Fiche TD 1

Exercice 1. Définition. Deux normes N_1 et N_2 sont dites équivalentes s'il existe deux constantes $C_1, C_2 > 0$ telles que $N_2 \le C_1 N_1$ et $N_1 \le C_2 N_2$. Montrer que si N_1 et N_2 sont équivalentes alors les ouverts associés sont les mêmes et les notions de convergence, limite et continuité ne changent pas.

Exercice 2. On définit une application sur $M_n(\mathbb{R})$ par

$$||A|| = n \max_{1, \leq i, j \leq n} |a_{ij}|.$$

Montrer que c'est une norme sur $M_n(\mathbb{R})$, puis qu'il s'agit d'une norme multiplicative :

$$||AB|| \leq ||A|| \, ||B|| \quad \forall A, B \in M_n(\mathbb{R}).$$

Exercice 3. Pour tout $(x, y) \in \mathbb{R}^2$, on pose $N_1(x, y) = \max(\sqrt{x^2 + y^2}, |x - y|)$ et $N_2(x, y) = \sqrt{x^2/9 + y^2/4}$.

- a) Montrer que N_1 et N_2 sont des normes sur \mathbb{R}^2 et représenter les boules unité fermées associées à ces normes.
- b) Montrer que $N_2 \le \|\cdot\|_{\infty} \le \|\cdot\|_2 \le N_1 \le \|\cdot\|_1 \le 4N_2$.
- c) Déterminer la plus petite constante C telle que $\|\cdot\|_1 \le CN_2$. (Utiliser l'inégalité de Cauchy-Schwarz.)

Exercice 4. L'application N(x,y) = |5x + 3y| est-elle une norme de \mathbb{R}^2 ?

Exercice 5. Démontrer que dans tout espace normé on a si $x \neq 0$ et $y \neq 0$

$$\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \le 2 \frac{\|x - y\|}{\|x\|}.$$

Exercice 6. Montrer que l'application

$$N: \mathbb{R}^2 \to \mathbb{R}, (x, y) \to N(x, y) = \sup_{t \in [0, 1]} |x + ty|$$

est une norme sur \mathbb{R}^2 . Dessiner la sphère unité.

Exercice 7. Pour $x \in \mathbb{R}^n$ établir les inégalités $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$ et $||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$. Montrer que les constantes de ces inégalités ne peuvent pas être améliorées.

Exercice 8. Pour une matrice $A \in M_2(\mathbb{R})$ on définit

$$N(A) = \left(\sum_{i,j} a_{ij}^2\right)^{\frac{1}{2}}.$$

Montrer que

$$||Ax||_2 \le N(A)||x||_2 \quad \forall x \in \mathbb{R}^n.$$

Exercice 9. Pour quelles valeurs du réel λ définit-on une norme sur \mathbb{R}^2 par

$$N_{\lambda}(x,y) = \sqrt{x^2 + 2\lambda xy + y^2}$$
?

Comparer les deux normes N_{λ} et N_{μ} .

Exercice 10. Soit *A* une partie non vide d'un espace normé E et $f:A\to\mathbb{R}$ une fonction k-Lipschitzienne. Montrer que la fonction

$$g: E \to \mathbb{R}, \ x \to g(x) = \sup_{t \in A} \{ f(t) - k || x - t || \}$$

est bien définie. Vérifier que g prolonge f et que g est aussi k-Lipschitzienne.

Exercice 11. Soit F l'ensemble des fonctions Lipschitzienne de [0,1] dans \mathbb{R} . On définit l'application

$$f \to N(f) = |f(0)| + \sup_{0 \le x \le y \le 1} \frac{|f(y) - f(x)|}{|y - x|}.$$

Montrer que c'est une norme et comparer avec $\|\cdot\|_{\infty}$

Exercice 12. Montrer que l'on définit une norme sur \mathbb{R}^2 par

$$N(x,y) = \sup_{t \in \mathbb{R}} \frac{|x+ty|}{1+t^2}.$$

Déterminer et dessiner la sphère unité.

