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Introduction en français

Quel est le point commun entre un arbre régulier, l’ordre sur les rationnels, un espace
de Hilbert et un corps algébriquement clos ? Ils admettent beaucoup de symétries : ils sont
ultrahomogènes. Une structure est ultrahomogène si tout isomorphisme entre sous-structures
finiment engendrées s’étend en un automorphisme de la structure toute entière. En d’autres
termes, l’ultrahomogénéité garantit que les configurations finies se retrouvent partout dans la
structure, donnant ainsi un groupe de symétries très riche.

À l’instar de leurs sous-structures finies, les structures ultrahomogènes sont omniprésentes.
Le premier exemple d’une telle structure est un ensemble, sans structure supplémentaire, dans
lequel les bijections finies s’étendent toujours. Plus intéressant, les rationnels, en tant qu’en-
semble ordonné, sont ultrahomogènes. Cela peut se montrer par un argument de va-et-vient, qui
s’avère être la technique la plus efficace pour prouver l’ultrahomogénéité de structures dénom-
brables. En effet, la méthode du va-et-vient consiste à écrire la structure dénombrable comme
une union dénombrable d’ensembles finis puis de construire par récurrence un isomorphisme
comme limite d’applications entre ces ensembles finis. Par la même méthode5, les rationnels
peuvent être caractérisés comme l’unique ordre total dénombrable sans extrémités, propriétés
que l’on peut vérifier sur les sous-structures finies. S’inspirant de l’exemple des rationnels et
de l’efficacité de la méthode du va-et-vient, Fraïssé a introduit dans [F] une approche unifiée
des structures ultrahomogènes dénombrables, dans laquelle les structures finies jouent un rôle
central.

Un autre exemple de structure ultrahomogène qui illustre bien la théorie de Fraïssé est le
graphe aléatoire, bien qu’il soit apparu plus tard. Son nom lui vient de ce qu’Erdös et Rényi
([ER]) l’ont construit comme suit : partant du graphe complet sur les entiers, pour chaque
arête, on décide de la garder ou de l’enlever en tirant à pile ou face. Il se trouve que ce procédé
donne toujours le même graphe, à isomorphisme près : le graphe obtenu a presque surement
la propriété que pour chaque paire de sous-graphes finis disjoints, on peut trouver un sommet
relié à tous les sommets du premier sous-graphe mais à aucun du second. Une application du
va-et-vient montre alors que deux graphes satisfaisant cette propriété sont isomorphes. Mais
le graphe aléatoire doit aussi son nom à ce qu’il contient une copie isomorphe de tout graphe
fini et même de tout graphe dénombrable. La construction du graphe aléatoire comme objet
universel est due à Rado6 ([R1]). L’idée sous-jacente à une telle construction est que les graphes
finis se recollent bien ensemble pour donner le graphe aléatoire ; si bien que non seulement tout
graphe fini se retrouve dans le graphe aléatoire, mais qu’en plus, on l’y retrouve partout !

La théorie de Fraïssé est justement une manière de construire des structures ultrahomogènes
en recollant des structures finies les unes aux autres. Plus précisément, la classe de toutes les
sous-structures finies d’une structure ultrahomogène, qu’on appelle son âge, jouit de bonnes
propriétés d’amalgamation (voir figure 0.1).

Une classe de Fraïssé est une classe dénombrable (à isomorphisme près) qui satisfait le même
type de propriétés. Le théorème de Fraïssé affirme que toute classe de Fraïssé est en fait l’âge
d’une certaine structure ultrahomogène dénombrable. De plus, une telle structure est unique ;
on l’appelle la limite de Fraïssé de la classe. Ainsi, les rationnels sont la limite de Fraïssé de la
classe de tous les ensembles finis ordonnés et le graphe aléatoire celle de la classe de tous les

5Dans [P6], Plotkin soutient que Cantor n’a utilisé dans [C] qu’un argument de va et attribue l’introduction
et la popularisation du vient à Huntington ([H4]) et Hausdorff ([H1]).

6Le graphe aléatoire est parfois appelé graphe de Rado.
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14 INTRODUCTION EN FRANÇAIS

D

B C

A

Figure 0.1. La propriété d’amalgamation : si une structure A se plonge dans
deux structures différentes B and C de la classe, alors ces deux structures se
plongent elles-mêmes dans une quatrième structure D, toujours dans la classe,
de telle sorte que le diagramme commute.

graphes finis. Ce résultat puissant assure que les structures ultrahomogènes sont bien caractéri-
sées par leurs sous-structures finies, comme le laissaient présager les exemples des rationnels et
du graphe aléatoire. Par conséquent, la théorie de Fraïssé permet un traitement combinatoire
des structures ultrahomogènes et en particulier des propriétés dynamiques de leurs groupes
d’automorphismes, comme nous le verrons en détail plus tard.

Le groupe d’automorphismes d’une structure ultrahomogène dénombrable, muni de la to-
pologie de convergence simple, est un sous-groupe fermé de S∞, le groupe de permutations
d’un ensemble dénombrable infini. C’est donc un groupe polonais : un groupe topologique sé-
parable qui admet une distance compatible complète. La classe des groupes polonais est très
riche : elle admet notamment des objets universels, comme le groupe d’homéomorphismes du
cube de Hilbert ([U2]) et le groupe d’isométries de l’espace d’Urysohn ([U4]). De plus, elle est
assez étendue, puisque tout groupe localement compact métrisable est polonais. Mais la classe
des groupes polonais va bien au-delà : le groupe des unitaires de l’espace de Hilbert séparable
ou le groupe des homéomorphismes croissants de l’intervalle sont des groupes polonais aussi,
qui diffèrent grandement des groupes localement compacts. Par exemple, toutes leurs actions
continues sur un espace compact admettent un point fixe global (on dit qu’ils sont extrêmement
moyennables), tandis qu’un résultat de Veech ([V2]) exclut ce phénomène pour les groupes
localement compacts non triviaux.

On ne dispose pas d’un outil aussi puissant que la mesure de Haar dans le contexte des
groupes polonais plus gros. Cependant, la séparabilité nous donne une prise sur les espaces et
autorise les arguments inductifs, tandis que la complétude permet d’utiliser des méthodes de
Baire, ce qui rend la théorie des groupes polonais relativement robuste (voir [K4] et [G1]).
En particulier, le théorème de Baire détermine une notion de complexité, et de généricité, qui
concurrence celle d’ensemble de mesure pleine (voir [O] pour les mérites comparés de la mesure
et de la catégorie). Cela fait des groupes polonais un terrain idéal pour la théorie descriptive
des ensembles, et ils sont étudiés comme tels de manière systématique depuis les travaux des
mathématiciens polonais (comme leur nom l’indique) du début du vingtième siècle.

Un résultat de Pettis ([P5]) dit que tout morphisme de groupes entre groupes polonais,
pourvu qu’il soit Baire-mesurable (une hypothèse bénigne satisfaite par toutes les applications
boréliennes), est automatiquement continu. Par ailleurs, Effros a caractérisé dans [E1] le fait
pour une orbite sous l’action continue d’un groupe polonais d’être polonaise : cela équivaut
à ce que l’application orbitale soit ouverte. Ces deux résultats forts ont mené à l’étude très
prospère des actions définissables (principalement continues et boréliennes) de groupes polonais
(voir [BK2]) et aux relations d’équivalence orbitale qu’elles induisent (voir [G1]). C’est une
théorie très riche ; mentionnons, par exemple, l’existence d’actions universelles pour un groupe
polonais ([BK1], [H4]). La structure de ces relations d’équivalence a en particulier été décrite
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par de beaux théorèmes de dichotomies ([HKL], [KST], [M9]) et par des résultats de (non-
)classification ([H3], [K5]).

