Transformation de Fourier 2. Distributions tempérées

Référence bibliographique : Distributions et équations aux dérivées partielles. C. Zuily.

Partie I. Rappels de cours

1 Notation

La transformée de Fourier est définie par

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} f(x) \, dx$$

On appelle multi-indice un élément $\alpha \in \mathbb{N}^n$. On définit $\partial^{\alpha} = \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n} = \left(\frac{\partial}{\partial_{x_1}}\right)^{\alpha_1} \dots \left(\frac{\partial}{\partial_{x_n}}\right)^{\alpha_n}$, $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$, $|\alpha| = \alpha_1 + \dots + \alpha_n$, $\alpha! = \alpha_1! \dots \alpha_n!$. La classe de Schwartz est l'ensemble

$$\mathscr{S}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) \text{ tel que } x^{\alpha} \partial^{\beta} f \text{ soit bornée sur } \mathbb{R}^n \ \forall \alpha, \beta \text{ multi-indices} \}.$$

La classe de Schwartz $\mathscr{S}(\mathbb{R}^n)$ est un espace vectoriel métrique complet (espace de Fréchet) avec comme distance

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{p_n(f-g)}{1 + p_n(f-g)}$$

où

$$p_n(f) = \sup_{x, |\alpha| \le n} (1 + |x|)^n |\partial^{\alpha} f(x)|$$

L'ensemble des fonctions à croissance lente (ou modérée) est définie par

$$\mathscr{L}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) \text{ tel que } \forall \alpha \exists m \in \mathbb{N}, C > 0, |\partial^{\alpha} f(x)| \le C(1 + |x|^m) \}$$

2 Distributions tempérées

Définition. On note par $\mathscr{S}'(\mathbb{R}^n)$ ou encore espace de distributions tempérées, le dual de \mathscr{S} , c'est-à-dire l'ensemble

$$\mathscr{S}'(\mathbb{R}^n) = \{u : \mathscr{S}(\mathbb{R}^n) \to \mathbb{C}, u \text{ linéaire et continue } \}.$$

Pour $u \in \mathcal{S}'$, $\varphi \in \mathcal{S}$ on note $u(\varphi) = \langle u, \varphi \rangle = \langle u, \varphi \rangle_{\mathcal{S}', \mathcal{S}}$.

On dit que $u_j \to u$ dans \mathscr{S}' si

$$\langle u_j, \varphi \rangle \to \langle u, \varphi \rangle \ \forall \varphi \in \mathscr{S}.$$

L'espace \mathscr{S}' est complet au sens que toute suite de \mathscr{S}' qui a la propriété que $\langle u_j, \varphi \rangle$ est de Cauchy pour tout $\varphi \in \mathscr{S}$ converge dans \mathscr{S}' .

Nous avons l'équivalence entre les deux affirmations qui suivent :

- $u: \mathcal{S} \to \mathbb{C}$ est distribution tempérée;
- u est linéaire et $\exists C, m$ tels que $|\langle u, \varphi \rangle| \leq C p_m(\varphi)$ pour tout $\varphi \in \mathscr{S}$.

Exemples de distributions :

- Les fonctions $f \in L^p(\mathbb{R}^n)$ définissent une distribution tempérée par $\phi \to \int_{\mathbb{R}^n} f \phi$.
- Plus généralement, il suffit de supposer que $f \in L^1_{loc}(\mathbb{R}^n)$ et qu'il existe $m \in \mathbb{N}$, $1 \le p \le \infty$ et R > 0 tels que $\frac{f}{(1+|x|)^m} \in L^p(|x| > R)$. Par exemple, une fonction majorée par un polynôme définit une distribution tempérée.

- Les mesures finies μ définissent une distribution tempérée par $\varphi \to \int_{\mathbb{R}^n} \varphi d\mu$. Cas particulier : la masse de Dirac δ_a définie par $\langle \delta_a, \varphi \rangle = \varphi(a)$.
- La valeur principale $\langle \operatorname{vp} \frac{1}{x}, \varphi \rangle = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\varphi(x)}{x} dx$.

