Feuille de TD 8

Exercice 1 Transformée de Fourier Soit $f \in L^1(\mathbb{R}^n)$ une fonction intégrable. On note $\langle \xi, x \rangle = \sum_{i=1}^n \xi_i x_i$ le produit scalaire usuel.

1. Montrer que la fonction suivante

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle \xi, x \rangle} f(x) dx$$

est bien définie et appartient à $L^{\infty}(\mathbb{R}^n)$.

- 2. Montrer que \widehat{f} est continue sur \mathbb{R}^n .
- 3. Montrer que \hat{f} tend vers 0 à l'infini : $\lim_{\|x\|\to\infty} \hat{f}(x) = 0$.

Exercice 2 On fixe $1 \le p < q < \infty$.

- 1. Soit $f \in L^q(]0,1[)$. Montrer que $f \in L^p(]0,1[)$ et que $\lim_{p \to q, p \leq q} ||f||_p = ||f||_q$.
- 2. On suppose maintenant $g \in L^{\infty}(]0,1[)$. Montrer que $\lim_{p\to\infty}||g||_p=||g||_{\infty}$. (On pourra considérer l'ensemble $\{x,|g(x)|\geqslant ||g||_{L^{\infty}}-\varepsilon\}$.)
- 3. On suppose que $f \in L^q(]0,1[)$ pour tout $1 < q < \infty$ et qu'il existe C > 0 tel que $||f||_q \leq C$ pour tout $1 < q < \infty$. Montrer que $f \in L^\infty(]0,1[)$.
- 4. Trouver une fonction dans $L^q([0,1])$ pour tout $1 < q < \infty$ mais pas dans $L^\infty([0,1])$.

Exercice 3 Soit $1 \leq p < q \leq +\infty$. Montrer que $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$, et que l'injection est continue.

Exercice 4 Soit $1 \leq p, q \leq +\infty$. Montrer que $\{f \in L^p(\Omega); ||f||_q \leq 1\}$ est fermé dans $L^p(\Omega)$. (On pourra utiliser le lemme de Fatou.)

Exercice 5 Soit $1 \le p < q \le +\infty$.

- 1. Montrer que $L^q([0,1])$ est un sous-espace strict de $L^p([0,1])$.
- 2. Peut-on comparer pour l'inclusion $L^q(\mathbb{R})$ et $L^p(\mathbb{R})$ en d'autres termes est ce qu'on a une inclusion entre les deux (justifier)?
- 3. Construire un sous-espace de $L^p([0,1])$ isométrique à $\ell^p(\mathbb{N})$.

Exercise 6 Convolution Soit $f \in L^1(\mathbb{R}^n)$, $g \in L^p(\mathbb{R}^n)$, $h \in L^q(\mathbb{R}^n)$ avec 1/p+1/q=1.

1. Soit f(x) = f(-x). Montrer que :

$$\int (g * f)h = \int g(h * \check{f}).$$

2. Montrer que si $p=1, \widehat{f*g}=\widehat{f}\widehat{g}.$ (Notation ex 1 de la transformée de Fourier)

Exercice 7 Soit ρ_n une suite régularisante et $f \in C^0(\mathbb{R}^d)$.

1. Montrer que pour tout compact $K \subset \mathbb{R}^d$:

$$\sup_{x \in K} |(\rho_n * f)(x) - f(x)| \to 0$$

quand $n \to \infty$.

- 2. En déduire que $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $C_c^0(\mathbb{R}^d)$ pour la norme $||.||_{\infty}$ induite par $C_b^0(\mathbb{R}^d)$.
- 3. Montrer que l'adhérence de $C_c^0(\mathbb{R}^d)$ dans $C_b^0(\mathbb{R}^d)$ est

$$C_0^0(\mathbb{R}^d) = \{ f \in C_b^0(\mathbb{R}^d) : \lim_{\|x\| \to \infty} |f(x)| = 0 \}.$$

Exercice 8 Soit $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. Montrer que $f * \varphi_{\varepsilon} \to f$ dans $L^p(\mathbb{R}^n)$ où φ_{ε} est une suite régularisante. (Indication : commencer par supposer f régulière à support compact, puis raisonner par densité.)

Exercice 9 Soit $f \in L^1(\mathbb{R})$. On suppose que

$$\int_{a}^{b} f = 0 \qquad \forall a, b \in \mathbb{R}.$$

1. Soit $g \in C_c^{\infty}(\mathbb{R})$. Montrer l'égalité

$$\int_{\mathbb{R}} f(x)g(x) dx = -\int_{\mathbb{R}} \left(\int_0^x f(t) dt \right) g'(x) dx = 0$$

2. Soit maintenant $h \in L^{\infty}(\mathbb{R})$. On pose

$$h_n = \left(\chi_{[-n,n]}h\right) * \varphi_{\frac{1}{n}}$$

où $\varphi_{\frac{1}{n}}$ est une approximation de l'identité paire. Montrer que

$$\int_{\mathbb{IR}} f h_n = 0$$

3. En déduire que

$$\int_{\mathbb{R}} f * \varphi_{\frac{1}{n}} \; \chi_{[-n,n]} h = 0$$

- 4. Montrer que $\chi_{[-n,n]}h \to h$ faible* dans L^{∞} et $f * \varphi_{\frac{1}{n}} \to f$ fortement dans L^1 . (On pourra utiliser la densité de C_c^{∞} dans L^1 .) Montrer aussi que $h_n \to h$ faible* dans L^{∞} .
- 5. En déduire que $\int fh = 0$ et conclure que f = 0 p.p. (On pourra utiliser que le dual de L^1 est L^{∞} .)
- 6. Montrer la même chose lorsque f est défini sur un intervalle de \mathbb{R} seulement.

Exercice 10 On fixe $1 \le p < \infty$.

Soit $AC^p([a,b])$ l'ensemble des fonctions continues $f:[a,b]\to\mathbb{R}$ telle qu'il existe $g\in L^p([a,b])$ avec $f(t)=f(a)+\int_a^tg(u)du$. L'exercice précédent montre que g est unique p.p. On pose alors

$$||f||_{AC^p}^p = |f(a)|^p + \int_a^b |g(t)|^p dt.$$

Montrer que $AC^p([a,b])$ est un espace de Banach.