La théorie descriptive des ensembles et la théorie des modèles entretiennent des liens étroits.
Le premier exemple notable d’un tel lien réside peut-être dans la reformulation de la conjecture
de Vaught ([V1]) en termes d’une action spécifique d’un groupe polonais. La conjecture de
Vaught stipule qu’une théorie dans un langage dénombrable admet soit une quantité dénom-
brable soit un continuum de modèles dénombrables. Elle a été généralisée en une conjecture de
Vaught topologique, dont la formulation rappelle la dichotomie de Glimm-Effros : elle affirme
que toute action continue d’un groupe polonais admet soit un nombre dénombrable soit un
continuum d’orbites. Pour cette version topologique, des résultats partiels puissants ont été
obtenus, voir [B2]. L’autre interaction notable entre les deux domaines, qui se trouve au cœur
de cette thèse, est que l’on peut aborder les groupes polonais comme des groupes d’automor-
phismes. Plus précisément, on a mentionné que les groupes d’automorphismes de structures
dénombrables (ultrahomogènes) sont des sous-groupes fermés de S∞. Il s’avère que la réci-
proque est vraie aussi : tout sous-groupe de S∞ est isomorphe au groupe d’automorphismes
d’une structure dénombrable. Mieux, en nommant les orbites sous l’action du groupe, on peut
rendre la structure ultrahomogène.

Cette correspondance éclairante ne se limite pas aux sous-groupes de S∞ et s’étend en
fait à tous les groupes polonais, via la logique continue. Cette dernière a été développée par
Ben Yaacov et Usvyatsov dans [BU2], ainsi que Berenstein et Henson ([BBHU]), dans le
but d’étudier les structures métriques. L’idée est de remplacer les points par les fonctions
qui donnent la distance à ces points, ainsi que les valeurs de vérités habituelles vrai et faux
par un continuum de valeurs de vérités, généralement l’intervalle [0, 1]. Une relation devient
alors une fonction uniformément continue qui prend ses valeurs dans [0, 1] au lieu de {0, 1} et
une structure métrique est un espace métrique complet, muni d’une famille de telles relations.
Remarquons que les structures classiques rentrent dans ce cadre : munies de la distance discrète,
elles deviennent des structures métriques. Dans ce contexte métrique, les automorphismes sont
en particulier des isométries. De plus, l’homologue continu naturel de la dénombrabilité est la
séparabilité, de telle sorte que les groupes d’automorphismes de structures métriques séparables
sont polonais. L’observation cruciale que ceux-ci englobent tous les groupes polonais est due à
Melleray ([M5]).

En outre, comme dans le cas discret, on peut imposer que la structure soit hautement
symétrique. Pour ce faire, on relaxe l’hypothèse d’ultrahomogénéité. Une structure métrique
est approximativement ultrahomogène si tout isomorphisme entre sous-structures finies s’étend,
à une erreur arbitrairement petite près, en un automorphisme de la structure toute entière.
Toujours en nommant les adhérences des orbites dans le langage, tout groupe polonais peut
alors se voir comme le groupe d’automorphismes d’une structure métrique approximativement
ultrahomogène.

De nombreuses structures métriques qui apparaissent naturellement sont approximative-
ment ultrahomogènes : l’algèbre de mesure d’un intervalle, (la boule unité d’)un espace de
Hilbert séparable ou les espaces Lp. Tous ces exemples sont en fait exactement ultrahomogènes.
Cependant, il n’est pas vrai en général que l’on peut se passer du mot "approximativement" :
les treillis de Banach ou l’espace de Gurarij, qui émergent tout aussi naturellement, sont seule-
ment approximativement ultrahomogènes (voir [BBHU] et [M2]). Melleray a demandé si tout
groupe polonais était néanmoins le groupe d’automorphismes d’une certaine structure exac-
tement ultrahomogène. Ce n’est pas le cas : Ben Yaacov a récemment fourni des exemples
de groupes polonais qui ne peuvent pas agir transitivement continument par isométries sur
un espace métrique complet ([B7]). La question de l’exacte ultrahomogénéité des structures
métriques apparaitra tout de même comme une intrigue secondaire tout au long de la thèse.

Un exemple important et très illustratif de structure métrique ultrahomogène est l’espace
d’Urysohn. L’espace d’Urysohn est, à isométrie près, l’unique espace métrique qui est à la fois
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ultrahomogène et universel pour la classe de tous les espaces métriques finis. En rapprochement
avec le graphe aléatoire, cela suggère l’idée d’une version métrique de la théorie de Fraïssé.
Une telle théorie, très analogue à la théorie classique (avec une propriété d’amalgamation plus
faible), a en effet été développée par Schoretsanitis ([S2]) et par Ben Yaacov ([B5]). Comme
attendu, l’espace d’Urysohn est la limite de Fraïssé de la classe des espaces métriques finis,
l’espace de Hilbert celle de la classe des espaces de Hilbert de dimension finie, l’algèbre de
mesure de l’intervalle celle de la classe des algèbres de mesure finies. Cet analogue de la théorie
de Fraïssé fournit un bon cadre dans lequel appliquer des arguments combinatoires aussi aux
groupes polonais généraux.

L’interaction entre la théorie descriptive des groupes polonais et la théorie des modèles des
structures de Fraïssé s’est avérée très fructueuse. Dans cette thèse, nous verrons un échantillon
de divers aspects de cette correspondance florissante.

La question se pose naturellement de savoir à quel point la correspondance est bonne : quelles
propriétés de la structure son groupe d’automorphismes retient-il ? En d’autres termes, la struc-
ture peut-elle être reconstruite à partir du seul groupe d’automorphismes ? Ahlbrandt et Zie-
gler([AZ]) ont donné une réponse positive pour une classe spéciale de structures dénombrables
homogènes, les structures dénombrablement catégoriques7. Une structure est dénombrablement
catégorique si c’est l’unique modèle dénombrable de sa théorie : toute structure dénombrable
satisfaisant les mêmes propriétés (du premier ordre) lui est isomorphe. Il y a beaucoup de struc-
tures dénombrablement catégoriques, en particulier parmi les limites de Fraïssé. Par exemple,
les rationnels et le graphe aléatoire sont dénombrablement catégoriques, puisque non seulement
ils sont caractérisés par leurs sous-structures finies mais la caractérisation s’exprime par des
énoncés du premier ordre et appartient donc à la théorie.

D’autre part, la catégoricité dénombrable fournit suffisamment de rigidité pour permettre
une correspondance plus riche entre la structure et son groupe d’automorphismes. En effet, est
à notre disposition le très puissant théorème de Ryll-Nardzewski, qui décrit les types dans une
structure dénombrablement catégorique. Cela a de nombreuses conséquences, pour le groupe
d’automorphismes tout particulièrement. Le théorème affirme que le groupe doit agir de manière
oligomorphe, c’est-à-dire avec un nombre fini d’orbites et que l’espace des types doit être fini.
Cela produit en particulier une caractérisation de la définissabilité qui s’exprime purement
en termes du groupe d’automorphismes : dans une structure dénombrablement catégorique,
la définissabilité se résume à l’invariance sous l’action du groupe d’automorphismes. Cette
caractérisation constitue un outil essentiel dans la reconstruction.

La reconstruction qu’Ahlbrandt et Ziegler proposent est la suivante. Ils montrent que deux
structures dénombrablement catégoriques dont les groupes d’automorphismes sont isomorphes
(en tant que groupes topologiques) sont bi-interprétables. Plus précisément, si deux structures
sont bi-interprétables, chacune se plonge dans les imaginaires de l’autre, c’est-à-dire dans un
quotient définissable d’une puissance finie de l’autre. Ainsi, ils retrouvent, sinon la structure
originelle, du moins toutes ses propriétés modèle-théoriques.

