est un opérateur compact. En déduire que T est compact aussi.

Exercice 2. Toutes les questions de cet exercice sont indépendantes.

- a) Montrez que l'espace ℓ^p est complet pour tout $1 \le p \le +\infty$.
- b) Soit c_0 l'espace des suites réelles qui tendent vers 0 muni de la norme $\|\cdot\|_{\infty}$. Montrer que le dual de c_0 s'identifie à ℓ^1 .
- c) On considère l'espace de Banach $E=C^0([0,1])$ muni de la norme infinie. Montrez qu'il n'existe pas de produit scalaire sur E tel que $\|f\|_{\infty}^2=\langle f,f\rangle$ pour tout $f\in E$.

- d) Soit X un espace vectoriel normé. Soit $A \subset X$ une partie de X. Montrez que cette partie A est bornée si et seulement si, pour tout $f \in X'$ on a sup $\{|f(a)|; a \in A\} < \infty$.
- e) Soit T une application linéaire sur un espace de Hilbert complexe \mathcal{H} . Montrez que si

$$\langle Tx, y \rangle = i \langle x, Ty \rangle$$

pour tous $x, y \in \mathcal{H}$, alors T est continue.

f) On considère l'espace $X = c_{00}$ des suites à valeurs complexes, nulles à partir d'un certain rang. On considère les normes ℓ^p usuelles sur X. On considère l'application S de X dans X définie par

$$(Sx)_n = x_{n+1}$$

pour tout n.

- (i) Calculez la norme de S vue comme application de $(X, \|\cdot\|_p)$ dans $(X, \|\cdot\|_q)$, avec $1 \le p < q < \infty$.
- (ii) Que peut-on dire de la norme de S vue comme application de $(X, \|\cdot\|_p)$ dans $(X, \|\cdot\|_1)$, avec 1 .