Exercice 13. Dans l'espace des fonctions continues définies sur [0,1] à valeurs dans \mathbb{R} , muni de la norme $\|\cdot\|_{\infty}$, on considère une famille $(f_1,\ldots,f_p)\in E^p$ et on définit l'application $N:\mathbb{R}^p\to\mathbb{R}$ par

$$N(x_1,...,x_p) = \|\sum_{i=1}^p x_i f_i\|_{L^{\infty}}.$$

Donner une condition nécessaire et suffisante pour que N soit une norme sur \mathbb{R}^p .

Exercice 14.

a) Sur $\mathcal{C}^1([0,1];\mathbb{R})$ montrer que la quantité

$$N(f) = \sqrt{\int_0^1 |f(t)|^2 + |f'(t)|^2} dt$$

est une norme.

- b) Montrer qu'il existe une constante C > 0 telle que : $||f||_{\infty} \le CN(f), \forall f \in C^1([0,1];\mathbb{R})$. Les deux normes N et $||\cdot||_{\infty}$ sont-elles équivalentes ?
- c) Montrer que $F_0 = \{ f \in \mathcal{C}^1([0,1];\mathbb{R}), f(0) = 0 \}$ est un sous-espace vectoriel fermé de $\mathcal{C}^1([0,1];\mathbb{R})$ pour la norme N et que la quantité $N'(f) = \sqrt{\int_0^1 |f'(t)|^2 \ dt}$ est une norme sur F_0 équivalente à N.

Exercice 15. Soit $E = C^1([0,1]; \mathbb{R})$.

a) Montrer que les expressions suivantes définissent des normes sur E:

$$||f||_1 = \int_0^1 |f|, \qquad ||f||_\infty = \sup |f|, \qquad ||f||_3 = |f(0)| + \sup |f'|.$$

- b) Montrer que $||f||_1 \le ||f||_{\infty} \le ||f||_3$.
- c) Montrer que l'application identité est continue de $(E, \|\cdot\|_3)$ à valeurs dans $(E, \|\cdot\|_{\infty})$.
- d) Soit $f_n(x) = \frac{\sin nx}{n}$. Étudier la convergence de f_n dans $(E, \|\cdot\|_3)$ et dans $(E, \|\cdot\|_\infty)$. L'application identité est-elle continue de $(E, \|\cdot\|_\infty)$ à valeurs dans $(E, \|\cdot\|_3)$?
- e) Soit $g_n(x) = \frac{x^n}{n^{\alpha}}$ où $\alpha \in \mathbb{R}$. Étudier la convergence de la suite g_n pour les trois normes définies dans la première question (discuter suivant α).

Exercice 16. Sur l'espace des suites réelles sommables nous définissons

$$||x||_1 = \sum_{n=0}^{\infty} |x_n|$$
 et $||x||_{\infty} = \sup_{n} |x_n|$.

Montrer qu'il s'agit de deux normes et déterminer si elles sont équivalentes. (On pourra considérer la suite géométrique $(1, a, a^2, a^3, \dots)$.)

Licence de Mathématiques 3e année Approfondissement en analyse Année 2016-2017

Fiche TD 2

Exercice 1. Lesquels des sous-ensembles suivants de \mathbb{R}^2 sont fermés ?