Avec Itaï Ben Yaacov, nous étendons ce résultat de reconstruction au cadre continu, dans
lequel la catégoricité dénombrable est remplacée par la catégoricité séparable. La classe des
structures séparablement catégoriques est assez vaste aussi puisqu’elle comprend l’algèbre de
mesure, (la boule unité d’)un espace de Hilbert séparable et la sphère d’Urysohn. De plus, elle
jouit de propriétés très semblables au cas dénombrable. Ici encore, la définissabilité se caracté-
rise par l’invariance sous l’action du groupe d’automorphismes. En effet, le théorème de Ryll-
Nardzewski se généralise naturellement aux structures métriques (voir [BU1] et [BBHU]) :
l’espace des types dans une structure séparablement catégorique doit être compact (pour une

7La parenté de ce résultat est en fait assez floue. Ahlbrandt et Ziegler l’attribuent à Coquand (dans une
note non publiée) et il semble que l’idée que ce résultat devait être vrai était déjà dans l’air depuis un certain
temps.
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distance naturelle) et le groupe d’automorphismes doit agir de manière approximativement oli-
gomorphe, c’est-à-dire avec un nombre compact d’orbites. Ainsi, la structure topologique de
l’espace des types admet une description sous forme d’arbre, que nous utilisons amplement
dans la preuve.

En théorie des modèles métriques, la définition des imaginaires doit être légèrement modi-
fiée : on a besoin d’autoriser les quotients définissables infinis pour prendre en compte les suites
convergentes d’epsilons (voir la discussion dans [BU2]). Dans [BK3], nous définissons la no-
tion d’interprétation entre structures métriques en conséquence. Alors nous montrons comme
escompté que deux structures métriques séparablement catégoriques dont les groupes d’au-
tomorphismes sont topologiquement isomorphes sont bi-interprétables. Notre démonstration
diffère toutefois de la preuve classique puisqu’elle est de nature intrinsèquement métrique. En
effet, nous exploitons la preuve de Melleray du fait que tout groupe polonais est le groupe d’au-
tomorphismes d’une structure métrique ([M5]) : en se servant d’une construction standard, il
produit une structure métrique canonique8 associée à un groupe polonais, sa structure chapeau.
Nous montrons en fait que toute structure séparablement catégorique est bi-interprétable avec
la structure chapeau de son groupe d’automorphismes.

Ce résultat de reconstruction assure que toute propriété modèle-théorique des structures
séparablement catégoriques est encodée dans leur groupe d’automorphismes, que c’est vérita-
blement une propriété topologique. La construction du dictionnaire à proprement parler a été
initiée par Ben Yaacov et Tsankov dans [BT1], avec une entrée sur la stabilité. La bonne tra-
duction fait intervenir la compactification de Roelcke du groupe d’automorphismes. En effet, les
groupes d’automorphismes de structures séparablement catégoriques sont Roelcke-précompacts
(cela découle de l’oligomorphie approximative de leur action, voir [R3]). Réciproquement, Ben
Yaacov et Tsankov, et, indépendamment, Rosendal ([R4]) ont montré que tout groupe polonais
Roelcke-précompact se réalise comme tel. Forts de cette observation, Ben Yaacov et Tsankov
montrent que la stabilité correspond à la faible presque-périodicité de la compactification de
Roelcke du groupe d’automorphismes, puis étudient ces compactifications d’un point de vue
modèle-théorique. Ibarlucía ([I]) a ensuite étendu le dictionnaire aux structures métriques dé-
pendantes. Il est amusant de noter que le mot même d’"indépendant" était couramment utilisé
du côté topologique (voir [R5] ou [GM1]), pour désigner la même notion, bien avant que la
connexion avec la théorie des modèles n’ait été remarquée !

Ce type de reconstruction fait intervenir le groupe d’automorphismes, avec sa topologie. Il
est donc légitime de se demander si le groupe abstrait suffit à retrouver la structure. Malheu-
reusement, en général, il ne suffit pas : Evans et Hewitt ([EH]) ont construit un contre-exemple
dans le cas dénombrablement catégorique, répondant ainsi à une question de Rubin ([R6]).
Néanmoins, les théoriciens des modèles se sont tout de même intéressés (et s’intéressent) à la
question de reconstruire la topologie d’un groupe à partir de sa structure algébrique. Dans ce
but, la propriété de petit indice a été largement étudiée. Cette propriété dit que tous les sous-
groupes d’indice dénombrable sont ouverts. La propriété de petit indice équivaut à ce que tout
morphisme du groupe à valeurs dans S∞ est continu. Ainsi, pour le groupe d’automorphismes
d’une structure dénombrable, la propriété de petit indice garantit que la structure algébrique
du groupe encode déjà sa topologie et que la reconstruction plus forte s’opère. C’est le cas
pour un grand nombre de groupes d’automorphismes, comme S∞ lui-même (Semmes, [S3]) ou
le groupe d’automorphismes des rationnels (Truss, [T2]). Voir [HHLS] et [L1] pour plus de
détails sur la propriété de petit indice et le problème de reconstruction.

Dans [HHLS], Hodges, Hodkinson, Lascar et Shelah ont introduit un outil puissant, les
amples génériques, pour montrer la propriété de petit indice pour les groupes d’automorphismes
de structures dénombrables. La notion a été affinée et étudiée plus avant par Kechris et Rosendal
([KR]). Un groupe polonais G a des amples génériques si pour tout n dans N, l’action diagonale

8Techniquement, la structure chapeau est associée à une distance invariante à gauche sur le groupe polonais.
Néanmoins, à bi-interprétabilité près, elle ne dépend pas du choix d’une telle distance invariante à gauche.
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par conjugaison de G sur Gn admet une orbite comaigre. Cela implique en particulier que G
a une classe de conjugaison comaigre, phénomène dont Wesolek a montré qu’il ne peut pas
se produire dans les groupes polonais localement compacts ([W]). Les amples génériques sont
particulièrement intéressants : outre la propriété de petit indice, ils impliquent une propriété
très forte, la propriété de continuité automatique. À savoir, si G a des amples génériques, alors
tout morphisme de groupe de G dans un groupe topologique séparable quelconque — pas
seulement un sous-groupe fermé de S∞ — est automatiquement continu. Cette jolie propriété
permet de retrouver complètement la topologie du groupe à partir de sa structure algébrique,
ce qui constitue un résultat de reconstruction très puissant.

Pour les sous-groupes fermés de S∞, vus comme groupes d’automorphismes de structures
de Fraïssé, Kechris et Rosendal ont exhibé des conditions combinatoires qui impliquent les
amples génériques. En particulier, si une classe de Fraïssé satisfait la propriété d’amalgamation
libre et la propriété d’extension, alors le groupe d’automorphisme de sa limite de Fraïssé a des
amples génériques (voir [M6]). La propriété d’extension dit que tout isomorphisme partiel d’une
structure finie s’étend en un automorphisme global d’une structure plus grande, mais toujours
finie. Elle a été d’abord prouvée pour la classe des graphes finis par Hrushovski9 ([H2]). Ce
résultat a été généralisé par Herwig et Lascar ([HL], voir aussi [S7]) aux classes de structures
finies qui omettent une certaine famille de configurations, tels que les graphes sans triangle.
Leurs techniques ont été utilisées par Solecki ([S6]) pour montrer que la propriété d’extension
est vraie pour les espaces métriques finis. Quant à la propriété d’amalgamation libre, elle assure
que les unions d’isomorphismes partiels s’étendent de manière cohérente, en amalgamant leurs
domaines le plus indépendamment possible. En appliquant ce critère combinatoire, on obtient
que le groupe d’automorphisme du graphe aléatoire, celui du graphe sans triangle de Henson
et S∞ ont les amples génériques. Le groupe d’automorphismes des rationnels, au contraire,
a une classe de conjugaison comaigre mais n’a pas d’amples génériques. Un certain nombre
d’autres sous-groupes polonais de S∞, comme le groupe des homéomorphismes de l’espace de
Cantor (Kwiatkowska, [K7]), ont aussi des amples génériques et par conséquent, la propriété
de continuité automatique.

