CC n° 1: durée 1 heure 30. FAITES LES EXERCICES DANS L'ORDRE QUITTE A LAISSER UN TROU ET REVENIR DESSUS PLUS TARD SVP.

Exercice 1. (3 pts) Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ une application différentiable sur \mathbb{R}^3 . On définit $g: \mathbb{R}^2 \to \mathbb{R}^2$ par

$$g(x,y) = f(-x - y, x + y^2, x^2 + y^3).$$

Ecrire la matrice jacobienne de g en un point quelconque en exprimant les dérivées partielles de g en fonction de celles de f.

Exercice 2. (7 pts) Etudier la différentiabilité et calculer là où elles existent les dérivés partielles de la fonction suivante : $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \max(x^2 + 1, y)$.

Exercice 3. (5 pts) Soit $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par $f(M) = (M + M^2)/2$. Montrer que f est un difféomorphisme local d'un voisinage de I sur un voisinage de I, mais que ce n'est pas un difféomorphisme global de $M_n(\mathbb{R})$ sur son image.

Exercice 4. (5 pts) Calculer la différentielle de $G:C^1([0,1])\mapsto \mathbb{R}$ donnée par :

$$G(f) = f(0) + \int_0^1 f(t)[f'(t)]^2 dt.$$

Attention à la rédaction vu la dimension de l'espace de départ.