- a) $\{(1/n,0); n=1,2,\ldots\};$
- b) $\{(x,y); y = x^2\};$
- c) $\{(m,n); m,n \in \mathbb{Z}\}.$
- d) $\{(x,y) \in \mathbb{R}^2; x^2 + y^2 \le 1\};$
- e) $[0, \infty[$;
- f) \mathbb{Q} ;
- g) $\mathbb{Q} \cap [0,1]$;
- h) $\{(x,y) \in \mathbb{R}^2; x^2 + y^2 = 1\};$
- i) $\{(x,y) \in \mathbb{R}^2; 0 < x < 1 \text{ et } y = x^2\};$
- j) $\{(x,y) \in \mathbb{R}^2; x \ge 1 \text{ et } 0 \le y \le 1/x\}.$

Exercice 2. On considère l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 de matrice $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 4 \end{pmatrix}$ dans les bases canoniques. Calculer la norme de cette application dans les cas suivants :

- a) \mathbb{R}^3 et \mathbb{R}^2 sont tous deux munis de la norme ℓ^{∞} .
- b) \mathbb{R}^3 est muni de la norme ℓ^1 et \mathbb{R}^2 de la norme ℓ^{∞} .
- c) \mathbb{R}^3 est muni de la norme euclidienne et \mathbb{R}^2 de la norme ℓ^{∞} .

Exercice 3. Soit $(E, \|\cdot\|_E)$ et soit $(F, \|\cdot\|_F)$ deux espaces vectoriels normés. Soit u une application linéaire, $u: E \to F$. Montrer que les propriétés suivantes sont équivalentes :

- a) l'application *u* est continue.
- b) pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E, convergente de limite 0, la suite $(u(x_n))_n$ est bornée dans F.

Exercice 4. On considère $E = \mathbb{R}[X]$ et A une partie non vide de \mathbb{R} .

- a) Donner une condition nécessaire et suffisante sur A pour que $\|P\| = \sup\{|P(x)| | x \in A\}$ soit une norme sur E.
- b) La condition précédente étant vérifiée, donner une condition nécessaire et suffisante pour que ϕ définie par $\phi(P) = P(0)$ soit continue sur E. (Indication : on considèrera des monômes de la forme $n(\frac{X^2 b^2}{b^2})^n$.)

Exercice 5. Sur $\mathbb{C}[X]$ on considère la norme définie par $||P|| = \sup |a_i| \sin P(X) = \sum_{i=0}^n a_i X^i$. Pour tout x_0 on considère l'application linéaire $\phi : \mathbb{C}[X] \to \mathbb{C}$ définie par $\phi(P) = P(x_0)$. Déterminer les x_0 pour lesquels ϕ est continue et calculer alors sa norme.

Exercice 6. Soit $\mathbb{R}_n[X] \subset \mathbb{R}[X]$ le sous-espace vectoriel des polynômes de degré n au plus. Montrer que

$$P \to \sup_{x \in [0,1]} |P(x)| = ||P||$$

est une norme ; on note, en particulier, $E_n \subset \mathbb{R}_n[X]$ l'ensemble des polynômes normalisés (coefficient 1 pour le monôme maximal) de degré au plus n. Montrer qu'il existe $a(n) \in \mathbb{R}_+^*$ tel que

$$\forall P \in E_n \quad ||P|| \ge a(n).$$

Exercice 7. Soit C l'espace vectoriel des suites convergentes de nombres réels et C_0 le sous-espace des suites convergentes vers 0. On munit C et C_0 de la norme ℓ^{∞} .

- a) Montrer que C_0 est fermé dans C.
- b) On définit une application T de C dans C_0 en associant à la suite (x_n) la suite (y_n) définie par $y_0 = \lim_{n \to \infty} x_n$ et $y_n = x_{n-1} \lim_{n \to \infty} x_n$ pour $n \ge 1$.
 - (i) Montrer que T est linéaire continue et calculer ||T||.
 - (ii) Montrer que T est bijective.
 - (iii) Montrer que pour tout $x \in C$, $||T(x)|| \ge \frac{1}{2}||x||$.
 - (iv) Conclure que C et C_0 sont isomorphes.

Exercice 8. Une base de \mathbb{K}^n étant fixée, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on considère les normes

$$|X|_1 = \sum_{i=1}^n |x_i|$$
 et $|X|_{\infty} = \sup_{i \in \{1...n\}} |x_i|$.