Malheureusement, les groupes polonais plus gros sont souvent loin d’avoir des amples géné-
riques : dans le groupe d’isométries de l’espace d’Urysohn ou dans le groupe d’automorphismes
de l’algèbre de mesure de l’intervalle, dans le groupe unitaire d’un espace de Hilbert séparable,
toutes les classes de conjugaison sont maigres ([K6]). Néanmoins, même parmi les groupes qui
n’ont pas d’amples génériques, plusieurs groupes polonais satisfont la propriété de continuité
automatique. Rosendal et Solecki ([RS]) ont contourné l’absence d’amples génériques et mon-
tré la propriété de continuité automatique pour le groupe d’automorphismes des rationnels, le
groupes des homéomorphismes de la droite réelle et le groupe des homéomorphismes du cercle.

L’observation que certains gros groupes polonais n’ont pas d’amples génériques a amené
Ben Yaacov, Berenstein et Melleray ([BBM]) à concevoir une version plus faible des amples
génériques : les amples génériques topométriques, que plus de groupes polonais satisfont. Le
fait que tout groupe polonais soit le groupe d’automorphismes d’une structure métrique est
crucial dans leur travail. Un tel groupe d’automorphismes, en plus de son habituelle topologie
de la convergence simple, est naturellement muni de la distance uniforme. Cette distance est
bi-invariante et, au moins dans le cas où la structure est séparablement catégorique, définit une
uniformité bi-invariante canonique qui raffine la topologie polonaise usuelle. Les amples géné-
riques topométriques sont définis en entrelaçant la distance uniforme et la topologie. Suivant
la preuve de Kechris et Rosendal, Ben Yaacov, Berenstein et Melleray montrent que si G a
des amples génériques topométriques, il satisfait une version topométrique de la propriété de
continuité automatique : tout morphisme de groupe de G dans un groupe séparable qui est
continu pour la distance uniforme doit également être continu pour la topologie usuelle. Pour
vérifier que des structures spécifiques ont des amples génériques topométriques, Ben Yaacov,

9Par conséquent, la propriété d’extension est souvent appelée propriété de Hrushovski.
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Berenstein et Melleray font appel à des structures dénombrables denses10 qui, elles, ont des
amples génériques. En combinant ceci avec des résultats de Kittrell et Tsankov ([KT]), ils ob-
tiennent la propriété de continuité automatique pour le groupe d’automorphismes de l’algèbre
de mesure de l’intervalle. Avec des idées similaires, Tsankov ([T3]) a prouvé, que le groupe
unitaire d’un espace de Hilbert satisfait également la propriété de continuité automatique.

Dans la même veine, Sabok ([S1]) a introduit une méthode pour prouver la propriété de
continuité automatique, dont une étape consiste à extraire une structure dénombrable avec
la propriété d’amalgamation libre et la propriété d’extension. Sa preuve se base sur celle de
Rosendal et Solecki de la propriété de continuité automatique pour le groupe Homéo(2N) ([RS],
qui a été écrit avant que Kwiatkowska ne montre qu’il a en fait des amples génériques). Plus
précisément, Sabok isole un ensemble de propriétés combinatoires sur une structure métrique qui
miment les amples génériques et impliquent la propriété de continuité automatique pour son
groupe d’automorphismes. Les conditions comprennent la propriété d’extension, une version
métrique de la propriété d’amalgamation libre, une condition ad hoc d’homogénéité locale
appelée la propriété d’isolement, ainsi que la condition notable que la structure soit exactement
ultrahomogène. Elles ont ensuite permis a Sabok d’obtenir que le groupe d’isométries de l’espace
d’Urysohn a la propriété de continuité automatique.

Nous nous intéressons à une propriété de stabilité de la classe des groupes qui ont la pro-
priété de continuité automatique : quand est-il vrai que si G satisfait la propriété de continuité
automatique, alors GN aussi ? Bien qu’il ne soit pas vrai en général que la puissance infinie
d’un groupe avec la propriété de continuité automatique a encore la propriété de continuité
automatique, les amples génériques, eux, passent aux puissances dénombrables ! Dans [RS],
Rosendal et Solecki ont montré la propriété de continuité automatique non seulement pour
Homéo(2N) mais aussi pour Homéo(2N)N (avant que l’on ne sache que Homéo(2N) a des amples
génériques). Naturellement, cela soulève la question pour les conditions de Sabok : passent-elles
aux puissances infinies ? La réponse n’est pas claire ; cependant, il se trouve qu’elles n’en sont
pas loin. En effet, Malicki ([M1]) a proposé une version légèrement modifiée des conditions
de Sabok, conçue pour mimer encore mieux les amples génériques, afin d’en retrouver plus
de conséquences. D’une manière semblable à [RS], à partir d’une structure métrique M, nous
construisons la structure juxtaposée de M, dont le groupe d’automorphismes est la puissance
infinie de celui de M. Nous prouvons alors que les conditions de Malicki passent aux structures
juxtaposées. Ainsi, nous obtenons que les groupes Iso(U)N, U(`2)N et Aut(µ)N satisfont la pro-
priété de continuité automatique.

Comme on l’a mentionné plus haut, les gros groupes polonais ont tendance à ne pas avoir
d’amples génériques. Kechris et Rosendal ont même demandé s’il existait un groupe polonais
avec des amples génériques en dehors de S∞. Un exemple étonnamment simple d’un tel groupe
est ressorti d’une discussion avec François Le Maître ([KLM]) sur les généralisations possibles
du résultat précédent sur la propriété de continuité automatique pour les puissances de groupes.
En effet, nous avons remarqué que le groupe GN n’est autre que le groupe L0(N, G) des fonctions
(mesurables) sur les entiers à valeurs dans G. Il est par conséquent naturel de considérer le
groupe polonais L0([0, 1], G) des variables aléatoires sur l’intervalle à valeurs dans G. La preuve
du fait que si G a des amples génériques, alors GN aussi, s’adapte à L0([0, 1], G) en utilisant le
théorème d’uniformisation de Jankov-van Neumann. De plus, le groupe L0([0, 1], G) est toujours
connexe (et même contractile), tandis que S∞ est totalement discontinu, donc L0([0, 1], G) ne
peut pas être un sous-groupe de S∞. En conséquence, comme G se plonge dans L0([0, 1], G),
nous prouvons même que tout groupe polonais qui a des amples génériques se plonge dans un
groupe connexe qui a des amples génériques. Nous exhibons une autre classe d’exemples, les
groupes pleins de relations d’équivalence ergodiques hyperfinies de type III, dont il se trouve

10En fait, de nombreuses limites de Fraïssé dénombrables admettent des analogues continus, et vice versa.
Par exemple, l’espace d’Urysohn est l’homologue continu de l’espace d’Urysohn rationnel, qui est la limite de
Fraïssé de tous les espaces métriques finis à distances rationnelles.
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qu’ils se plongent également dans L0([0, 1], S∞). Notons que simultanément, Malicki a produit
encore une autre classe de groupes polonais avec des amples génériques qui ne sont pas des
sous-groupes fermés de S∞ ([M1]).

