Fiche 7

Convergence monotone et dominée.

Exercice 1. Soit f une fonction Lebesgue intégrable sur \mathbb{R}_+ . Calculer

$$\lim_{n} \int_{\mathbb{R}_{+}} f(x) \frac{x}{x+n} \, d\lambda(x).$$

Exercice 2. Calculer

$$\lim_{n} \int_{0}^{\infty} \frac{(\sin x)^{n}}{x^{2}} dx.$$

Exercice 3. Rappelons que

$$\left(1+\frac{x}{n}\right)^n \nearrow e^x, \ \forall \ x \ge 0.$$

Nous considérons, pour tout $n \geq 2$, la fonction $f_n :]0, \infty[\to \mathbb{R}$ définie par

$$f_n(x) := \frac{1}{x^{1/n} \left(1 + \frac{x}{n}\right)^n}, \ \forall \ x > 0.$$

- a) Démontrer que, pour $n \ge 2$ et $x \ge 1$, nous avons $f_n(x) \le 4/x^2$.
- b) Montrer que, pour tout $n \geq 2$, f_n est Lebesgue intégrable sur $]0, \infty[$.
- c) Calculer $\lim_{n} \int_{0}^{\infty} f_n(x) dx$.

Exercice 4. Pour tout entier $n \ge 1$ et tout réel x, soit $f_n(x) := e^{-nx} - 2e^{-2nx}$.

- a) Montrer que $\sum_{n\geq 1} f_n(x)$ est une série convergente pour tout x>0, et calculer sa somme f(x).
- b) Comparer $\int_0^\infty \sum_{n=1}^{+\infty} f_n(x) dx$ et $\sum_{n=1}^{+\infty} \int_0^\infty f_n(x) dx$. Expliquer.

Exercice 5. a) Montrer que la fonction

$$f:]0, \infty[\rightarrow \mathbb{R}, \ f(x) := \frac{\sin x}{e^x - 1}, \ \forall x > 0,$$

est Lebesgue intégrable sur $]0, \infty[$.

- b) Montrer que, pour tout x > 0, nous avons $f(x) = \sum_{n=1}^{+\infty} e^{-nx} \sin x$.
- c) En déduire que $\int_0^\infty \frac{\sin x}{e^x 1} dx = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}.$

Exercice 6. Dans $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, montrer que δ_0 n'est pas une mesure à densité par rapport à la mesure de Lebesgue.

Exercice 7. Soit (X,\mathcal{M},μ) un espace mesuré. Soit f une fonction mesurable positive sur X . Montrer que

$$\lim_{n} n \int_{X} \ln \left(1 + \frac{1}{n} f \right) d\mu = \int_{X} f d\mu.$$

Exercice 8. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction Lebesgue intégrable. Calculer

$$\lim_{n} \int_{\mathbb{R}_{+}} \exp(-n\sin^{2}x) f(x) \, d\lambda(x).$$

Exercice 9. Soit (X, \mathcal{M}, μ) un espace mesuré, avec μ finie. Soit $f: X \to [0, \infty[$ une fonction mesurable et, pour $n \ge 1$, soit $I_n := \int_X \frac{f^n}{1+f^n} d\mu$. Calculer $\lim_n I_n$.

Exercice 10. Rappelons que, si $y \ge 0$, alors la suite $\left(\left(1 - \frac{y}{n}\right)^n\right)_{n \ge y}$ est croissante, de limite e^{-y} .

Soit $f_n(x) := n(1-x)^n \sin^2(nx) \chi_{[0,1]}(x)$, $\forall n \in \mathbb{N}^*$, $\forall x \in \mathbb{R}$.

- a) Déterminer la limite simple (notée f) de la suite $(f_n)_{n\geq 1}$.
- b) Calculer, en utilisant le rappel et le théorème de convergence monotone, $\lim_n \int_{\mathbb{D}} f_n d\lambda$.
- c) Montrer que $\lim_{n} \int_{\mathbb{R}} f_n d\lambda \neq \int_{\mathbb{R}} \lim_{n} f_n d\lambda$.