Opérations sur les distributions tempérées :

- Addition.
- Multiplication par un scalaire.
- Multiplication par une fonction f à croissance lente. Plus précisément, soient $u \in \mathscr{S}'$ et $f \in \mathscr{L}$. On définit $fu \in \mathscr{S}'$ par $\langle fu, \varphi \rangle = \langle u, f\varphi \rangle \ \forall \varphi \in \mathscr{S}$.
- Dérivation. Pour $u \in \mathscr{S}'$ et $\alpha \in \mathbb{N}^n$ on définit $\partial^{\alpha} u \in \mathscr{S}'$ par $\langle \partial^{\alpha} u, \varphi \rangle = (-1)^{|\alpha|} \langle u, \partial^{\alpha} \varphi \rangle$. Si u est une fonction régulière, alors la dérivation au sens des fonctions correspond à la dérivation au sens des distributions.
- Convolution. On peut faire la convolution entre $u \in \mathscr{S}'$ et $f \in \mathscr{S}$ en posant $\langle u * f, \varphi \rangle = \langle u, f * \varphi \rangle$ où f(x) = f(-x).

Support d'une distribution tempérée

Si $u \in \mathscr{S}'$ et Ω est un ouvert de \mathbb{R}^n , on dit que u est nulle sur Ω si $\langle u, \varphi \rangle = 0$ pour tout $\varphi \in C_0^{\infty}(\Omega)$. Le support de u, noté par supp(u), est le complémentaire du plus grand ouvert où u s'annule.

On peut montrer que l'ensemble des distributions à support compact s'identifie au dual de $C^{\infty}(\mathbb{R}^n)$ où on a muni $C^{\infty}(\mathbb{R}^n)$ de la topologie de la convergence uniforme de toutes les dérivées sur tous les compacts.

On a que supp $u \subset \{a\}$ si et seulement si u est combinaison linéaire (finie) de $\partial^{\alpha} \delta_a$, $\alpha \in \mathbb{N}^n$. De plus, l'écriture $u = \sum c_{\alpha} \partial^{\alpha} \delta_a$ est unique.

Structure des distributions tempérées

Théorème. Soit $u \in \mathcal{S}'(\mathbb{R}^n)$. Il existe une fonction f majorée par un polynôme et un multi-indice α tels que $u = \partial^{\alpha} f$.

3 Distributions tempérées et transformation de Fourier

Définition. Soit $u \in \mathcal{S}'(\mathbb{R}^n)$. On définit la transformée de Fourier de u par :

$$\forall \varphi \in \mathscr{S}(\mathbb{R}^n) \ \langle \widehat{u}, \varphi \rangle = \langle u, \widehat{\varphi} \rangle.$$

Théorème. La transformée de Fourier est une bijection de $\mathscr{S}'(\mathbb{R}^n)$ dans $\mathscr{S}'(\mathbb{R}^n)$ d'inverse $\mathscr{F}^{-1}: u \to (2\pi)^{-n} \mathscr{F}(\overset{\vee}{u})$, $ou \forall \varphi \in \mathscr{S}(\mathbb{R}^n)$, $\langle \overset{\vee}{u}, \varphi \rangle = \langle u, \overset{\vee}{\varphi} \rangle$ et $\overset{\vee}{\varphi}(x) = \varphi(-x)$.

Théorème. a) Si $u \in \mathscr{S}'(\mathbb{R}^n)$ alors $\forall \alpha \in \mathbb{N}^n$ nous avons que $\widehat{\partial^{\alpha} u} = (i\xi)^{\alpha} \widehat{u}$ et $\widehat{x^{\alpha} u} = (i\partial_{\xi})^{\alpha} \widehat{u}$.

- b) Si $a \in \mathcal{S}(\mathbb{R}^n), u \in \mathcal{S}'(\mathbb{R}^n)$ alors $\widehat{u * a} = \widehat{ua}$
- c) Si $u \in \mathcal{E}'(\mathbb{R}^n)$ (distributions à support compact) alors \widehat{u} est une fonction à croissance lente qui se prolonge en une fonction holomorphe sur \mathbb{C}^n . De plus $\widehat{u}(\xi) = \langle u(x), e^{-ix\cdot\xi} \rangle$.
- d) Si $u \in \mathcal{E}'(\mathbb{R}^n)$, $v \in \mathcal{S}'(\mathbb{R}^n)$ alors on peut définir $u * v \in \mathcal{S}'$ comme la transformée de Fourier inverse de \widehat{uv} .

