Feuille d'exercices n°6 : exercices complémentaires

Exercice 1. En quels points de \mathbb{C} la fonction $z \mapsto \bar{z}$ est-elle \mathbb{C} -dérivable? Même question pour $z \mapsto \operatorname{Re}(z)$ et pour $z \mapsto \operatorname{Im}(z)$.

Exercice 2. Soit $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = \frac{z^5}{|z|^4}$ si $z \neq 0$ et f(0) = 0. Montrer que f satisfait aux conditions de Cauchy-Riemann à l'origine mais que f n'est pas différentiable en ce point.

Exercice 3. Soit $f: \mathbb{C} \to \mathbb{C}$ donnée par $f(x+iy) = x^3 + iy^3$. Montrer que f satisfait aux conditions de Cauchy-Riemann en 0 mais que f n'est pas dérivable en ce point.

Exercice 4. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction polynomiale.

- 1. Montrer que la fonction $g: z \mapsto \overline{f(\overline{z})}$ est différentiable en tout point.
- 2. Montrer que la fonction $h: z \mapsto \overline{f(z)}$ est différentiable en 0 si et s. si f'(0) = 0.

Exercice 5. Montrer que la fonction $f: \mathbb{C} \to \mathbb{C}, z \mapsto e^{\operatorname{Re}(z)}$ n'est dérivable en aucun point.

Exercice 6. Soit une fonction $f: \mathbb{C} \to \mathbb{C}$. On suppose que f est différentiable en tant que fonction de \mathbb{R}^2 dans \mathbb{C} et que sa différentielle est continue. f est elle nécessairement holomorphe?

Exercice 7. Soit f une fonction holomorphe. On note par abus f la fonction correspondante de \mathbb{R}^2 vers \mathbb{R}^2 . Montrer que la différentielle $Df|_{(x,y)}$ en tout point $(x,y) \in \mathbb{R}^2$ est une similitude directe.

Exercice 8. Soit R le rayon de convergence de $\sum_n a_n z^n$. Montrer que la fonction $f: z \mapsto \sum_n a_n z^n$ est holomorphe sur le disque ouvert D(0,R).

Exercice 9. Soit U un ouvert connexe et f une fonction holomorphe sur cet ouvert. Démontrer que chacune des conditions suivantes implique que f est constante.

- 1. f' est nulle sur U.
- 2. Re(f) est constante.
- 3. Im(f) est constante.
- 4. \overline{f} est holomorphe sur U.
- 5. |f| est constante.

Exercice 10.

1. Prouver la formule de dérivation :

$$\frac{\partial (g \circ f)}{\partial z}(z_0) = \frac{\partial g}{\partial z}(f(z_0))\frac{\partial f}{\partial z}(z_0) + \frac{\partial g}{\partial \overline{z}}(f(z_0))\frac{\partial \overline{f}}{\partial \overline{z}}(z_0).$$

- 2. Soit U un ouvert de $\mathbb C$ invariant par conjugaison. Montrer que si f est holomorphe sur U alors \overline{f} est anti-holomorphe et vice versa.
- 3. Refaire la même discussion pour $f(\overline{z})$.
- 4. En déduire que toute fonction g anti holomorphe peut s'écrire $g(z) = \overline{f_1}(z) = f_2(\overline{z})$ où f_1, f_2 sont holomorphes.

Exercice 11. Soit f holomorphe et C^2 montrer que Re(f), Im(f) sont harmoniques.

Exercice 12. Soit $f: U \to \mathbb{C}$ une fonction holomorphe. Soit $\gamma: [0,1] \to U, \gamma(0) = \gamma(1)$ une courbe fermée dans U. Montrer que $\int_{\gamma} f(z)dz = 0$.

Exercice 13. Soit $f = \sum_n a_n z^n$ une série entière où a_n est la suite de Fibonacci définie par $a_{n+2} = a_{n+1} + a_n$ et $a_0 = a_1 = 1$.

1. Montrer que

$$f(z) = (z^2 + z)f(z) + 1.$$

2. Montrer que le rayon de convergence de f est le nombre d'or $\gamma = \frac{1+\sqrt{5}}{2}$.

Exercice 14. Soit $f: U \mapsto \mathbb{C}$ une fonction holomorphe non constante. Montrer que les zéros de f sont isolés.

Exercice 15 (Théorème de Liouville). Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ une fonction développable en série entière de rayon de convergence $+\infty$. On considère f comme une fonction de $\mathbb{C} \mapsto \mathbb{C}$. On suppose que f est bornée. On pose $z = Re^{i\theta}$ pour $R \geq 0$.

- 1. Montrer que à R fixée, l'application $\theta \in \mathbb{R} \mapsto f(Re^{i\theta}) \in \mathbb{C}$ est continue et 2π -périodique.
- 2. Justifier soigneusement l'identitée

$$\frac{1}{2\pi} \int_0^{2\pi} \overline{f(Re^{i\theta})} f(Re^{i\theta}) = \sum_{n=0}^{\infty} |a_n|^2 R^2.$$

3. En déduire que f doit être forcément constante.

Exercice 16 (Principe du maximum). Soit $f = \sum_n a_n z^n$ une série entière sur le disque D(0,R).

1. Pour tout disque $D(z_0,r) \subset D(0,R)$, $\partial D(z_0,r)$ est le cercle de rayon r centré en z_0 , montrer que

$$f(z_0) = \frac{1}{2i\pi} \int_{\partial D(z_0, r)} \frac{f(z)}{z} dz.$$

2. Montrer que sur n'importe quel domaine $\Omega \subset D(0,R)$, |f| atteint son maximum sur le bord $\partial\Omega$.

2