Université Claude Bernard - Lyon 1

Mesure et Intégration

Fiche 10 Mesures produit.

Exercice 1. Soit $D := \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x + y \le 1\}.$

- a) Dessiner le domaine D dans le plan et déterminer $D(x,\cdot)$ et $D(\cdot,y)$, $\forall x,y \in \mathbb{R}$.
- b) Montrer que D est borélien.
- c) Calculer l'aire de D et $\int_{D} (x^2 + y^2) dx dy$.

Exercice 2. Calculer l'aire d'un disque.

Exercice 3. Calculer $\int_{[0,1]^2} xe^{xy} dxdy$.

Exercice 4. Dans \mathbb{R}^3 , nous considérons :

- (i) La demi-boule fermée $D := \{(x, y, z) \in \mathbb{R}^3 : z \ge 0, x^2 + y^2 + z^2 \le 1\}.$
- (ii) Le cône plein $K := \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 1, x^2 + y^2 \le z^2 \}.$
- (iii) Le cylindre plein $C := \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 1, x^2 + y^2 \le 1\}.$

En examinant les aires des coupes des ces trois solides à la hauteur z, retrouver l'identité d'Archimède :

$$vol(C) = vol(D) + vol(K),$$

« vol » désignant le volume d'un solide.

Vérifier cette identité à l'aide de formules connues.

Exercice 5. Pour $x \in \mathbb{R}$ et y > 0, soit $f(x, y) := y^x$. Soient a et b tels que -1 < a < b.

- a) Montrer que f est Lebesgue intégrable sur $[a,b] \times [0,1]$.
- b) Trouver la valeur de l'intégrale $I:=\int_0^1 \frac{y^b-y^a}{\ln y}\,dy$.

Exercice 6. Soient X, Y a. p. d., et μ , respectivement ν , la mesure de comptage sur X, respectivement Y.

- a) Montrer que $\mathscr{P}(X) \otimes \mathscr{P}(Y) = \mathscr{P}(X \times Y)$.
- b) Montrer que $\mu \otimes \nu$ est la mesure de comptage sur $X \times Y$.

Exercice 7. Prouver ou réfuter les assertions suivantes.

- a) $\mathcal{M} \otimes \mathcal{S} = \{A \times B ; A \in \mathcal{M}, B \in \mathcal{S}\}.$
- b) $\mathscr{B}_{\mathbb{R}^n} \otimes \mathscr{B}_{\mathbb{R}^m} = \mathscr{B}_{\mathbb{R}^{n+m}}$.
- c) $\mathscr{L}_n \otimes \mathscr{L}_m = \mathscr{L}_{n+m}$.
- d) $\nu_n \otimes \nu_m = \nu_{n+m}$.
- e) $\lambda_n \otimes \lambda_m = \lambda_{n+m}$.
- f) Soient (X, \mathcal{M}, μ) et (Y, \mathcal{S}, ν) des espaces mesurés, avec μ et ν σ -finies. Soit $E \in \mathcal{M} \otimes \mathcal{S}$. Si $\nu(E_x) = 0$ pour (presque) tout $x \in X$, alors $\mu \otimes \nu(E) = 0$.
- g) Si μ et ν sont des mesures σ -finies, alors $\mu \otimes \nu$ est σ -finie.

Exercice 8. Pour y>0, soit $f_y(x,t):=\frac{1}{(1+x^2t^2)(1+y^2t^2)}$, avec $x,t\in\mathbb{R}$.

- a) Montrer que f_y est Lebesgue intégrable sur $[0,1] \times \mathbb{R}_+$.
- b) Soit $g(y,t) := \int_0^1 f_y(x,t) \, dx$. Montrer que g est Lebesgue intégrable sur $[0,1] \times \mathbb{R}_+$.

c) Trouver la valeur de l'intégrale $I:=\int_0^\infty \left(\frac{\arctan t}{t}\right)^2 dt$.

Exercice 9. Soit μ la mesure de comptage sur $([0,1], \mathcal{B}_{[0,1]})$.

- a) Soit $\Delta:=\{(x,x)\,;\,x\in[0,1]\}$. Δ est-il un borélien de \mathbb{R}^2 ? De $[0,1]^2$?
- b) Justifier l'existence des intégrales itérées suivantes, et les calculer.

$$I_{1} := \int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) \, d\lambda(x) \right) d\mu(y),$$

$$I_{2} := \int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) \, d\mu(y) \right) d\lambda(x).$$

c) Quelle hypothèse d'un théorème important n'est pas satisfaite?

Exercice 10. Pour $(x, y) \in [-1, 1]^2$, soit

$$f(x,y) := \begin{cases} (xy)/(x^2 + y^2)^2, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{sinon} \end{cases}.$$

- a) Montrer que les intégrales itérées de f existent et sont égales.
- b) La fonction f est-elle Lebesgue intégrable sur $[-1, 1]^2$?