Dans $\mathcal{M}_n(\mathbb{K})$, on leur associe les normes

$$\left\|A\right\|_p = \sup_{\left|X\right|_p = 1} \left|AX\right|_p \quad p \in \left\{1, \infty\right\}.$$

Vérifiez que pour $A = (a_{ij})$ on a

$$||A||_1 = \sup_j \sum_i |a_{ij}|$$
 et $||A||_{\infty} = \sup_i \sum_j |a_{ij}|$.

En déduire que $\sup_{j} \sum_{i} |a_{ij}|$ et $\sup_{i} \sum_{j} |a_{ij}|$ définissent des normes d'algèbre sur $\mathcal{M}_n(\mathbb{K})$.

Exercice 9. Les formes linéaires suivantes sont définies sur $\mathcal{C}([-1,1])$ muni de la norme de la convergence uniforme. Montrer qu'elles sont continues et calculer leur norme.

a)
$$\int_0^1 f(x) dx$$

b)
$$\int_{-1}^{1} sign(x) f(x) dx$$

c)
$$\int_{-1}^{1} f(x) dx - f(0)$$

d)
$$\frac{f(a)+f(-a)-2f(0)}{a^2}$$
, où $a \in]0,1]$ est une constante.

e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} f(\frac{1}{n}).$$

Exercice 10.

- a) Montrer que sur $\mathbb{R}_n[X]$, $||P||_n = \sum_{k=0}^n |P(k)|$ définit une norme.
- b) Déterminer la norme de l'application linéaire f de $\mathbb{R}_2[X]$ dans $\mathbb{R}_3[X]$ qui au polynôme P(X) associe le polynôme XP(X), quand ces espaces sont munis respectivement des normes $\|\cdot\|_2$ et $\|\cdot\|_3$.

Exercice 11. Soit $E = \mathcal{C}([0,1];\mathbb{R})$ muni de la topologie de la convergence uniforme. On considère $T: E \to \mathbb{R}$ linéaire tel que $f \ge 0$ implique $Tf \ge 0$. Montrer que T est continue.

Exercice 12. Montrer que $|f|_2 = \sqrt{\int_0^1 |f(t)|^2 dt}$ définit une norme sur $C^0([0,1])$.

Montrer que la forme linéaire $f \to f(0)$ n'est pas continue pour cette norme. En déduire que $\{f \in \mathcal{C}^0([0,1]), f(0) = 0\}$

n'est pas fermé.

Montrer que les sous-espaces $F_1 = \left\{ f \in \mathcal{C}^0([0,1]), \ \forall x \in [0,\frac{1}{2}], \ f(x) = 0 \right\}$ et $F_2 = \left\{ f \in \mathcal{C}^0([0,1]), \ \forall x \in [\frac{1}{2},1], \ f(x) = 0 \right\}$ sont fermés dans $\mathcal{C}^0([0,1])$ avec cette norme, que $F_1 \cap F_2 = \{0\}$ mais que $F_1 \oplus F_2$ n'est pas fermé.

Exercice 13. Sur l'espace vectoriel des applications linéaires continues $u:(E, \|\ \|_E) \to (F, \|\ \|_F)$, on sait que l'on peut mettre la norme

$$||u|| = \sup_{x \neq 0} \frac{||u(x)||_F}{||x||_E}.$$

Montrer que ce sup est en fait un maximum quand E est de dimension finie. Est-ce encore vrai en dimension infinie?

Exercice 14. Montrer que dans un espace vectoriel normé $(E, || \cdot ||_E)$, on ne peut avoir deux applications linéaires continues u et v telles que

$$u \circ v - v \circ u = Id$$
.

(On vérifiera $u^n \circ v - v \circ u^n = nu^{n-1}$).

Licence de Mathématiques 3e année Approfondissement en analyse Année 2016-2017

Fiche TD 3

Exercice 1. Déterminer si les fonctions suivantes ont une limite quand (x, y) tend vers (0, 0):

$$f_1(x,y) = \frac{|x+y|}{x^2+y^2}$$
; $f_2(x,y) = \frac{x^3y^3}{x^2+y^2}$; $f_3(x,y) = \frac{x^2-y^2}{x^2+y^2}$; $f_4(x,y) = \frac{\sin(x+y)}{x+y}$.

