Calcul Différentiel et Analyse Complexe Épreuve terminale de 2e session, 28 juin 2019

Durée : 2h ; calculettes interdites ; seule une feuille A4 (recto-verso) de notes est autorisée ; composer chaque exercice sur une feuille distincte. Les questions ne sont pas forcément en ordre de difficulté ; le barème étant sur 27, il n'est pas obligatoire de tout traiter.

Exercice 1 (5 points). Soit $\Omega := \{(x,y) \in \mathbb{R}^2 : x > 0\}$. Pour une valeur donnée $m \in \mathbb{R}$, considérer la fonction $f: \Omega \to \mathbb{R}^2$ définie par

$$f(x,y) = (\ln(x^2 + y^2), m \arctan(y/x)).$$

- 1. Prouver que f est bien définie et C^{∞} .
- 2. Écrire la matrice jacobienne de f en tout point.
- 3. En identifiant \mathbb{R}^2 à \mathbb{C} , pour quelles valeurs de m la fonction f est-elle holomorphe sur Ω ?

Exercice 2 (8 points). Considérer l'ensemble $A = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 0\}$, où $f: \mathbb{R}^2 \to \mathbb{R}$ est définie par

$$f(x,y) = (x^2 + y^2)^2 - 3x^2y + y^3.$$

- 1. Prouver que A est un ensemble compact contenant l'origine (0,0).
- 2. Prouver que A est localement paramétrisable par une courbe régulière en dehors de l'origine (0,0).
- 3. En utilisant évenutellement la formule $\sin(3\theta) = 3\cos^2(\theta)\sin(\theta) \sin^3(\theta)$ donner une paramétrisation de A en cordonnées polaire, en le représentant comme l'image d'un lacet $[0,\pi] \mapsto \gamma(\theta)$ et faire un dessin schématique de l'ensemble A.
- 4. En considérant A comme un lacet dans \mathbb{C} , calculer l'indice par rapport à A des points $z_k = e^{ik\pi/6}$ pour $k = 0, 1, \dots, 12$.

Exercice 3 (7 points). Calculer, en appliquant la formule des résidus à la fonction

$$f(z) = \frac{z}{(z^2+1)^2 - 16z^2},$$

la valeur de l'intégrale

$$\int_0^{2\pi} \frac{1}{4 - \cos^2(\theta)} d\theta.$$

Exercice 4 (7 points). Étant donnée une fonction holomorphe $f: \mathbb{C} \to \mathbb{C}$ avec f(0) = 0 mais non identiquement nulle, soit $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ la fonction définie par

$$\phi(R) := \sup\{|f(z)| : |z| \le R\}.$$

- 1. Démontrer que ϕ est une fonction strictement croissante.
- 2. Démontrer que ϕ est une fonction continue.
- 3. Démontrer que l'on a $\phi(tR) \leq t\phi(R)$ pour tout $t \in [0,1]$
- 4. Démontrer que, si l'on a $\phi(R) \leq CR^2$ pour tout $R \geq 0$, alors on a $f(z) = az^2$ pour un certain $a \in \mathbb{C}$ et finalement $\phi(R) = |a|R^2$.
- 5. Démontrer que, si l'on a $\phi(R) \le C(R^2 + 1)$ pour tout $R \ge 0$, alors on a deux cas : soit il existe c > 0 tel que $\phi(R) = cR$ pour tout $R \ge 0$, soit il existe c > 0 tel que $\phi(R) \ge c(R^2 1)$ pour tout $R \ge 0$.

Calcul Différentiel et Analyse Complexe Épreuve terminale de 2e session, 28 juin 2019

Durée : 2h; calculettes interdites; seule une feuille A4 (recto-verso) de notes est autorisée; composer chaque exercice sur une feuille distincte. Les questions ne sont pas forcément en ordre de difficulté; le barème étant sur 27, il n'est pas obligatoire de tout traiter.