Dès que la convolution est possible $(u \in \mathcal{S}'(\mathbb{R}^n), v \in \mathcal{S}(\mathbb{R}^n)$ ou $u \in \mathcal{S}'(\mathbb{R}^n), v \in \mathcal{E}'(\mathbb{R}^n), \cdots)$, on a pour tout $\alpha \in \mathbb{N}^n$

$$\partial^{\alpha}(u * v) = (\partial^{\alpha}u) * v = u * (\partial^{\alpha}v).$$

On peut aussi montrer que si $u \in \mathscr{S}'(\mathbb{R}^n)$ et $a \in \mathscr{S}(\mathbb{R}^n)$, alors u * a est une fonction C^{∞} à croissance lente et $u * a(x) = \langle u(y), a(x-y) \rangle$.

4 Distributions sur un ouvert

On peut aussi définir les distributions « classiques » sur un ouvert Ω . Il faut utiliser alors l'espace des fonctions régulières à support compact dans Ω noté par $\mathscr{C}_0^{\infty}(\Omega)$ et définir $\mathscr{D}'(\Omega)$ l'espace des distributions sur Ω comme le dual de $\mathscr{C}_0^{\infty}(\Omega)$. Une suite f_n est dite convergente dans $\mathscr{C}_0^{\infty}(\Omega)$ si les f_n convergent uniformément sur tous les compacts, ainsi que leurs dérivées, et si les supports des f_n sont tous inclus dans un même compact de Ω . Une suite de distributions u_n converge dans $\mathscr{D}'(\Omega)$ si $\langle u_n, \varphi \rangle$ converge pour tout $\varphi \in \mathscr{C}_0^{\infty}(\Omega)$. Toute fonction de $L^1_{loc}(\Omega)$ définit une distributions. Ainsi, on ne demande aucune information à l'infini, contrairement aux distributions tempérées. En contrepartie, on ne peut pas faire la transformation de Fourier. Toute distribution peut être multipliée par une fonction C^{∞} et on peut la dériver autant de fois qu'on veut. Tout se fait par dualité, comme pour les distributions tempérées : au lieu de prendre $\varphi \in \mathscr{S}$ on prend $\varphi \in \mathscr{C}_0^{\infty}(\Omega)$.

Formule des sauts : Si f est une fonction C^1 par morceaux sur un intervalle de \mathbb{R} , alors sa dérivée au sens des distributions est donnée par f' (c'est-à-dire qu'on dérive chaque morceau) plus la somme des masses de Dirac en chaque point de discontinuité multipliées par le saut de la fonction au point respectif.

Partie II. Exercices

Exercice 1. Montrer que la dérivée au sens des distributions d'une fonction C^1 par morceaux admettant un nombre fini de sauts de taille m_i en des points x_i est donnée par la dérivée usuelle plus la somme $\sum_i m_i \delta_{x_i}$ (formule des sauts).

Exercice 2. Montrer qu'une approximation de l'identité tend vers la masse de Dirac δ au sens des distributions.

Exercice 3. Montrer que la transformée de Fourier d'une mesure finie est une fonction continue bornée. Est-elle nulle à l'infini? Et uniformément continue? (On pourra commencer par supposer la mesure à support compact.)

Exercice 4. Soit $f \in C^0(\mathbb{R}) \cap L^1(\mathbb{R})$. On suppose qu'il existe C > 0 et $\alpha > 1$ tels que

$$|f(x)| < \frac{C}{(1+|x|)^{\alpha}}.$$

On suppose de plus que

$$\sum_{n=0}^{\infty} |\widehat{f}(2\pi n)| < \infty.$$

a) Montrer que la série

$$F(x) = \sum_{-\infty}^{\infty} f(x+n)$$

converge vers une fonction F continue et périodique de période 1.