Exercice 2. Soit $f(x,y) = \frac{x^2}{x^2 + y^2}$. Les limites suivantes existe-t-elles :

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) ; \qquad \lim_{y \to 0} \lim_{x \to 0} f(x, y) ; \qquad \lim_{(x, y) \to (0, 0)} f(x, y).$$

Exercice 3. Pour chacune des fonctions suivantes, donner son domaine de définition et dire si elle est continue. Étudier l'existence d'un prolongement par continuité en (0,0).

a)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
;

b)
$$g(x,y) = \sin(\frac{xy^2}{x^2 + y^2})$$
.

Exercice 4. On considère $f,g:\mathbb{R}\to\mathbb{R}$ avec $g\in C^1$ et on définit $\varphi:\mathbb{R}^2\to\mathbb{R}$ par $\varphi(x,x)=f(x)$ et $\varphi(x,y)=\frac{g(x)-g(y)}{x-y}$ si $x\neq y$. Quelles conditions f et g doivent-elles vérifier pour que φ soit continue ?

Exercice 5. Montrer qu'une norme n'est jamais différentiable en 0.

Exercice 6. Donner les domaines de définition et calculer les dérivées partielles des fonctions suivantes :

$$f_1(x,y) = 2x^2 - 3xy + 4y^2$$
; $f_2(x,y) = \frac{x^2}{y} + \frac{y^2}{x}$; $f_3(x,y) = \sin(2x - 3y)$; $f_4(x,y) = e^{x^2 + xy}$; $f_5(x,y,z) = (x + y^2, xyz^2)$; $f_6(x,y,z) = \sin(x^2 - y^2 + z^2)$.

Exercice 7. Soit $f:]0,1[\times]0,1[\to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} x(1-y) & \text{si } x \le y\\ y(1-x) & \text{si } x > y. \end{cases}$$

Etudier la continuité et la différentiabilité de f.

Exercice 8. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} x^2 y^2 \sin(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

Montrer que la fonction f est différentiable en tout point de \mathbb{R}^2 mais que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ ne sont pas continues en certains points de \mathbb{R}^2 .

Exercice 9. Montrer que les applications suivantes sont de classe C^1 . Écrire leur matrice jacobienne en un point donné.

- a) $f_1(x,y) = \sin(x^2 y^2)$;
- b) $f_2(x,y) = (x+y, x-y)$;
- c) $f_3(x, y, z) = (xy^2, x^2e^{y+z}, \sin x)$;

d)
$$f_4(x, y, z) = (x + y^2, xyz^2)$$
.

Exercice 10. On considère les fonctions $f: \mathbb{R}^2 \to \mathbb{R}^3$ et $g: \mathbb{R}^3 \to \mathbb{R}$ définies pas

$$f(x,y) = (\sin(xy), \cos x, e^{y^2}), \qquad g(u,v,w) = uvw.$$

- a) Calculer $g \circ f$.
- b) En utilisant l'expression trouvée en a), calculer les dérivées partielles de $g \circ f$.
- c) Déterminer les matrices jacobiennes de f et g.
- d) Retrouver le résultat de b) en utilisant un produit approprié de matrices jacobiennes.

Exercice 11. Soit $g: \mathbb{R}^3 \to \mathbb{R}^2$ une fonction différentiable telle que g(1,-1,2)=(-1,5) et que la matrice jacobienne de g en (1,-1,2) soit égale à $\begin{pmatrix} 1 & -1 & 0 \\ 4 & 0 & 2 \end{pmatrix}$. Soit f la fonction de \mathbb{R}^2 dans \mathbb{R}^2 définie par $f(x,y)=(xy,3x^2-2y+3)$. Calculer les dérivées partielles de $f\circ g$ en (1,-1,2).