Exercice 1 (5 points). Soit $\Omega := \{(x,y) \in \mathbb{R}^2 : x > 0\}$. Pour une valeur donnée $m \in \mathbb{R}$, considérer la fonction $f: \Omega \to \mathbb{R}^2$ définie par

$$f(x,y) = (\ln(x^2 + y^2), m \arctan(y/x)).$$

- 1. Prouver que f est bien définie et C^{∞} .
- 2. Écrire la matrice jacobienne de f en tout point.
- 3. En identifiant \mathbb{R}^2 à \mathbb{C} , pour quelles valeurs de m la fonction f est-elle holomorphe sur Ω ?
- 1. Par composition de fonctions usuelles, la première composante de f est bien définie et C^{∞} à condition que $x^2 + y^2 > 0$ et la deuxième à condition que $x \neq 0$. Ces deux conditions sont bien satisfaites pour $(x, y) \in \Omega$.
- 2. La matrice jacobienne de f est

$$\begin{pmatrix} \frac{2x}{x^2 + y^2} & \frac{2y}{x^2 + y^2} \\ \frac{-my}{x^2 + y^2} & \frac{mx}{x^2 + y^2} \end{pmatrix}$$

3. Pour que f soit holomorphe il faut et il suffit $\partial \text{Re} f/\partial x = \partial \text{Im} f/\partial y$ et $\partial \text{Re} f/\partial y = -\partial \text{Im} f/\partial x$, ce qui correspond à m=2. Dans ce cas, nous avons en effet $f(z)=2\log z$.

Exercice 2 (8 points). Considérer l'ensemble $A = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 0\}$, où $f: \mathbb{R}^2 \to \mathbb{R}$ est définie par

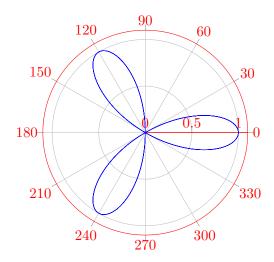
$$f(x,y) = (x^2 + y^2)^2 - 3x^2y + y^3.$$

- 1. Prouver que A est un ensemble compact contenant l'origine (0,0).
- 2. Prouver que A est localement paramétrisable par une courbe régulière en dehors de l'origine (0,0).
- 3. En utilisant évenutellement la formule $\sin(3\theta) = 3\cos^2(\theta)\sin(\theta) \sin^3(\theta)$ donner une paramétrisation de A en cordonnées polaire, en le représentant comme l'image d'un lacet $[0,\pi] \mapsto \gamma(\theta)$ et faire un dessin schématique de l'ensemble A.
- 4. En considérant A comme un lacet dans \mathbb{C} , calculer l'indice par rapport à A des points $z_k = e^{ik\pi/6}$ pour $k = 0, 1, \dots, 12$.
- 1. La fonction f étant continue, A est fermé. Si on pose $r = \sqrt{x^2 + y^2}$ on a, pour $(x, y) \in A$, $r^4 \le 4r^3$, donc $r \le 4$. L'ensemble A est donc contenu dans une boule et est donc compact. On a bien f(0,0) = 0, donc $(0,0) \in A$.
- 2. Le théorème des fonctions implicites permet de paramétriser A localement comme un graphe (et donc une courbe régulière) au voisinage de tout point $(x,y) \in A$ où $\nabla f(x,y) \neq 0$. Il faut donc exclure les solutions du système

$$\begin{cases} (x^2 + y^2)^2 = 3x^2y - y^3, \\ 4(x^2 + y^2)x = 6xy, \\ 4(x^2 + y^2)y = 3x^2 - 3y^2. \end{cases}$$

