Mesure et Intégration

Fiche 8 Intégrales à paramètre.

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ Lebesgue intégrable. Montrer que la transformée de Fourier de f, définie par

$$\widehat{f}(t) := \int_{\mathbb{R}} e^{-\imath tx} f(x) \, d\lambda(x), \ \forall \, t \in \mathbb{R},$$

est une fonction continue et bornée sur \mathbb{R} .

Exercice 2 (transformée de Laplace). Soit $f:[0,\infty[\to\mathbb{R}$ une fonction continue et bornée. Nous posons

$$F(t) := \int_0^\infty e^{-xt} f(x) dx, \ \forall t > 0;$$

c'est la transformée de Laplace de f . (La fonction F est plus communément notée $\mathscr{L}f$.)

- a) Montrer que F est de classe C^{∞} sur $]0,\infty[$ et exprimer pour tout $k\geq 1$ et tout x>0, $F^{(k)}(t)$ sous forme d'une intégrale.
- b) Déduire de la question précédente la valeur de $\int_0^\infty x^k e^{-x} dx$, $\forall k \ge 1$.

Exercice 3. a) Soit $(a_n)_{n\geq 0}$ une suite de nombre réels (ou complexes). Soient

$$R := \sup\{r \ge 0 \; ; \; a_n r^n \text{ borné}\}$$

et
$$I:=]-R,R[$$
. Posons $F(x):=\sum_{n=0}^{+\infty}a_nx^n$, $\forall\,x\in I.$ Montrer que $F\in C^\infty(I)$ et que

$$\forall k \in \mathbb{N}^*, \ \forall x \in I, \quad F^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1) \cdots (n-k+1) a_n x^{n-k}.$$

b) Calculer
$$\sum_{n=1}^{+\infty} (-1)^n n x^{n-1}$$
 pour tout $x \in]-1,1[$.

Exercice 4. Soit $f(t,x):=\frac{t-1}{\ln t}\,t^x$ pour $t\in]0,1[$ et $x\in \mathbb{R}$.

- a) Montrer que $F(x) := \int_0^1 f(t,x) dt$ est finie si et seulement si x > -1.
- b) Montrer que F est de classe C^1 sur $]-1,\infty[$ et calculer F' sur $]-1,\infty[$.
- c) Calculer $\lim_{x \to \infty} F(x)$. En déduire la valeur de F(x) pour $x \in \mathbb{R}$.

Exercice 5. Pour $x \ge 0$, soient

$$F(x) := \left(\int_0^x \exp(-t^2) \, \mathrm{d}t \right)^2 \text{ et } G(x) := \int_0^1 \frac{\exp(-x^2(1+t^2))}{1+t^2} \, \mathrm{d}t.$$

- a) Montrer que F et G sont de classe C^1 sur \mathbb{R}_+ .
- b) Calculer F'(x) + G'(x) pour $x \ge 0$.
- c) En déduire la valeur de $I:=\int_0^\infty \exp(-t^2)\,\mathrm{d}t$, ainsi que la valeur de $J:=\int_\mathbb{R} \exp(-t^2/2)\,\mathrm{d}t$.

Exercice 6 (fonction zêta de Riemann). La fonction zêta de Riemann est donnée par la formule

$$\zeta(s) := \sum_{n=1}^{+\infty} \frac{1}{n^s}, \ \forall \ s > 1.$$

Montrer que $\zeta:]1, \infty[\to \mathbb{R}$ est de classe C^{∞} .

Exercice 7. Soit
$$f(x) := \int_0^1 \frac{t^{x-1}}{1+t} dt$$
, $\forall x \in \mathbb{R}$.

- a) Montrer que f est finie si et seulement si x > 0.
- b) Montrer que f est continue sur $]0, \infty[$.
- c) Calculer f(x) + f(x+1) pour x > 0. En déduire la valeur de $\lim_{x \to 0} x f(x)$.

Exercice 8. a) Montrer que la série $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge. Notons K sa somme.

- b) Pour $x \in]-1,1[$, posons $f(x):=\sum_{n=1}^{+\infty}\frac{x^n}{n}$. Montrer que f est de classe C^1 sur]-1,1[et calculer f'.
- f'.
 c) Déterminer f sur]-1,1[et $\lim_{x\searrow -1}f(x)$.
- d) En déduire la valeur de K.

Exercice 9. Soit
$$I(\alpha) := \int_0^\infty \frac{\ln(1 + \alpha x^2)}{1 + x^2} dx$$
, $\alpha \ge 0$.

- a) Montrer que la fonction $I: \mathbb{R}_+ \to \mathbb{R}$ est continue sur \mathbb{R}_+ et de classe C^1 sur \mathbb{R}_+^* .
- b) Donner une expression de $I'(\alpha)$ si $\alpha > 0$.
- c) Soit $\alpha \in \mathbb{R}_+^* \setminus \{1\}$. Décomposer la fraction $\frac{x^2}{(1+x^2)(1+\alpha x^2)}$ en éléments simples. En déduire la valeur de $I'(\alpha)$ pour $\alpha > 0$.
- d) Calculer $I(\alpha)$ pour $\alpha \geq 0$.

Exercice 10. Soit f la fonction définie sur \mathbb{R}_+ par $f(t) := \int_0^\infty \left(\frac{\sin x}{x}\right)^2 \mathrm{e}^{-tx} \,\mathrm{d}x$.

- a) Montrer que f est continue sur \mathbb{R}_+ et deux fois dérivable sur \mathbb{R}_+^* .
- b) Calculer f'' et les limites à l'infini de f et f'.
- c) En déduire une expression simple de f.

Exercice 11. Soit P une probabilité sur $(\mathbb{R}_+, \mathscr{B}_{\mathbb{R}_+})$.

a) Montrer que, pour tout $t \geq 0$, la fonction $x \mapsto \cos(xt)$ est P-intégrable sur \mathbb{R}_+ . Soit

$$F(t) := \int_{\mathbb{R}_+} \cos(xt) \, \mathrm{d}P(x), \ \forall \ t \ge 0.$$

- b) Montrer que F est continue sur \mathbb{R}_+ .
- c) Nous supposons que l'application $x\mapsto x^2$ est P-intégrable. Déterminer $\lim_{t\to 0}\frac{1-F(t)}{t^2}$. (On pourra établir et utiliser l'inégalité $1-\cos u \le u^2/2$.)
- d) « Réciproquement », supposons $\liminf_{t\to 0} \frac{1-F(t)}{t^2} < \infty$. Montrer que l'application $x\mapsto x^2$ est P-intégrable. (On pourra utiliser le lemme de Fatou.)