Fiche 6Convergence monotone et dominée.

Exercice 1. a) Montrer que la fonction $x\mapsto \frac{\sin x}{x^{\frac{3}{2}}}$ est Lebesgue intégrable sur $]0,+\infty[$.

- b) Montrer que la fonction $x\mapsto \frac{\sin x}{x}$ n'est pas Lebesgue intégrable sur $]0,+\infty[$ alors que $\int_0^{+\infty} \frac{\sin x}{x} dx$ converge au sens des intégrales de Riemann généralisées.
- c) Considérons pour $\alpha>0$, $f_{\alpha}:\mathbb{N}^*\to\mathbb{R}$ avec pour tout $n\in\mathbb{N}^*$, $f_{\alpha}(n)=\frac{(-1)^n}{n^{\alpha}}$. Soit μ la mesure de comptage sur $(\mathbb{N}^*,\mathscr{P}(\mathbb{N}^*))$. La fonction f_{α} est-elle μ -intégrable pour $\alpha=1$, respectivement $\alpha=2$?

Exercice 2. Soit P une probabilité sur $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$. Pour $n \in \mathbb{N}$, soit $I_n := \int_{\mathbb{R}} (\cos \pi t)^{2n} dP(t)$.

- a) Montrer que $I_n < \infty$, $\forall n$.
- b) Montrer que la suite $(I_n)_{n>0}$ est décroissante.
- c) Déterminer $\lim_{n} I_n$.

Exercice 3. Soit P une probabilité sur $(\mathbb{R}_+, \mathscr{B}_{\mathbb{R}_+})$. Pour $x \geq 0$, soit $F(x) := \int_{\mathbb{R}_+} e^{-xt} dP(t)$.

- a) Montrer que F est décroissante.
- b) Soit $(x_n) \subset \mathbb{R}_+$ telle que $x_n \nearrow \infty$. Déterminer $\lim_n F(x_n)$.
- c) En déduire la valeur de $\lim_{x\to\infty} F(x)$.

Exercice 4. Déterminer la valeur de

$$\sum_{n=3}^{\infty} \int_{1}^{\infty} \frac{x}{(1+x)^n} dx.$$

Exercice 5. Déterminer, pour tout $\alpha \in \mathbb{R}$, $\lim_{n} \int_{0}^{1} \left(x^{\alpha} + \frac{e^{x}}{n} \right)^{-1} dx$.

Exercice 6. Calculer $\lim_{n} \int_{1}^{\infty} \frac{n \sin(x/n)}{x^3} dx$.

Exercice 7. Dans cet exercice, I est un intervalle de \mathbb{R} , muni de sa tribu borélienne et de la mesure de Borel λ . Montrer que les fonctions suivantes sont intégrables sur I et déterminer $\lim_{n} \int_{I} f_n d\lambda$.

a)
$$I := [0,1]$$
, $f_n(x) := \frac{nx \sin x}{1 + (nx)^{\alpha}}$, où $1 < \alpha < 2$.

b)
$$I := [A, \infty[$$
 (avec $A > 0$) et $f_n(x) := \frac{n^2 x \exp(-n^2 x^2)}{1 + x^2}$.

c)
$$I := [0,1]$$
 et $f_n(x) := \sqrt{n} \chi_{[1/n,2/n[}(x)$.

Exercice 8. (Théorème de convergence décroissante) Soit (X, \mathcal{M}, μ) un espace mesuré. Soit $(f_n)_{n \geq 0}$ une suite *décroissante* de fonctions mesurables *positives* sur X, avec f_0 intégrable.

- a) Montrer (via le théorème de convergence monotone) que $\lim_n \int f_n d\mu = \int \lim_n f_n d\mu$.
- b) Montrer par un contre-exemple que l'hypothèse $\exists n_0 \in \mathbb{N}$ tel que f_{n_0} intégrable, est nécessaire.

Exercice 9. Soit (X, \mathcal{M}, μ) un espace mesuré et soit $f: X \to [0, \infty]$ une application mesurable.

- a) Soient $A:=\{x\in X\,;\, f(x)>1\}$, $B:=\{x\in X\,;\, f(x)=1\}$ et $C:=\{x\in X\,;\, f(x)<1\}$. Déterminer $\lim_n\int_{A\cap B}f^n\,d\mu$.
- b) Déterminer $\lim_n \int_X f^n d\mu$. On pourra commencer par le cas où $\int_X f d\mu < \infty$.

Exercice 10. Soient (X, \mathcal{M}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction intégrable.

- a) Pour $n \geq 0$, soit $A_n := \{x \in X \; ; \; |f(x)| \geq n\}$. Déterminer $\lim_n \int_{A_n} f \; d\mu$.
- b) Soit $A\in \mathscr{M}$ tel que $\mu(A)<\infty$. Déterminer $\lim_n\int_A|f|^{1/n}\,d\mu$.