Exercice 12. Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction différentiable et u la fonction définie par u(x,y,z) = f(x-y,y-z,z-x). Montrer que u est différentiable et que $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

Exercice 13. Soit
$$f(x,y) = \arcsin\left(\frac{1+xy}{\sqrt{(1+x^2)(1+y^2)}}\right)$$
 et $g(x,y) = \arctan x - \arctan y$.

- a) Vérifier que f est définie sur \mathbb{R}^2 .
- b) calculer les dérivées partielles premières de f et de g.
- c) Simplifier f à l'aide de g.

Exercice 14. Soit $\|\cdot\|$ la norme euclidienne sur \mathbb{R}^2 et U un ouvert convexe de \mathbb{R}^2 . Soit $f:U\to\mathbb{R}^2$ une fonction qui vérifie

$$\forall x, y \in U$$
 $||f(x) - f(y)|| \le ||x - y||^2$.

Montrer que f est constante sur U (on pourra commencer par montrer que f est différentiable et calculer sa différentielle).

Fiche TD 4

Exercice 1. Calculer la différentielle de f(x+y), $x,y \in \mathbb{R}$ et de g(x,x), $x \in \mathbb{R}$ où f et g sont à valeurs réelles.

Exercice 2. Soit $B \in M_n(\mathbb{R})$ et soit $f: M_n(\mathbb{R}) \to \mathbb{R}$ définie par $f(A) = \operatorname{tr}(AB)$. Calculer la différentielle de f en tout point. Même question pour g(A) = AB. En quels points Dg est-elle injective? Surjective?

Exercice 3. Soit f = f(y) est une fonction différentiable à valeurs réelles définie sur un ouvert de \mathbb{R}^m et g = g(x) une fonction différentiable d'un ouvert de \mathbb{R}^n à valeurs dans \mathbb{R}^m . Montrer que

$$\frac{\partial}{\partial x_i} (f(g_1, g_2, \dots, g_m)) = \frac{\partial f}{\partial y_1} \frac{\partial g_1}{\partial x_i} + \frac{\partial f}{\partial y_2} \frac{\partial g_2}{\partial x_i} + \dots + \frac{\partial f}{\partial y_m} \frac{\partial g_m}{\partial x_i}.$$

Exercice 4. Étudier la continuité, ainsi que l'existence et la continuité des dérivées partielles premières de la fonction suivante :

$$f(x,y) = \begin{cases} x^2, & |x| > y \\ y^2, & |x| \le y \end{cases}$$

Exercice 5. Trouver a > 0 tel que l'application

$$f(x,y) = \begin{cases} \frac{|x|^{2a}y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- a) soit continue sur \mathbb{R}^2 ;
- b) soit différentiable sur \mathbb{R}^2 .

Exercice 6. Soit a > 0 et

$$\mathbb{R}^2 \setminus \{(0,0)\} \ni (x,y) \longmapsto f(x,y) = \frac{|xy|^a}{x^2 + y^2}.$$

- a) Pour quelles valeurs de a la fonction f se prolonge par continuité en (0,0)?
- b) Dans le cas où f se prolonge par continuité en (0,0), pour quelles valeurs de a la fonction ainsi obtenue est de classe C^1 sur \mathbb{R}^2 ?
- c) Même question pour la différentiabilité en (0,0).

Exercice 7. (Dérivées directionnelles) Soient f la fonction définie par

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- a) Montrer que f est continue à tout point de \mathbb{R}^2 .
- b) Montrer que $f \in C^1(\mathbb{R}^2 \setminus \{(0,0)\})$.
- c) Montrer en les déterminant explicitement que f admet des dérivées directionnelles dans toutes les directions en (0,0).
- d) Montrer que f n'est pas différentiable en (0,0).