Quant à étendre les techniques de Malicki au groupe L0([0, 1], G), malheureusement, nous
ne sommes pas allés très loin. Si M est une structure métrique, alors L0([0, 1],Aut(M)) est
le groupe d’automorphismes d’une randomisée de M, qui reste ultrahomogène quand M l’est.
Néanmoins, pour faire passer les autres conditions à la randomisée, il semble que l’on a besoin
qu’elles soient, en un certain sens, uniformes, ce qui n’a pas l’air d’être le cas dans nos exemples.
Par exemple, on ne sait toujours pas si les groupes L0([0, 1], Iso(U)) ou L0([0, 1],Aut(µ)) satis-
font la propriété de continuité automatique.

Passons maintenant à un aspect différent de la correspondance entre groupes et structures :
une approche combinatoire de la dynamique topologique. On a mentionné qu’un certain nombre
de gros groupes polonais sont extrêmement moyennables, c’est-à-dire que toutes leurs actions
continues sur un espace compact admettent un point fixe. L’étude de la propriété de point fixe
sur les compacts11 a commencé dans le contexte des semi-groupes (voir [M10] et [G4]). Les
premiers exemples de groupes topologiques extrêmement moyennables ont été construits par
Herer et Christensen ([HC]) et appelés exotiques12. Plus tard, des exemples plus naturels de
groupes extrêmement moyennables sont apparus : le groupe unitaire d’un espace de Hilbert
séparable (Gromov-Milman, [GM2]), le groupe des homéomorphismes croissants de l’intervalle
(Pestov, [P4]), L0([0, 1], S1) (Glasner, [G2]). Les preuves utilisaient la concentration de la
mesure (voir par exemple [L2]). Pestov a ensuite mis en lumière une relation entre l’extrême
moyennabilité et la théorie de Ramsey structurale. En utilisant le théorème de Ramsey fini,
il a démontré que le groupe d’isométries de l’espace d’Urysohn est extrêmement moyennable
([P2]).

Le cadre général qui sous-tend cette connexion a été mis en lumière par Kechris, Pestov
et Todorčević dans [KPT] pour les sous-groupes fermés de S∞. Ils ont prouvé que le groupe
d’automorphismes d’une limite de Fraïssé est extrêmement moyennable si et seulement si la
classe de Fraïssé satisfait la propriété de Ramsey (sous l’hypothèse que les objets soient rigides ;
typiquement, c’est le cas des structures ordonnées). Une classe K a la propriété de Ramsey si
pour toute palette de k couleurs, pour toute petite structure A et toute moyenne structure
B dans K, il existe une grosse structure C toujours dans K telle que pour tout coloriage de
l’ensemble des copies de la petite structure A dans C en des couleurs de la palette, il existe une
copie de la moyenne structure B dans C à l’intérieur de laquelle toutes les copies de A ont la
même couleur (voir figure 0.2). En d’autres termes, la propriété de Ramsey assure l’existence
de grosses sous-structures monochromatiques.

C

B̃

Figure 0.2. La propriété de Ramsey
11Le nom "extrêmement moyennable" est né d’un parallèle avec (l’une des multiples caractérisations de) la

moyennabilité, dont on parlera plus tard. Il est probablement dû à Granirer.
12Comme ce phénomène ne peut pas avoir lieu dans le contexte plus communément étudié des groupes

localement compacts, un tel résultat est effectivement très surprenant.
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À partir de cette puissante caractérisation, des théorèmes de Ramsey déjà connus ont fourni
de nouveaux exemples de groupes extrêmement moyennables. Par exemple, Nešetřil et Rödl
([NR]) ont montré que la classe de Fraïssé des graphes finis ordonnés a la propriété de Ramsey,
le groupe d’automorphismes du graphe aléatoire ordonné est donc extrêmement moyennable.
Remarquablement, l’équivalence a aussi été utilisée dans l’autre direction : Pestov a prouvé
que le groupe d’isométries de l’espace d’Urysohn est extrêmement moyennable, ce qui a poussé
Nešetřil à vérifier que la classe des espaces métriques finis à distances rationnelles a la propriété
de Ramsey (voir [NVT]). De plus, la méthode de Kechris, Pestov et Todorčević a été appliquée
pour calculer le flot universel minimal de plusieurs groupes polonais ; pour plus de détails sur
les développements de la correspondance de Kechris-Pestov-Todorčević, voir la récente étude
de Nguyen van Thé ([T1]).

Cette correspondance a été étendue au cadre continu par Melleray et Tsankov ([MT1]).
Ils introduisent une version approchée de la propriété de Ramsey et montrent que l’extrême
moyennabilité du groupe d’automorphismes d’une limite de Fraïssé métrique équivaut à ce
que la classe satisfasse cette propriété. Cela capture un résultat similaire obtenu par Pestov
([P2]) sur les groupes d’isométries d’espaces métriques ultrahomogènes. Pour cette propriété
de Ramsey approchée, un changement notable est le fait qu’ils imposent une condition de
régularité sur les coloriages, afin de contrôler les divers epsilons qu’engendre l’ultrahomogénéité
approchée. Par ailleurs, ils fournissent un critère pour vérifier la propriété de Ramsey approchée,
dont l’intuition provient de l’observation de Kechris et Rosendal que si une classe de Fraïssé a la
propriété d’extension, alors le groupe d’automorphismes de sa limite contient une union dense
de sous-groupes compacts, ce qui implique qu’il est moyennable ([KR]). Plus précisément, le
critère fait intervenir un affaiblissement de la propriété d’extension, ainsi qu’une condition qui
permet l’utilisation de la concentration de la mesure. Bien que cela leur permette de retrouver
l’extrême moyennabilité de plusieurs groupes polonais, le critère n’a pas encore été appliqué
pour trouver de nouveaux groupes extrêmement moyennables. Néanmoins, le caractère finitaire
de la propriété de Ramsey approchée permet à Melleray et Tsankov ([MT2]) de calculer sa
complexité : l’extrême moyennabilité est une notion Gδ, ce qui est intéressant du point de vue
de la catégorie de Baire.

Par ailleurs, la correspondance de Kechris-Pestov-Todorčević a été transférée par Moore
([M12]) à la moyennabilité pour les sous-groupes fermés de S∞. La moyennabilité a été intro-
duite par von Neumann ([N]) à la fin des années vingt pour mieux comprendre le paradoxe
de Banach-Tarski13. C’est une notion bien mieux connue que sa petite sœur, puisqu’elle a été
étudiée en profondeur pour les groupes discrets. Dans ce cadre, la moyennabilité est définie
comme l’existence d’une moyenne invariante sur le groupe, et admet de nombreuses définitions
équivalentes. Nous n’évoquerons pas celles-ci mais nous concentrerons sur les groupes topolo-
giques. Pour ces derniers, elle est définie comme suit : un groupe topologique est moyennable si
chaque fois qu’il agit continument sur un espace compact, l’action admet une mesure de pro-
babilité borélienne invariante. Cette définition coïncide bien sûr avec la notion précédente dans
le cas discret. Les exemples de groupes polonais moyennables abondent, d’autant plus que la
moyennabilité n’exclut pas les groupes localement compacts : les groupes compacts, les groupes
abéliens, les groupes résolubles, S∞, et plus généralement tous les groupes d’automorphismes de
structures de Fraïssé avec la propriété d’extension sont moyennables, pour ne nommer qu’eux.