Dans la deuxième équation, considérons d'abord le cas x=0. Si x=0 on trouve, dans la première, $y^4=-y^3$ et, dans la deuxième, $4y^3=-3y^2$. Ceci implique y=0. Donc si x=0 le point à exclure est l'origine (0,0). Si on suppose maintenant $x\neq 0$ on a, dans la deuxième équation $4(x^2+y^2)=6y$. En remplaçant dans la troisième on obtient $6y^2=3x^2-3y^2$, donc $x^2=3y^2$. En remplaçant à nouveau dans la première on a $16y^4=8y^3$, donc y=0 ou y=1/2. Si y=0 on trouve, dans la première équation, $x^4=0$, donc on revient au point (0,0). Si y=1/2 on trouve $x^2+y^2=4y^2=1$ mais la deuxième équation donnait $4(x^2+y^2)=6y$, ce qui correspondrait à 4=6/2, une contradiction. Le seul point à exclure est donc (0,0) et en tout autre point de A on peut appliquer le théorème des fonctions implicites.

3. Si on écrit $(x,y) = (r\cos(\theta), r\sin(\theta))$ on a $(x,y) \in A \Leftrightarrow r^4 = r^3\sin(3\theta)$, donc $r = \sin(3\theta)$ (ce qui implique $\sin(3\theta) \geq 0$, donc $\theta \in [0, \pi/3] \cup [2\pi/3, \pi] \cup [4\pi/3, 5\pi/3]$). Or, si on prend la fonction $\gamma(\theta) = (\sin(3\theta)\cos(\theta), \sin(3\theta)\sin(\theta))$ pour $\theta \in [0, \pi]$ on retrouve la même image parce que l'intervalle $\theta \in [\pi/3, 2\pi/3]$ donne les valeurs correspondant à $\theta \in [4\pi/3, 5\pi/3]$ (mais $\sin(3\theta) < 0$). L'ensemble A se représente ainsi



4. Parmi les points de la forme $e^{ik\pi/6}$, seulement ceux pour k=0,4,8 sont à l'intérieur des composantes connexes bornées déterminées par A. Ils ont un indice de 1, et les autres de 0.

Exercice 3 (7 points). Calculer, en appliquant la formule des résidus à la fonction

$$f(z) = \frac{z}{(z^2+1)^2 - 16z^2},$$

la valeur de l'intégrale

$$\int_0^{2\pi} \frac{1}{4 - \cos^2(\theta)} d\theta.$$

La théorie vue en cours explique que, pour calculer les intégrales du type $\int_0^{2\pi} R(\cos(t), \sin(t)) dt$ où R est une fonction rationnelle, il faut considérer la fonction

$$f(z) = \frac{1}{iz}R\left(\frac{1}{2}(z+\frac{1}{z}), \frac{1}{2i}(z-\frac{1}{z})\right)$$

et en calculer la somme des résidus aux pôles contenus dans le disque unité. L'intégrale sera ensuite égale à cette somme multipliée fois $2\pi i$. Dans notre cas on a

$$f(z) = \frac{4z}{i(16z^2 - (z^2 + 1)^2)}.$$

Les pôles de cette fonction se trouvent là où $z^2+1=\pm 4z$, c'est-à-dire $z=\pm 2\pm\sqrt{3}$. On peut écrire $16z^2-(z^2+1)^2=-(z-z_1)(z-z_2)(z-z_3)(z-z_4)$, où $\{z_1,z_2,z_3,z_4\}=\{\pm 2\pm\sqrt{3}\}$. Pour calculer le résidu en z_j , il suffit de remarquer qu'on a écrit $f(z)=(z-z_j)h(z)$ pour h holomorphe avec $h(z_j)\neq 0$. Le résidu est donc égal à $h(z_j)$. On a donc $\operatorname{Res}(f,z_j)=\frac{4z_j}{-i\Pi_{k\neq j}(z_j-z_k)}$ et, en particulier

Res
$$(f, 2 - \sqrt{3})$$
 = Res $(f, -2 + \sqrt{3})$ = $\frac{1}{4i\sqrt{3}}$.