Exercice 11. Nous munissons l'intervalle [0,1] de sa tribu borélienne et de la mesure de Lebesgue λ . Soit $(f_n)_{n\geq 2}$ la suite de fonctions définies sur [0,1] par

$$f_n(x) := \begin{cases} n^2 x, & \text{si } 0 \le x < 1/n \\ -n^2 (x - 2/n), & \text{si } 1/n < x \le 2/n \\ 0, & \text{sinon} \end{cases}$$

- a) Tracer le graphe de f_n .
- b) Calculer et comparer $\liminf_n \int f_n d\lambda$, $\int \liminf_n f_n d\lambda$, $\lim \sup_n \int f_n d\lambda$ et $\int \limsup_n f_n d\lambda$.
- c) Mêmes questions avec la suite de fonctions $(g_n)_{n\geq 1}$ définie par $g_{2p}:=\chi_{[0,1/(2p)]}$, $\forall \ p\in\mathbb{N}^*$, $g_{2p+1}:=\chi_{[1/(2p+1),1]}$, $\forall \ p\in\mathbb{N}$.

Exercice 12. Soient (X, \mathcal{M}, μ) un espace mesuré et $f: X \to [0, \infty[$ une fonction mesurable.

- a) Supposons μ finie. Pour $n \in \mathbb{N}$, soit $X_n := f^{-1}([n, n+1[)$. Montrer que f est μ -intégrable si et seulement si $\sum_{n=0}^{+\infty} n \, \mu(X_n) < \infty$.
- b) Nous ne supposons plus μ finie. Pour $n \in \mathbb{Z}$, soit $F_n := f^{-1}([2^n, 2^{n+1}[)$. Montrer que f est μ -intégrable si et seulement si $\sum_{n=-\infty}^{\infty} 2^n \mu(F_n) < \infty$.

Exercice 13. (Suites croissantes de mesures)

a) Pour $k \in \mathbb{N}$, soit $(a_{n,k})_{n \geq 0}$ une suite telle que

$$a_{n,k} \ge 0, \ \forall \ n, k \ge 0, \tag{H1}$$

$$(a_{nk})_{k>0}$$
 est croissante, $\forall n \ge 0$. (H2)

Soit $a_n := \lim_{k \to \infty} a_{n,k}$, $\forall n \ge 0$.

Montrer que
$$\lim_k \sum_{n=0}^{+\infty} a_{n,k} = \sum_{n\geq 0} a_n$$
.

b) Soit (X, \mathcal{M}) un espace mesurable. Soit $(\mu_k)_{k\geq 0}$ une suite de mesures sur \mathcal{M} telles que :

$$(\mu_k(A))_{k\geq 0}$$
 est croissante, $\forall A \in \mathcal{M}$. (H)

Pour $A \in \mathcal{M}$, soit $\mu(A) := \lim_{k} \mu_k(A)$.

- (i) Montrer que μ est une mesure sur \mathcal{M} .
- (ii) Montrer que pour toute fonction \mathcal{M} -mesurable $f: X \to [0, \infty]$, la suite $\left(\int f d\mu_k\right)_{k \geq 0}$ est croissante.

On pourra commencer par le cas où f est étagée.

(iii) Montrer que pour toute fonction \mathcal{M} -mesurable $f: X \to [0, \infty]$, on a

$$\lim_{k \to \infty} \int f \, d\mu_k = \int f \, d\mu.$$

On pourra commencer par le cas où f est étagée.

Exercice 14. En considérant, sur \mathbb{R} , les fonctions $f_n(x) := -(x+n)_-$, montrer que l'hypothèse $f_n \geq 0$ est essentielle pour avoir la conclusion du lemme de Fatou.

Exercice 15. Nous munissons [0,1] de la mesure de Lebesgue. Pour $n \in \mathbb{N}^*$, soit m=m(n) l'unique entier tel que $m^2 \le n < (m+1)^2$. Soient

$$A_n := \left[\frac{n-m^2}{2m+1}, \frac{n+1-m^2}{2m+1} \right], \ f_n := \sqrt{m} \chi_{A_n}.$$

Montrer que:

- a) $\int |f_n| \to 0$.
- b) Il n'existe pas g intégrable telle que $|f_n| \leq g$ pour tout $n \in \mathbb{N}^*$.
- c) Pour tout $x \in [0, 1]$, nous avons $f_n(x) \rightarrow 0$.

En déduire qu'en général la conclusion de la réciproque du théorème de convergence dominée nécessite de passer à une sous-suite.