Exercice 8. Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = 2x + 5y + x^2(\sqrt{|y|} + \sqrt{|x|})$. Déterminer l'ensemble des points où f

a) est continue;

- b) est différentiable;
- c) est de classe C^1 ;
- d) admet des dérivées partielles;
- e) admet des dérivées directionnelles.

Exercice 9. Soit p > 0 et

$$\mathbb{R}^2 \setminus \{(0,0)\} \ni (x,y) \longmapsto f(x,y) = \frac{|\sin(x+y)|^p}{\sqrt{x^2 + y^2}}.$$

- a) Pour quelles valeurs de p la fonction f se prolonge par continuité en (0,0)?
- b) Dans le cas où f se prolonge par continuité en (0,0), pour quelles valeurs de p la fonction ainsi obtenue est des classe C^1 sur \mathbb{R}^2 ?
- c) Même question pour la différentiabilité en (0,0).

Exercice 10. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- a) Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- b) Montrer que f admet des dérivées partielles secondes croisées $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ et montrer que $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$. Que peut-on conclure ?

Exercice 11. Soit $A \in M_n(\mathbb{R})$ une matrice symétrique et

$$g(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}.$$

Montrer que g est différentiable en tout point. Montrer que pour tout $a \in \mathbb{R}^n \setminus \{0\}$, on a :

$$Dg(a) = 0 \iff a \text{ est un vecteur propre de } A.$$

Exercice 12. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par f(0,y) = 0 et $f(x,y) = \frac{y^2}{x}$ si $x \neq 0$. Montrer que f admet une dérivée au point (0,0) suivant tout vecteur de \mathbb{R}^2 alors que f n'est pas continue en ce point.

Exercice 13. Calculer les dérivés partielles en tout point de \mathbb{R}^2 de la fonction suivante : $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \min(x,y^2)$.

Exercice 14. Soit $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction dérivable. On définit $f : \mathbb{R}^* \times \mathbb{R} \to \mathbb{R}$ en posant $f(x,y) = \varphi(\frac{y}{x})$. Montrer que pour tout $(x,y) \in \mathbb{R}^* \times \mathbb{R}$, on a

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = 0.$$

Exercice 15. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ une application différentiable. On suppose que $\lim_{\|v\| \to +\infty} \|f(v)\| = +\infty$ et que pour tout $v \in \mathbb{R}^2$, Df(v) est injective. Le but de l'exercice est de montrer que f est surjective. Soit $a \in \mathbb{R}^2$, on définit $g: \mathbb{R}^2 \to \mathbb{R}$, $v \mapsto \|f(v) - a\|^2$.

- a) Déterminer Dg(v) en tout point v.
- b) Montrer que g atteint sa borne inférieure en un certain point v_0 et que $Dg(v_0) = 0$ puis conclure.

Fiche TD 5

Exercice 1. Déterminer si les matrices suivantes sont des matrices hessiennes d'une fonction $f \in C^2(\mathbb{R}^2)$:

$$A = \begin{pmatrix} 1 & x + y \\ x - y & y^2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & xy \\ xy & x^2 \end{pmatrix} \qquad C = \begin{pmatrix} 2y^3 & 6xy^2 \\ 6xy^2 & 6x^2y \end{pmatrix}$$

Si oui, trouver toutes les fonctions f associées.

Exercice 2.

a) On considère une fonction $f: \mathbb{R}^3 \to \mathbb{R}^3$ continue. Montrer que s'il existe $g: \mathbb{R}^3 \to \mathbb{R}$ tel que $f = \nabla g$, alors

(*)
$$\frac{\partial f_i}{\partial x_i} = \frac{\partial f_j}{\partial x_i} \qquad \forall i, j \in \{1, 2, 3\}.$$

b) La fonction

$$f(x,y,z) = (xy^2z^2, x^2yz^2, x^2y^2z + 1).$$

vérifie-t-elle la condition (*)?

c) Déterminer toutes les fonctions $g: \mathbb{R}^3 \to \mathbb{R}$ telles que $f = \nabla g$.