La moyennabilité admet aussi une description en termes de combinatoire finie, comme l’ont
montré Tsankov dans une note non publiée et Moore ([M12]). L’idée sous-jacente à cette
description est que l’extrême moyennabilité, qui fournit des points fixes aux actions, correspond
au fait pour les coloriages d’avoir de gros ensembles monochromatiques (donc, en un sens, fixes).
De même, la moyennabilité donne des mesures de probabilités fixes, que l’on peut envisager
comme des barycentres de mesures de Dirac. Ainsi, le pendant de la propriété de Ramsey adapté
à ce contexte devrait garantir l’existence de grosses "combinaisons convexes monochromatiques
d’ensembles". C’est précisément le contenu combinatoire de la moyennabilité. En effet, Moore

13Connaissez-vous un bon anagramme de "Banach-Tarski" ?
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a introduit la propriété de Ramsey convexe et a montré qu’une classe de Fraïssé satisfait cette
propriété si et seulement si le groupe d’automorphismes de sa limite est moyennable.

En combinant ceci avec les idées de Melleray et Tsankov, nous étendons la caractérisation de
Moore au cadre continu. Exactement comme dans [MT1], nous remplaçons la notion classique
de coloriage par des coloriages lipschitziens pour introduire la propriété de Ramsey convexe mé-
trique, et, refermant le diagramme, nous montrons l’exact analogue du résultat de Moore pour
les groupes d’automorphismes de limites de Fraïssé métriques. Ces descriptions combinatoires
de la moyennabilité n’ont pas encore mené à de nouveaux exemples de groupes moyennables.
En fait, il n’y a pas de technique connue pour montrer la propriété de Ramsey convexe di-
rectement, encore moins pour la version métrique. Néanmoins, notre caractérisation a conduit
à de belles propriétés structurales sur la moyennabilité. En particulier, nous montrons que la
moyennabilité est elle aussi une condition Gδ. Cela signifie que la moyennabilité revient essen-
tiellement à une condition ∀∃, alors qu’elle était définie dans l’autre sens (de manière simplifiée,
elle consiste à dire qu’"il existe une mesure qui donne la même mesure aux translatés de tous
les ensembles"). Moore avait prouvé que pour les groupes discrets, on pouvait effectivement
échanger les quantificateurs dans la définition de la moyennabilité. Nous montrons que c’est
aussi le cas pour les groupes polonais dans la définition de la moyennabilité. Remarquons qu’il
découle des travaux de Melleray et Tsankov qu’il en est de même pour l’extrême moyennabilité.

Enfin, nous étudions une dernière facette de notre correspondance directrice : à quel point
le groupe d’automorphismes d’une limite de Fraïssé permet-il de décrire les isomorphismes à
l’intérieur de la structure. Plus précisément, les limites de Fraïssé sont ultrahomogènes, ce qui
veut dire que les classes d’isomorphisme de structures finies sont exactement les orbites sous
l’action du groupe d’automorphismes. Qu’en est-il des classes d’isomorphisme de structures
plus grandes ? Panagiotopoulos ([P1]) donne des conditions sur une structure de Fraïssé pour
que les isomorphismes entre structures génériques s’étendent. Nous abordons la question sous
un angle différent. Ayant fixé une structure de Fraïssé précise, on voudrait trouver toutes les
sous-structures qui ont la propriété d’homogénéité, c’est-à-dire trouver les sous-structures telles
que tout isomorphisme entre deux copies de la sous-structure s’étende en un automorphisme
de la structure toute entière. Cette question a été posée à l’autrice par Julien Melleray pendant
un programme semestriel à Bonn.

Les premiers résultats allant dans cette direction se trouvent dans les travaux de Huhu-
naišvili ([H3]) sur l’espace de Urysohn. En effet, Huhunaišvili a prouvé que non seulement
l’espace d’Urysohn est ultrahomogène, mais que plus encore, toute isométrie entre sous-espaces
compacts s’étend en une isométrie globale de l’espace d’Urysohn. Melleray ([M3], voir [M4])
a ensuite montré que les sous-espaces (relativement) compacts sont les seuls sous-ensembles
satisfaisant cette propriété. Pour cela, il caractérise les espaces compacts comme étant les seuls
espaces dont chaque extension métrique par un point est déterminée par un ensemble compact.
Avec Isabel Müller et Aristotelis Panagiotopoulos, nous introduisons un analogue de cette pro-
priété pour les classes de Fraïssé classiques : la finitude typique, qui affirme que tous les types
au-dessus de notre sous-structure sont déterminés par un ensemble fini. Nous montrons alors
qu’une sous-structure a la propriété d’homogénéité si et seulement si elle est typiquement finie.

Nous étudions plus avant la finitude typique dans des exemples concrets ; dans beaucoup
d’exemples de structures de Fraïssé, nous montrons que les sous-structures typiquement finies
doivent en fait être finies. C’est le cas de toutes les structures dénombrablement catégoriques
ainsi que de l’espace d’Urysohn rationnel. On espère obtenir une description plus explicite des
structures typiquement finies. De plus, notre résultat ouvre plusieurs perspectives de générali-
sation. Par exemple, nous essayons actuellement de voir ce qui se passe dans le cadre métrique,
en dehors du cas particulier de l’espace d’Urysohn. Dans la mesure où les limites de Fraïssé ne
sont pas toujours ultrahomogènes, il est probablement nécessaire de se restreindre à celles dont
on sait déjà qu’elles sont ultrahomogènes. La caractérisation attendue devrait alors ressembler
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à la détermination compacte des types ; la signification précise de détermination compacte est
cependant très loin d’être claire.

Par ailleurs, on s’intéresse à une version plus faible de la propriété d’homogénéité : on peut
ne demander seulement que le groupe d’automorphismes de toute la structure de Fraïssé agisse
transitivement sur les copies de la sous-structure. Dans l’espace d’Urysohn, Melleray a montré
que c’est en fait équivalent à la propriété d’homogénéité. Nous montrons que c’est aussi le cas
dans les structures de Fraïssé classiques qui admettent une relation d’indépendance stationnaire
(au sens de [TZ2]), dont un cas particulier sont les structures avec la propriété d’amalgamation
libre. Nous aimerions trouver un exemple de structure dans laquelle les deux propriétés diffèrent.

Nous avons opté pour une organisation arborée de la thèse. La partie tronc contient essen-
tiellement des prérequis sur les mots du titre. Elle se dirige vers la correspondance entre groupes
polonais et groupes d’automorphismes de structures approximativement ultrahomogènes. Plus
spécifiquement, le chapitre 1 survole les propriétés de base dont on aura besoin sur les groupes
polonais. En particulier, on passe en revue les différentes structures uniformes dont on peut mu-
nir les groupes polonais. Dans le chapitre 2, on présente l’espace d’Urysohn et sa construction
moderne. Bien que l’espace d’Urysohn ne soit pas à strictement parler essentiel pour établir
la correspondance, nous estimons qu’il mérite, en tant que bel objet qui capture très bien les
idées de la logique continue, d’être mis en valeur. Il sera notre espace compagnon tout au long
de cette thèse, comme il l’a été durant ces quatre dernières années. Le chapitre 3 pose ensuite
en détail les bases de la théorie des modèles afin de fixer précisément nos conventions. De plus,
nous profitons de l’occasion pour présenter les deux cadres en parallèle, de manière à souligner
leurs similarités et leurs différences, et ce dans une présentation, on l’espère, auto-contenue. De
même, nous exposons à la fois les théories de Fraïssé classiques et métriques dans le chapitre 4.
Toutefois, les outils élégants utilisés du côté métrique n’étant pas bien connus, nous leur consa-
crons une partie conséquente du chapitre. Ainsi équipés, nous donnons finalement au chapitre
5 la preuve du fait que tout groupe polonais est le groupe d’automorphismes d’une limite de
Fraïssé métrique.

