Feuille d'exercices nº 3

Exercice 1. Soient $a, b \in \mathbb{R}$ tels que a < b. Soit $f:]a, b[\to \mathbb{R}$ une application dérivable. On suppose que $\lim_{x \to b} f'(x)$ existe. Montrer que f se prolonge par continuité en b et que f, ainsi prolongée, est dérivable à gauche en b.

Exercice 2. Montrer que l'égalité des accroissements finis (vraie pour les fonction de \mathbb{R} vers \mathbb{R}) est fausse en général pour les fonctions à valeurs dans un espace vectoriel de dimension plus grande que 1. Considérer la fonction $x \mapsto e^{ix}$ sur l'intervalle $[0, \pi]$.

Exercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = (x^2 - y, x^2 + y^2)$ et soit $g = f \circ f$.

- 1. Montrer que f et g sont de classe \mathcal{C}^1 .
- 2. Calculer la matrice jacobienne $J_{f,(x,y)}$ en tout point $(x,y) \in \mathbb{R}^2$ et calculer la matrice jacobienne $J_{q,(0,0)}$.
- 3. Montrer qu'il existe $\rho > 0$ tel que pour tout $(x,y) \in \bar{B}((0,0),\rho)$, on a $||J_{q,(x,y)}|| \leq \frac{1}{2}$.
- 4. Montrer que g admet un unique point fixe dans la boule $\bar{B}((0,0),\rho)$.

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = (\cos x - \sin y, \sin x - \cos y)$.

- 1. Montrer que $||Df(x,y)|| \le \sqrt{2}$ pour tout $(x,y) \in \mathbb{R}^2$.
- 2. En déduire que pour tout $(x_0, y_0) \in \mathbb{R}^2$, la suite récurennte $((x_n, y_n))_{n \in \mathbb{N}}$ définie par

$$x_{n+1} = \frac{1}{2}(\cos x_n - \sin y_n), \qquad y_{n+1} = \frac{1}{2}(\sin x_n - \cos y_n)$$

converge. Donner l'équation satisfaite par sa limite.

Exercice 5. 1. Soit $f : \mathbb{R} \to \mathbb{R}$ une application dérivable telle que pour tout $x, f'(x) \neq 0$. Montrer que f est un homéomorphisme sur $f(\mathbb{R})$ et que f^{-1} est dérivable en tout point de $f(\mathbb{R})$.

2. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + x^2 \sin(\frac{\pi}{x})$ si $x \neq 0$ et f(0) = 0. Montrer que f'(0) existe et est non nulle mais que f n'est inversible sur aucun voisinage de 0.

Exercice 6. Soit $U = \mathbb{R}^2 \setminus \{(0,0)\}$ et soit f définie sur U par $f(x,y) = (x^2 - y^2, 2xy)$. Montrer que f est un difféomorphisme local au voisinage de tout point de U mais n'est pas un difféomorphisme global.

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = (\sin(y/2) - x, \sin(x/2) - y)$.

- 1. Justifier que f est de classe \mathcal{C}^1 . Calculer sa différentielle en tout point et vérifier qu'elle est inversible.
- 2. Montrer que f est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur $f(\mathbb{R}^2)$. Justifier que $f(\mathbb{R}^2)$ est un ouvert de \mathbb{R}^2 .

- 3. Montrer que f^{-1} est lipschitzienne (on travaillera avec la norme 1 de \mathbb{R}^2).
- 4. En déduire que f est difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 .
- 5. Calculer $Df^{-1}(p)$ où $p = (1 \pi/2, \sqrt{2}/2 \pi)$.

Exercice 8. Soit $E = M_n(\mathbb{R})$ et on note I la matrice identité de E. Soit $f : E \to E$ définie par $f(A) = A^2$. Montrer qu'il existe $\alpha > 0$ tel que pour tout $A \in E$ tel que $||A - I|| < \alpha$, A admet une racine carrée.

Exercice 9. Etudier la courbe $C = \{(x, y) \in \mathbb{R}^2; \ x^4 + y^3 - x^2 - y^2 + x - y = 0\}$ au voisinage des points p = (0, 0) et q = (1, 1). On donnera, pour cela, un DL à l'ordre 2 de la fonction implicite trouvée.

Exercice 10. Soit $f : \mathbb{R}^3 \to \mathbb{R}^2$ définie par $f(x, y, z) = (x^2 - y^2 + z^2 - 1, xyz - 1)$. Soit $(x_0, y_0, z_0) \in \mathbb{R}^3$ tel que $f(x_0, y_0, z_0) = (0, 0)$.

Montrer qu'il existe un intervalle ouvert I contenant x_0 et une application $\varphi: I \to \mathbb{R}^2$ tels que $\varphi(x_0) = (y_0, z_0)$ et pour tout $x \in I$, $f(x, \varphi(x)) = 0$.

Exercice 11. On considère l'application $f: \mathbb{R}^3 \to \mathbb{R}$ définie par $(x, y, z) \mapsto x^2 - xy^3 - y^2z + z^3$, ainsi que sa surface de niveau 0 dans \mathbb{R}^3 .

- 1. Déterminer l'équation du plan tangent à cette surface au point (1,1,1).
- 2. Vérifier qu'au voisinage du point (1,1,1) cette surface est le graphe d'une fonction z=g(x,y).
- 3. Écrire le pôlynome de Taylor d'ordre deux de g au point (1,1). Quelle est la matrice hessienne de g en ce point?
- 4. Quelle est la position de la surface par rapport au plan tangent?

Exercice 12. Soit $E = \mathbb{R}_d[X]$ l'espace vectoriel des polynômes d'une variable réelle de degré au plus d. On le munit de la norme infinie.

Soit $P_0 = c_0 + c_1 X + \cdots + c_d X^d$ un polynôme de E ayant une racine $x_0 \in \mathbb{R}$ que l'on supposera simple. Montrer qu'il existe r > 0 tel que pour tout $(a_0, \ldots, a_d) \in \mathbb{R}^{d+1}$ tel que $|a_i - c_i| < r$, le polynôme $P = a_0 + \cdots + a_d X^d$ admet une unique racine simple x_P dans $]x_0 - r; x_0 + r[$ et la fonction $P \mapsto x_P$ est de classe C^1 .

Remarque : avec moins de rigueur, on dira que les racines simples dépendent continûment (et même de façon C^1) des coefficients du polynôme.

<u>Indication</u>: On pourra considérer $F: E \times \mathbb{R} \to \mathbb{R}$ par $F(P,x) = a_0 + a_1x + \cdots + a_dx^d$.