- b) Calculer $c_n(F)$ les coefficients de Fourier de F et en déduire que $\sum_{-\infty}^{\infty} |c_n(F)| < \infty$.
- c) En déduire la formule sommatoire de Poisson :

$$\sum_{-\infty}^{\infty} f(x+n) = \sum_{-\infty}^{\infty} \widehat{f}(2\pi n) e^{2\pi i n x} \qquad \forall x \in \mathbb{R}.$$

d) Montrer que la série $\sum_{-\infty}^{\infty} \delta_n$ (peigne de Dirac) converge dans $\mathscr{S}'(\mathbb{R})$ et déterminer sa transformée de Fourier.

Exercice 5. (Structure des distributions) Soit $u \in \mathcal{S}'(\mathbb{R}^n)$ une distribution tempérée. On veut montrer que u s'écrit sous la forme $u = \partial^{\alpha} f$ où f est une fonction dominée par un polynôme.

- a) Montrer que toute boule de $\mathscr S$ centrée en 0 contient un ensemble de la forme $p_n^{-1}([0,\epsilon[)$ pour un certain n et ϵ .
- b) Montrer qu'il existe *m* tel que

$$|\langle u, \varphi \rangle| \le C \sup_{x, |\alpha| \le m} (1 + |x|^2)^m |\partial^{\alpha} \varphi(x)| \qquad \forall \varphi \in \mathscr{S}.$$

c) En déduire que

$$|\langle (1+|x|^2)^{-m}u, \varphi \rangle| \le C \sup_{x, |\alpha| \le m} |\partial^{\alpha} \varphi(x)| \qquad \forall \varphi \in \mathscr{S}.$$

d) Montrer que pour tout $\phi \in \mathcal{S}$ nous avons que

$$\varphi(x) = \int_{0}^{x_1} \dots \int_{0}^{x_n} \partial_1 \dots \partial_n \varphi(y) \, dy.$$

e) On note $u^* = (1 + |x|^2)^{-m}u$. Montrer qu'il existe $k \in \mathbb{N}$ tel que

$$|\langle u^*, \varphi \rangle| \le C \sup_{|\alpha| < k} \|\partial^{\alpha} \varphi\|_{L^1} \qquad \forall \varphi \in \mathscr{S}.$$

f) Soit

$$T: \mathscr{S} \to (L^1)^N, \qquad \varphi \mapsto T(\varphi) = (\partial_{\alpha} \varphi)_{|\alpha| \le k}$$

$$V = T(\mathscr{S})$$

et

$$L: V \to \mathbb{C}, \qquad L((\partial_{\alpha} \varphi)_{|\alpha| < k}) = \langle u^*, \varphi \rangle.$$

Montrer qu'il existe un élément \widetilde{L} du dual de $(L^1)^N$ tel que

$$\widetilde{L}|_{V} = L.$$

g) Montrer qu'il existe des fonctions bornées f_{α} telles que

$$u^* = \sum_{|\alpha| \le k} \partial^{\alpha} f_{\alpha}.$$

h) Montrer qu'il existe des fonctions g_{α} majorées par un polynôme telles que

$$u = \sum_{|\alpha| \le k} \partial^{\alpha} g_{\alpha}.$$

i) Conclure.

Exercice 6. (Divers calculs explicites) Calculer les transformées de Fourier de :

- a) δ_a où $a \in \mathbb{R}^n$;
- b) 1;
- c) $\frac{\sin t t \cos t}{t^3}$, $t \in \mathbb{R}$.
- d) $e^{\mathrm{i}a|x|^2}$ où $a \in \mathbb{R}$ et $x \in \mathbb{R}^n$. (On pourra utiliser que $e^{(-\epsilon + \mathrm{i}a)|x|^2} \to e^{\mathrm{i}a|x|^2}$ quand $\epsilon \to 0$.)
- e) $H = \mathbb{1}_{\mathbb{R}_+}$, (en écrivant $H = \lim_{\epsilon \searrow 0} He^{-\epsilon x}$ ou en utilisant que $H' = \delta$)
- f) vp $\frac{1}{x}$

Exercice 7. Soit $-1 < \lambda < 0$. On se propose de calculer la transformée de Fourier de la distribution $f(x) = |x|^{\lambda}$, $x \in \mathbb{R}$.