Chaque branche porte sur un aspect de cette correspondance, les branches apparaissant dans
le même ordre que dans l’introduction. La branche 1 commence par un chapitre de prérequis
sur la catégoricité dénombrable et séparable, que l’on présente côte à côte également. Nous
procédons ensuite à la version métrique de la reconstruction d’Ahlbrandt et Ziegler dans le
chapitre 6, collaboration avec Itaï Ben Yaacov qui est paru dans [BK3]. La deuxième branche
traite des questions de continuité automatique pour les puissances infinies de groupes polonais.
Elle contient également une partie d’un travail fait en collaboration avec François Le Maître
dans lequel nous exhibons des exemples de groupes polonais connexes qui ont des amples
génériques. La branche 3, qui est parue dans [K1], décrit notre caractérisation combinatoire
de la moyennabilité pour les groupes polonais généraux. Enfin, la branche 4 contient un travail
en cours et en collaboration avec Isabel Müller et Aristotelis Panagiotopoulos sur la propriété
d’homogénéité dans les structures de Fraïssé.





Introduction

What do a regular tree, the order on the rationals, a Hilbert space and an algebraically
closed field have in common? They admit plenty of symmetries: they are ultrahomogeneous. A
structure is ultrahomogeneous if every isomorphism between finitely generated substructures
can be extended to an automorphism of the whole structure. In other words, ultrahomogeneity
guarantees that finite configurations can be found everywhere in the structure, thus yielding a
very rich group of symmetries.

Just like their finite substructures, ultrahomogeneous structures are ubiquitous. The first
example of such a structure is a set, with no further structure, where finite bijections always
extend. More interestingly, the rationals as an ordered set are ultrahomogeneous. This can
be proven by a back-and-forth argument, which turns out to be the most fruitful technique in
proving ultrahomogeneity for countable structures. Indeed, the back-and-forth method consists
in exhausting the countable structure as a union of finite sets and then in constructing an
isomorphism inductively as the limit of maps between those finite sets. With the same method14,
the rationals can be characterized as the only countable dense order without endpoints (Cantor,
[C]), properties that one may check on finite substructures. Building on the example of the
rationals and the efficiency of the back-and-forth technique, Fraïssé introduced in [F] a unified
approach to countable ultrahomogeneous structures, where finite structures play a central role.

Another example of an ultrahomogeneous structure that provides insight into Fraïssé theory
is the random graph, although it appeared later. It is so called because Erdös and Rényi ([ER])
built it as follows: starting from the complete graph on the integers, for each edge, decide
whether to keep this edge or to take it out by flipping a coin. This process happens to give
almost surely the same graph: the resulting graph almost surely has the property that for any
two disjoint finite subgraphs, one can find a vertex that is related to every vertex in the first
graph but no vertex in the second one. A stroke of back-and-forth then shows that any two
graphs with that property are isomorphic. But the random graph deserves its name for yet
another reason: it contains an isomorphic copy of every finite graph, and actually, an isomorphic
copy of every countable graph. The construction of the random graph as a universal object for
the class of finite graphs is due to Rado15 ([R1]). The idea behind such a construction is that
finite graphs can be glued together nicely so as to yield the random graph; so nicely that not
only every finite graph can be found inside the random graph, but everywhere at that!

Fraïssé theory is exactly a way of building ultrahomogeneous structures by gluing finite
structures together. More precisely, the class of all finite substructures of an ultrahomogeneous
structure, which is called its age, enjoys good amalgamation properties (see figure ). A Fraïssé
class is a countable (up to isomorphism) class that satisfies the same amalgamation properties.
Fraïssé’s theorem states that every Fraïssé class is in fact the age of some countable ultrahomo-
geneous structure. Moreover, such a structure is unique; we call it the Fraïssé limit of the class.
The rationals are thus the Fraïssé limit of the class of all finite ordered sets and the random
graph that of the class of all finite graphs. This powerful result ensures that ultrahomogeneous
structures are indeed characterized by their substructures, as was expected from the examples
of the rationals and the random graph. As a consequence, Fraïssé theory allows for a combi-
natorial treatment of ultrahomogeneous structures, and especially of the dynamical properties

14In [P6], Plotkin argues that Cantor only used a forth argument in [C], and credits Huntington ([H4])
and Hausdorff ([H1]) for introducing and popularizing the back step alongside.

15The random graph is sometimes called the Rado graph.
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D

B C

A

Figure 0.3. The amalgamation property: if a structure A embeds in two dif-
ferent structures B and C of the class, then both those structures themselves
embed in a fourth structure D, still in the class, so that the diagram commutes.

of their automorphism groups, as we will see in more detail later on.

The automorphism group of a countable ultrahomogeneous structure, endowed with the
topology of pointwise convergence, is a closed subgroup of S∞, the permutation group of an
infinite countable set. Hence, it is a Polish group: a topological group which is separable
and admits a complete compatible metric. The class of Polish groups is very rich: notably, it
admits universal objects, such as the homeomorphism group of the Hilbert cube ([U2]) and the
isometry group of the Urysohn space ([U4]). Moreover, it is quite wide, as every metrizable
locally compact group is Polish. But the class of Polish groups reaches far beyond that: the
unitary group of the separable Hilbert space or the group of increasing homeomorphisms of the
interval are Polish groups too, which differ greatly from locally compact ones. For instance,
any of their continuous actions on a compact space must admit a global fixed point (they are
called extremely amenable), whereas a result of Veech ([V2]) excludes this phenomenon for
non-trivial locally compact groups.

We do not have so powerful a tool as Haar measure in the context of larger Polish groups.
However, separability gives us a hold over the spaces and allows for inductive arguments, while
completeness enables the use of Baire category methods, yielding a quite robust theory for Polish
groups (see [K4] and [G1]). In particular, Baire category determines a notion of complexity,
and of genericity, competing with that of full measure subsets (see [O] for the comparative
merits of measure and category). This makes Polish groups an ideal ground for descriptive set
theory, and they are systematically studied as such since the work of Polish mathematicians
(as the name suggests) in the early twentieth century.

A result of Pettis ([P5]) states that any group homomorphism between Polish groups,
provided it is Baire-measurable (a mild assumption that all Borel maps satisfy), is automatically
continuous. Besides, Effros characterized in [E1] the Polishness of orbits under continuous
actions of Polish spaces: this is equivalent to the orbit maps being open. These two strong
results have led to the booming study of definable (mostly continuous and Borel) actions of
Polish groups (see [BK2]) and the orbit equivalence relations they induce (see [G1]). This is
a very rich theory; let us mention, for instance, the existence of universal actions for a Polish
group ([BK1], [H4]). The structure of those equivalence relations were in particular described
by beautiful dichotomy theorems ([HKL], [KST], [M9]) and (non-)classification results ([H3],
[K5]).

Descriptive set theory and model theory maintain close relations. Maybe the first notable
example of such a relation resides in the reformulation of the Vaught conjecture ([V1]) in
terms of a specific action of a Polish group. The Vaught conjecture states that a theory in a
countable language admits either countably many or continuously many countable models. It
was generalized to a topological Vaught conjecture ([M8]), whose phrasing is reminiscent of
the Glimm-Effros dichotomy: it asserts that every continuous action of a Polish group admits
either countably many or continuously many orbits. For this topological version, some strong
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partial results have been obtained, see [B2]. The other notable interaction between the two
fields, which is at the heart of this thesis, is that Polish groups can be approached as auto-
morphism groups. More precisely, we have mentioned that automorphism groups of countable
(ultrahomogeneous) structures are closed subgroups of S∞. It turns out that the converse also
holds: every closed subgroup of S∞ is isomorphic to the automorphism group of some countable
structure! Even better, by naming the orbits under the action of the group, we can make the
structure ultrahomogeneous.

