Fiche 11 Mesures produit.

Exercice 1. a) Montrer que l'intégrale généralisée $I:=\int_0^\infty \frac{\ln x}{x^2-1}\,dx$ existe et que $I=2\int_0^1 \frac{\ln x}{x^2-1}\,dx$.

b) Calculer de deux façons différentes l'intégrale

$$\int_{\mathbb{R}_+ \times \mathbb{R}_+} \frac{dxdy}{(1+y)(1+x^2y)}.$$

En déduire que $I=\pi^2/4$.

c) Déduire des questions précédentes et d'un développement en série entière de la fonction $x\mapsto \frac{1}{1-x^2}$ que

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} \text{ et } \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice 2. En calculant de deux façons différentes l'intégrale

$$I := \int_0^\infty \left(\int_0^1 e^{-x} \sin(2xy) \, dy \right) dx,$$

déterminer la valeur de $\int_0^\infty e^{-x} \frac{\sin^2 x}{x} dx$.

Exercice 3. (Transformée de Fourier d'une mesure) Soit μ une mesure borélienne finie dans \mathbb{R} . La transformée de Fourier de la mesure μ est définie par

$$\varphi(x) := \int_{\mathbb{R}} \exp(-ixt) \, d\mu(t), \ \forall \ x \in \mathbb{R}.$$

(En théorie des probabilités, on travaille plutôt avec la fonction caractéristique de μ , définie par

$$\psi(x) := \varphi(-x) = \int_{\mathbb{R}} \exp(ixt) d\mu(t), \ \forall x \in \mathbb{R}.)$$

- a) Calculer φ dans les cas particuliers suivants : (i) $\mu = \delta_0$; (ii) $\mu(A) = \lambda(A \cap [0,1])$, $\forall A \in \mathscr{B}_{\mathbb{R}}$; (iii) μ est la mesure de densité e^{-t^2} .
- b) Montrer que la fonction φ est continue et bornée sur \mathbb{R} .
- c) Soient $n \geq 1$ et $a \in \mathbb{R}$. Montrer que

$$\frac{1}{2n} \int_{-n}^{n} \exp(iax) \varphi(x) dx = \int_{\mathbb{R}} K_n(t-a) d\mu(t),$$

où K_n est une fonction que l'on explicitera.

- d) Déterminer $\lim_{n} \frac{1}{2n} \int_{-n}^{n} \exp(iax) \varphi(x) dx$.
- e) En déduire que, si $\lim_{|x|\to\infty}\varphi(x)=0$, alors μ est une mesure diffuse.
- f) Même conclusion si φ est Lebesgue intégrable sur \mathbb{R} .

Exercice 4. a) Énoncer les hypothèses et les conclusions des théorèmes de Fubini-Tonelli et Fubini pour la mesure de comptage sur $\mathbb{N} \times \mathbb{N}$.

b) Soit

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}, \ f(n,m) := \begin{cases} 1, & \text{si } n = m-1 \\ -1, & \text{si } n = m+1 \\ 0, & \text{si } n \neq m \pm 1 \end{cases}.$$

Calculer $\sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} f(n,m)$ et $\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} f(n,m)$, et vérifier si les conditions du point précédent sont satisfaites.

Exercice 5. Soit μ la mesure de comptage sur \mathbb{N} , ν une mesure σ -finie sur X, et soient $f_n:X\to\mathbb{R}$ des fonction mesurables, \forall $n\in\mathbb{N}$. Soit $f(n,x):=f_n(x)$, \forall $n\in\mathbb{N}$, \forall $x\in X$.

- a) Quelles hypothèses supplémentaires doit-on ajouter pour pouvoir appliquer le théorème de Fubini-Tonelli à $\mu \otimes \nu$ et à f, et quelle est l'identité obtenue?
- b) Quelles hypothèses supplémentaires doit-on ajouter pour appliquer le théorème de Fubini à $\mu \otimes \nu$ et à f, et quelle est l'identité obtenue?