On a donc

$$\int_0^{2\pi} \frac{1}{4 - \cos^2(\theta)} d\theta = 2\pi i \frac{2}{4i\sqrt{3}} = \frac{\pi}{\sqrt{3}}.$$

Il est possible de vérifier que ce résultat est raisonnable : on a bien $1/4 \le (4 - \cos^2 \theta)^{-1} \le 1/3$, donc l'intégrale que l'on cherche doit être une valeur entre $2\pi/4$ et $2\pi/3$, ce qui est vrai grâce à $3/2 \le \sqrt{3} \le 2$.

Exercice 4 (7 points). Étant donnée une fonction holomorphe $f: \mathbb{C} \to \mathbb{C}$ avec f(0) = 0 mais non identiquement nulle, soit $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ la fonction définie par

$$\phi(R) := \sup\{|f(z)| : |z| \le R\}.$$

- 1. Démontrer que ϕ est une fonction strictement croissante.
- 2. Démontrer que ϕ est une fonction continue.
- 3. Démontrer que l'on a $\phi(tR) \leq t\phi(R)$ pour tout $t \in [0,1]$
- 4. Démontrer que, si l'on a $\phi(R) \leq CR^2$ pour tout $R \geq 0$, alors on a $f(z) = az^2$ pour un certain $a \in \mathbb{C}$ et finalement $\phi(R) = |a|R^2$.
- 5. Démontrer que, si l'on a $\phi(R) \leq C(R^2 + 1)$ pour tout $R \geq 0$, alors on a deux cas : soit il existe c > 0 tel que $\phi(R) = cR$ pour tout $R \geq 0$, soit il existe c > 0 tel que $\phi(R) \geq c(R^2 1)$ pour tout $R \geq 0$.
- 1. La fonction ϕ est évidemment non-décroissante. Si jamais on avait $\phi(R_1) = \phi(R_2)$ pour $R_1 < R_2$ on aurait alors un point z avec $|z| \le R_1 < R_2$ qui réalise le maximum de |f| sur une boule plus grande. Comme il n'est pas sur le bord de cette boule, par le principe du maximum f serait constante, ce qui n'est pas le cas.
- 2. Soit z_0 un point qui réalise le maximum de |f| sans $\overline{B(0,R)}$ et $\varepsilon > 0$. Il existe un rayon r tel que $|f(z)| \ge \phi(R) \varepsilon$ pour tout $z \in B(z_0,r)$. On a donc $\phi(R') \ge \phi(R) \varepsilon$ pour tout R' tel que |R' R| < r. Il faut démontrer également $\phi(R') \le \phi(R) + \varepsilon$, quitte à changer le rayon r. Supposons par l'absurde qu'il existe $R'_n \to R$ avec $\phi(R'_n) \ge \phi(R) + \varepsilon$. Soit z_n une suite de points tels que $|f(z_n)| = \phi(R'_n)$ et $|z_n| \le R'_n$. À une sous-suite près on peut supposer $z_n \to z$ et $|z| \le R$. On aurit donc, par continuité de |f|, $|f(z)| \ge \phi(R) + \varepsilon$, ce qui est absurde.
- 3. Considérons la fonction $g(z) = f(Rz)/\phi(R)$. Cette fonction est holomorphe, envoie B(0,1) dans B(0,1), et g(0) = 0. Alors $|g(z)| \le |z|$. On a donc $\phi(tR) = \sup\{|f(z)| : |z| \le tR\} = \phi(R) \sup\{|g(z)| : |z| \le t\} \le \phi(R)t$.
- 4. On sait que toute fonction holomorphe à croissance au plus quadratique est un polynôme d'ordre au plus deux. Donc si l'on a $\phi(R) \leq CR^2$ alors on a $f(z) = az^2 + bz + c$. La condition f(0) = 0 impose c = 0 et $|f(z)| \leq C|z|^2$ implique b = 0, ce qui donne le résultat voulu.
- 5. Si on a juste $\phi(R) \leq C(R^2 + 1)$ on obtient $f(z) = az^2 + bz$. Si $a \neq 0$ on est dans le deuxième cas, et si a = 0 dans le premier.