Mesure et Intégration

Semestre d'automne 2024-2025 Durée : 90 min

Contrôle continu

La justification des réponses et un soin particulier de la présentation sont demandés et pris en compte lors de la notation.

Question de cours.

- a) Donner la définition d'une tribu \mathcal{M} .
- b) Soit (X, \mathcal{M}) un espace mesurable et $a \in X$. Montrer que l'application δ_a définie sur \mathcal{M} par

$$\delta_a(A) = \begin{cases} 1 & \text{si } a \in A \\ 0 & \text{si } a \notin A \end{cases}$$

est une mesure sur \mathcal{M} .

Exercice 1. Les deux parties de l'exercice sont indépendantes.

a) Soit $X = \mathbb{R}$. On considère

$$\mathscr{A} := \{ \{x\}, \ x \in \mathbb{R} \} \subset \mathscr{P}(\mathbb{R}).$$

Déterminer la tribu engendrée par \mathscr{A} sur \mathbb{R} .

b) Soit (X, \mathcal{M}) un espace mesurable. Soient $f, g: X \to \mathbb{R}$ deux fonctions mesurables.

Soit $h:X\to\mathbb{R}$ définie par

$$h(x) = \begin{cases} f^2(x) & \text{si} \quad g(x) \in \mathbb{Q} \\ \sqrt{|f(x)|} & \text{sinon.} \end{cases}$$

Montrer que *h* est mesurable.

Exercice 2. Soit μ une mesure borélienne sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ vérifiant les conditions suivantes :

— μ est continue : $\forall x \in \mathbb{R}, \mu(\{x\}) = 0$;

avons que $(f_A(t_n))_n$ tend vers $f_A(t)$.)

— la mesure d'un intervalle compact est finie : $\forall a, b \in \mathbb{R}$ avec $a < b, \mu([a, b]) < +\infty$.

Soit $A \in \mathcal{B}(\mathbb{R})$. On définit

$$f_A: \mathbb{R}_+ \to \mathbb{R}_+, \qquad f_A(t) = \mu(A \cap [-t, t]).$$

- a) Justifier que la fonction f_A est bien définie et trouver la valeur de $f_A(0)$.
- b) Calculer f_A pour $A = \mathbb{Q}$.
- c) Montrer que f_A est continue. (On pourra utiliser sans preuve la caractérisation de la continuité par suites monotones : f_A est continue en un point t si et seulement si pour toute suite monotone $(t_n)_n$ qui tend vers t nous
- d) En déduire que, si $\mu(A)>0$, alors pour tout $s\in]0,\mu(A)[$, il existe un borélien $B\subset A$ tel que $\mu(B)=s$.

Exercice 3. On munit [0,1] de la tribu de Borel et de la mesure de Lebesgue. Pour tout entier $n \ge 1$, on définit $f_n:[0,1] \to \mathbb{R}$ par

$$\forall x \in [0, 1], \quad f_n(x) = \frac{n}{1 + x^2} \sin\left(\frac{x}{n}\right).$$

Justifier que pour tout entier $n\geq 1$, la fonction f_n est intégrable au sens de Lebesgue et déterminer la limite $\lim_{n\to +\infty}\int_0^1 f_n(x)\mathrm{d}x$.