Exercice 3. Vérifier que les fonctions suivantes sont de classe C^2 sur leurs domaines de définition, ensuite déterminer leurs formules de Taylor à l'ordre 2 aux voisinages des points données :

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{x^n y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Discuter suivant les valeurs de l'entier positif n, l'appartenance de f aux classes $C^0(\mathbb{R}^2)$, $C^1(\mathbb{R}^2)$ et $C^2(\mathbb{R}^2)$.

Exercice 5. Rechercher les points critiques de $y(x^2 + \ln^2 y)$ sur $\mathbb{R} \times \mathbb{R}_+^*$ et étudier leur nature. Même question sur \mathbb{R}^3 pour $z(e^x - 1) - y^2$.

Exercice 6. Chercher les extréma éventuels des fonctions suivantes :

a)
$$3xy - x^3 - y^3$$

b)
$$-2(x-y)^2 + x^4 + y^4$$

c)
$$x^2y^2(1+3x+2y)$$

d)
$$2x + v - x^4 - v^4$$

e)
$$\frac{xy}{(x+y)(1+x)(1+y)}$$
, $x,y > 0$

f)
$$\sqrt{x^2 + (y-1)^2} + \sqrt{y^2 + (x-1)^2}$$

Exercice 7. (Extréma locaux) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = 2x^3 + 6xy - 3y^2 + 2$ pour tout $(x,y) \in \mathbb{R}^2$.

- a) Déterminer les extréma locaux de la fonction f.
- b) La fonction f possède-t-elle des extréma globaux sur \mathbb{R}^2 ?
- c) Représenter le segment de droite L défini par

$$L = \{(x, y) \in \mathbb{R}^2 \mid -2 \le x \le 0, \ y = x + 1\}$$

et déterminer les extréma globaux de la restriction de f à L en précisant en quels points de L ils sont atteints.

Exercice 8. (Extréma sur un compact) Déterminer la borne supérieure de la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(x,y) = 3xy - 3x^2 - y^3$$

sur le compact $K = [-1, 1] \times [-1, 1]$.

Exercice 9. (Extréma globaux) On considère la fonction définie pour tout $(x,y) \in \mathbb{R}^2$ par

$$f(x,y) = xye^{-\frac{1}{2}(x^2+y^2)}$$

- a) Etudier les extréma relatifs (locaux) de f sur \mathbb{R}^2 . On pourra utiliser les symétries de la fonction f pour réduire le nombre de cas à étudier.
- b) Démontrer que $f(x,y) \to 0$ quand $||(x,y)|| \to \infty$.
- c) Déduire de ce qui précède l'existence des extréma globaux de f sur \mathbb{R}^2 et les déterminer.

Exercice 10. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par $f(x,y) = 2x^2 + 2y^2 + x^2y^2 - x^4 - y^4$ pour tout $(x,y) \in \mathbb{R}^2$.

- a) Déterminer les extréma locaux de f.
- b) Montrer que $f(x,y) \le 2r^2 \frac{r^4}{4}$ où $r^2 = x^2 + y^2$. En déduire que $f(x,y) \le 4$.
- c) Trouver le maximum global de f et les points où il est atteint.
- d) Y a-t-il un minimum global?

Exercice 11. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^4 + y^4 - 2(x-y)^2$. Déterminer les extréma (éventuels) de la fonction f et pour chacun de ces extréma, préciser si c'est un minimum ou un maximum.

Exercice 12. Déterminer les extréma locaux de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \sin x \sin y.$$

Pour chacun de ces extréma, préciser si c'est un minimum ou un maximum et calculer le développement limité (la formule de Taylor) à l'ordre 2 au voisinage de chacun des points critiques de f.

Exercice 13.

- a) Montrer que -1 est la seule racine négative de l'équation $x = \ln|x| + \frac{1}{x}$.
- b) Déterminer les extréma locaux de la fonction $g(x,y) = xe^y + ye^x$.