Exercice 6. Dans \mathbb{R}^3 , on considère deux cylindres (pleins) circulaires droits infinis de rayon 1. Si les axes des cylindres sont concourants et orthogonaux, calculer le volume de leur intersection.

Exercice 7. Soient μ_1 , μ_2 deux mesures boréliennes, σ -finies, non nulles, sur \mathbb{R} , telles que

$$\mu_1 \otimes \mu_2(\mathbb{R}^2 \setminus \Delta) = 0$$
, où $\Delta := \{(x, x) ; x \in \mathbb{R}\}.$

Le but de cet exercice est de montrer qu'il existe $a \in \mathbb{R}$ et $b_1, b_2 \in]0, \infty[$ tels que $\mu_1 = b_1 \delta_a$ et $\mu_2 = b_2 \delta_a$. (Et réciproquement.)

- a) Montrer que si $A_1, A_2 \in \mathscr{B}_{\mathbb{R}}$ sont tels que $\mu_1(A_1) > 0$ et $\mu_2(A_2) > 0$, alors $\mu_1 \otimes \mu_2(A_1 \times A_2) > 0$.
- b) Avec A_1 , A_2 comme ci-dessus, en déduire que $(A_1 \times A_2) \cap \Delta \neq \emptyset$, puis que $A_1 \cap A_2 \neq \emptyset$.
- c) Soit $A \in \mathscr{B}_{\mathbb{R}}$ tel que $\mu_1(A) > 0$. En utilisant les questions précédentes, montrer que $\mu_2(\mathbb{R} \backslash A) = 0$, puis que $\mu_2(A) > 0$, et enfin que $\mu_1(\mathbb{R} \backslash A) = 0$.
- d) Conclure en utilisant l'exercice 9 de la fiche 5.

Exercice 8. Soient μ , ν deux probabilités sur $\mathscr{B}_{\mathbb{R}}$. Soient

$$F_{\mu}(t) := \mu([t, \infty[), G_{\mu}(t) := \mu([-\infty, t]), H_{\mu}(t) := \mu(\{t\}), \forall t \in \mathbb{R}.$$

On définit de manière analogue F_{ν} , G_{ν} et H_{ν} .

- a) Montrer que les fonctions F_{μ} , G_{μ} et H_{μ} sont boréliennes.
- b) Montrer que $\int_{\mathbb{R}} F_{\mu} d\nu = \int_{\mathbb{R}} (G_{\nu} H_{\nu}) d\mu$.
- c) Soient $D_{\mu} := \{ t \in \mathbb{R} \; ; \; H_{\mu}(t) \neq 0 \} \; \text{et} \; D_{\nu} := \{ t \in \mathbb{R} \; ; \; H_{\nu}(t) \neq 0 \}.$
 - (i) Expliquer pourquoi les ensembles D_{μ} et D_{ν} sont a. p. d.
 - (ii) Montrer l'égalité suivante :

$$\int_{\mathbb{R}} F_{\mu} d\nu + \int_{\mathbb{R}} F_{\nu} d\mu + \sum_{t \in D_{\mu} \cap D_{\nu}} H_{\mu}(t) H_{\nu}(t) = 1.$$

Exercice 9. Soit μ une mesure borélienne finie dans \mathbb{R} . Soit

$$H_{\mu}(x,y) := \frac{1}{\pi} \int_{\mathbb{R}} \frac{y}{y^2 + (x-t)^2} d\mu(t), \ \forall \ x \in \mathbb{R}, \ \forall \ y > 0.$$

Le but de cet exercice est de montrer que si $H_{\mu}=H_{\nu}$, alors $\mu=\nu$.

- a) Montrer que H_{μ} est continue.
- b) Soit $x \in \mathbb{R}$. Déterminer $\lim_{y \to 0} y H_{\mu}(x, y)$.
- c) Soient a < b deux réels. Déterminer $\lim_{y \searrow 0} \int_a^b H_\mu(x,y) \, dx$.
- d) Soit ν une autre mesure borélienne finie dans \mathbb{R} . On suppose que $H_{\mu}=H_{\nu}$. Montrer que $\mu=\nu$.