Feuille de TD 6

Exercice 1

Soient H un espace de Hilbert et $u \in B(H)$. Montrer l'équivalence entre

- a) u est une isométrie, c'est à dire $||u(x)||_2 = ||x||_2$ pour tout $x \in H$.
- b) Pour tout $x, y \in H$, $\langle u(x), u(y) \rangle = \langle x, y \rangle$
- c) $u^*u = Id$

(Indication :penser à l'identité de polarisation).

Exercice 2

Soient H un espace de Hilbert et $v \in B(H)$. Montrer l'équivalence entre

- a) Pour tout $x \in Ker(v)^{\perp}$, on a $||v(x)||_2 = ||x||_2$
- b) $v^*vv^* = v^*$
- c) $vv^*v = v$
- d) Pour tout $x \in Ker(v^*)^{\perp}$, on $||v^*(x)||_2 = ||x||_2$

On dit que v est une isométrie partielle si a) est vérifié. Nous avons donc montré que l'adjoint d'une isométrie partielle est une isométrie partielle.

Exercice 3 Soit H un espace de Hilbert séparable. Montrer que tout ensemble orthonormal E est au plus dénombrable. (Indication : si G est dénombrable dense, construire une injection de E dans G en considérant des boules de rayon $\frac{1}{2}$.)

Exercice 4 Soit H un espace de Hilbert.

a) Soit $x, y \in H$ avec $\text{Re}\langle x, y \rangle = ||x||^2 = ||y||^2$. Montrer que x = y.

Soient (x_n) et (y_n) deux suites de H vérifiant $||x_n|| \le 1$ et $||y_n|| \le 1$.

- b) On suppose que $\langle x_n, y_n \rangle \to 1$ quand $n \to \infty$. Montrer que $x_n y_n \to 0$.
- c) On suppose que $||x_n + y_n|| \to 2$ quand $n \to \infty$. Montrer que $x_n y_n \to 0$.

Exercice 5 Soient H un espace de Hilbert séparable, (e_n) une base hilbertienne et (f_n) une suite orthonormale. On suppose que

$$\sum_{n \in \mathbb{N}} \|e_n - f_n\|^2 < \infty.$$

Le but de l'exercice est de démontrer que (f_n) est aussi une base hilbertienne.

a) Soient $g \in H$, $N \in \mathbb{N}$ et $f_n \perp g$ pour tout $n \geq N$. Montrer l'inégalité

$$\left\| \sum_{n \geqslant N} \langle e_n, g \rangle e_n \right\|^2 \leqslant \|g\|^2 \sum_{n \geqslant N} \|e_n - f_n\|^2.$$

On choisit maintenant un $N \in \mathbb{N}$ tel que

$$\sum_{n \ge N} ||e_n - f_n||^2 < 1.$$

b) Montrer que tout vecteur g orthogonal à $e_0, e_1, \ldots, e_{N-1}$ et f_N, f_{N+1}, \ldots est nul.

c) On considère les vecteurs

$$\eta_n = e_n - \sum_{k \geqslant N} \langle f_k, e_n \rangle f_k, \quad n < N.$$

Montrer que tout vecteur g orthogonal à $\eta_0, \eta_1, \dots, \eta_{N-1}$ et f_N, f_{N+1}, \dots est nul.

- d) Soit S l'orthogonal de l'espace engendré par les vecteurs f_N, f_{N+1}, \ldots Montrer que $\eta_n \in S$ pour tout n < N et que dim $S \leq N$.
- e) Montrer enfin que (f_n) est une base hilbertienne.

Exercice 6 On note par X l'espace vectoriel complexe engendré par les fonctions de la forme $\mathbb{R} \ni t \mapsto e^{iwt} \in \mathbb{C}$ où w parcourt \mathbb{R} . Pour $f, g \in X$ on pose

$$\langle f, g \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) \overline{g(t)} dt.$$

- a) Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur X.
- b) Vérifier que la famille $(e^{iwt})_{w\in\mathbb{R}}$ est orthonormale.
- c) X est-il un espace de Hilbert?

Exercice 7 Soient E et F deux sous-espaces fermés orthogonaux d'un espace de Hilbert. Montrer que E + F est fermé.

Exercice 8 Soient E et F deux sous-espaces fermés d'un espace de Hilbert. Montrer les égalités suivantes :

$$(E+F)^{\perp} = E^{\perp} \cap F^{\perp}, \qquad (E\cap F)^{\perp} = \overline{E^{\perp} + F^{\perp}}.$$

Exercice 9 Soient $H = L^2(0,1)$ et

$$V = \{ f \in H ; \int_0^1 f = \int_0^{\frac{1}{2}} f = 0 \}.$$

- a) Montrer que V est fermé dans H. Déterminer une base de V^{\perp} .
- b) Soit f(x) = x. Calculer la projection orthogonale de f sur V, puis d(f, V).

Exercice 10 Soit H un espace de Hilbert $T: H \to H$ linéaire et continue. Déterminer l'adjoint T^* dans les cas suivants :

- a) T est la projection orthogonale sur un sous-espace fermé V.
- b) $H = \mathbb{C}^n$ ou \mathbb{R}^n et T est de matrice A dans une base orthonormée.
- c) $H = L^2(X, \mu)$ et Tf = hf avec h bornée donnée.
- d) $H=L^2(X,\mu)$ et $Tf(x)=\int_X K(x,y)f(y)\,d\mu(y)$ où $K\in L^2(X\times X,\mu\otimes\mu)$ s'appelle le noyau intégral de T.