- a) Montrer que si $\lambda \in]-1, -\frac{1}{2}[$, \widehat{f} est une fonction homogène paire. En déduire que $\widehat{f}(\xi) = C_{\lambda} |\xi|^{-\lambda-1}$. Exprimer C_{λ} en fonction de $\Gamma(s) = \int_0^{\infty} x^{s-1} e^{-x} dx$.
- b) Étendre ce résultat à $\lambda \in]-1,0[$ en utilisant la formule d'inversion.

Exercice 8. Montrer que la fonction $f(x_1, x_2) = \frac{1}{x_1 + ix_2}$ définit un élément de $\mathscr{S}'(\mathbb{R}^2)$. On pose $\bar{\partial} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right)$. Calculer $\bar{\partial} f$ au sens des distributions et en déduire la transformée de Fourier de f.

Exercice 9. Montrer que toute fraction rationnelle f s'étend à une distribution tempérée $u \in \mathscr{S}'(\mathbb{R})$. Plus précisément, montrer qu'il existe $u \in \mathscr{S}'(\mathbb{R})$ tel que $u|_{\mathbb{R}\setminus Z} = f$ dans $\mathscr{D}'(\mathbb{R}\setminus Z)$ où Z est l'ensemble des zéros du dénominateur de f. Décrire une méthode pour calculer la transformée de Fourier de u.

Exercice 10. On considère dans \mathbb{R}^2 la fonction

$$E(x,t) = \frac{H(t)}{\sqrt{4\pi t}} \exp\left(-\frac{x^2}{4t}\right),\,$$

où H(t) est la fonction caractéristique de \mathbb{R}_+ . Montrer que E définit une distribution sur \mathbb{R}^2 . On pose $P = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial^2 x}$. Calculer PE au sens des distributions.

Exercice 11. Si A est un changement de variables linéaire, on définit la composition $T \circ A$ par

$$\langle T \circ A, \varphi \rangle = |\det A|^{-1} \langle T, \varphi \circ A^{-1} \rangle.$$

Supposons que A est une matrice réelle et inversible.

- a) Montrer que pour une distribution de type fonction, la composition en tant que fonction coïncide avec la convolution en tant que distribution.
- b) Si $T \in \mathcal{S}'(\mathbb{R}^n)$, montrer que $T \circ A \in \mathcal{S}'(\mathbb{R}^n)$ et que l'on a :

$$\widehat{T \circ A} = |\det A|^{-1} \widehat{T} \circ ({}^t A)^{-1},$$

où ${}^{t}A$ est la transposée de A.

- c) On dit que la distribution T est paire (resp. impaire) si $T \circ A = T$ (resp. -T) pour A(x) = -x. Montrer que la transformée de Fourier d'une distribution paire (resp. impaire) est une distribution paire (resp. impaire).
- d) On dit que la distribution T est invariante par rotation si $T \circ A = T$ pour toute matrice orthogonale A. Montrer que si T est invariante par rotation, alors \widehat{T} l'est.
- e) On dit que la distribution T est homogène de degré λ si

$$\langle T, \varphi_t \rangle = t^{-(n+\lambda)} \langle T, \varphi \rangle \quad \forall \varphi \in \mathscr{D}(\mathbb{R}^n) \quad \forall t > 0.,$$

où $\varphi_t(x) = \varphi(tx)$. Montrer que la transformée de Fourier d'une distribution tempérée homogène de degré λ est homogène de degré $-n - \lambda$.

Exercice 12. Montrer que l'unique solution dans $\mathscr{S}'(\mathbb{R}^n)$ de l'équation $\Delta u = u$ est u = 0. Comment expliquer qu'on a quand même l'égalité $\Delta e^{x_1} = e^{x_1}$?

Exercice 13. Considérons u et v deux distributions tempérées à support compact sur \mathbb{R} telles que u * v = 0. Montrer que u = 0 ou v = 0. Ceci reste-t-il vrai pour deux fonctions de $\mathscr{S}(\mathbb{R}^n)$?