This enlightening correspondence is not limited to subgroups of S∞, and can actually be
extended to all Polish groups, via continuous logic. The latter was developed by Ben Yaacov
and Usvyatsov in [BU2], along with Berenstein and Henson ([BBHU]), in order to study
metric structures. The idea is to replace points with the distance functions to the points, as
well as the usual truth values true and false with a continuum of truth values, generally the
interval [0, 1]. A relation then becomes a uniformly continuous function that takes its values in
[0, 1] instead of {0, 1} and a metric structure is a complete metric space, equipped with a family
of such relations. Note that classical structures fit into that framework: when endowed with
the discrete metric, they become metric structures. In this metric context, automorphisms
are in particular isometries. Besides, the natural continuous counterpart of countability is
separability, so that the automorphism groups of separable metric structures are Polish. The
crucial observation that those encompass all Polish groups is due to Melleray ([M5]).

Furthermore, as in the discrete setting, we may require the structure to be highly symmetric.
To that purpose, the ultrahomogeneity assumption is relaxed. A metric structure is approxi-
mately ultrahomogeneous if every isomorphism between finite substructures can be extended,
up to an arbitrarily small distance error, to an automorphism of the whole structure. Then,
again by naming the closures of orbits in the language, every Polish group can be made into
the automorphism group of an approximately ultrahomogeneous structure.

Many metric structures that arise naturally are approximately ultrahomogeneous: the mea-
sure algebra of an interval, (the unit ball of) a separable Hilbert space or Lp spaces. All of those
examples are in fact exactly ultrahomogeneous. This is however not the case in general that the
word "approximately" can be dropped: Banach lattices or the Gurarij space, which surface as
naturally, are only approximately ultrahomogeneous (see [BBHU] and [M2]). Melleray asked
whether every Polish group was nonetheless the automorphism of some exactly ultrahomoge-
neous structure. It it not the case: Ben Yaacov recently provided examples of Polish groups
that cannot act transitively continuously by isometries on any complete metric space ([B7]).
The question of the exact ultrahomogeneity of metric structures will still come up as a subplot
throughout the thesis.

An important example of an ultrahomogeneous metric structure, which conveys much in-
tuition, is the Urysohn space. The Urysohn space is the unique metric space, up to isometry,
that is both ultrahomogeneous and universal for the class of all finite metric spaces. In analogy
with the random graph, this whispers the idea of a metric version of Fraïssé theory. Such
a theory, much analogous to the classical one (with a relaxed amalgamation property), was
indeed developed by Schoretsanitis ([S2]) and Ben Yaacov ([B5]). As expected, the Urysohn
space is the Fraïssé limit of the class of all finite metric spaces, the Hilbert space that of the
class of finite-dimensional Hilbert spaces, the measure algebra of the interval that of the class
of all finite measure algebras. This analogue of Fraïssé theory provides a nice setting in which
we can apply combinatorial arguments to general Polish groups as well.

The interplay between descriptive set theory of Polish groups and model theory of Fraïssé
structures has proven very fruitful. In this thesis, we shall see a sample of various aspects of
this flourishing correspondence.

The question naturally arises of how good the correspondence is: what does the automor-
phism group remember about the structure? In other words, can the structure be reconstructed
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from the automorphism group alone? Ahlbrandt and Ziegler ([AZ]) gave a positive answer for
a special class of homogeneous countable structures, countably categorical ones16. A structure
is countably categorical if it is the only countable model of its theory: any countable structure
that satisfies the same (first-order) properties is isomorphic to it. There are many countably
categorical structures especially among Fraïssé limits. For example, the rationals and the
random graph are countably categorical, since not only are they characterized by their finite
substructures but the characterization is expressed by first-order sentences, and hence belongs
to the theory.

On the other hand, countable categoricity provides enough rigidity to enable a richer cor-
respondence between the structure and its automorphism group. Indeed, at our disposal is
the very powerful Ryll-Nardzewski theorem, which describes types in a countably categorical
structure. This has many consequences, especially for the action of the automorphism group.
The theorem asserts that the group must act oligomorphically, that is, with finitely many orbits
and that the space of types must be finite. In particular, this yields a characterization of defin-
ability that is expressed purely in terms of the automorphism group: in a countably categorical
structure, definability simply boils down to invariance under the action of the automorphism
group. This characterization constitutes an essential tool in the reconstruction.

The reconstruction Ahlbrandt and Ziegler propose is the following. They show that two
countably categorical structures whose automorphism groups are isomorphic (as topological
groups) are bi-interpretable. More precisely, if two structures are bi-interpretable, each of them
embeds in the imaginaries of the other, that is, in a definable quotient of a finite power of
the other. Thus, they recover, if not the original structure, at least all its model-theoretic
properties.

With Itaï Ben Yaacov, we extend this reconstruction result to the continuous setting, where
countable categoricity is replaced by separable categoricity. The class of separably categorical
structures is quite large too, as it includes the measure algebra, (the unit ball of) a separa-
ble Hilbert space, and the Urysohn sphere. Besides, it enjoys very similar properties to the
countable case. Again, definability can be characterized as invariance under the action of the
automorphism group. Indeed, the Ryll-Nardzewski theorem generalizes naturally to metric
structures (see [BU1] and [BBHU]): the space of types in a separably categorical structure
must be compact (for a natural metric) and the automorphism group must act approximately
oligomorphically, that is, with compactly many orbits. Thus, the space of types has a tree-like
topological structure, a description that we use extensively in the proof.

In metric model theory, the definition of imaginaries has to be slightly modified: one needs
to allow infinite definable quotients to take converging sequences of epsilons into account (see
the discussion in [BU2]). In [BK3], we define the notion of an interpretation between metric
structures accordingly. Then, as anticipated, we prove that two separably categorical metric
structures whose automorphism groups are topologically isomorphic are bi-interpretable. Our
proof, however, differs from the classical one and is intrinsically metric in nature. Indeed, we
exploit Melleray’s proof ([M5]) that every Polish group is the automorphism group of some
metric structure: using a standard construction, he produces a canonical17 metric structure
associated to a Polish group, its hat structure. We actually show that every separably categorical
structure is bi-interpretable with the hat structure of its automorphism group.

This reconstruction result ensures that every model-theoretic property of separably cate-
gorical structures is encoded in their automorphism group, that it is really a topological prop-
erty. The construction of the actual dictionary was initiated by Ben Yaacov and Tsankov in
[BT1], with an entry on stability. The right translation involves the Roelcke compactification

16The parentality of this result is a bit unclear, actually. Ahlbrandt and Ziegler attribute it to Coquand
(in an unpublished note) and it appears that the idea was out there for quite some time that this result should
be true.

17Technically, the hat structure is associated to a left-invariant metric on the Polish group. However, up to
bi-interpretability, it does not depend on the choice of such a left-invariant metric.
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of the automorphism group. Indeed, automorphism groups of separably categorical structures
are Roelcke-precompact (this follows from the approximate oligomorphicity of their action, see
[R3]). Conversely, Ben Yaacov and Tsankov, and independently Rosendal ([R4]), showed that
every Roelcke-precompact Polish group arises as such. With this observation in hand, Ben
Yaacov and Tsankov prove that stability corresponds to the weak almost periodicity of the
Roelcke compactification of the automorphism group, and they study those compactifications
from a model-theoretic viewpoint. Ibarlucía ([I]) then extended the dictionary to dependent
metric structures. Amusingly enough, the very word "independent" was commonly used on the
topological side (see [R5] or [GM1]), to designate the same notion, long before the connection
with model theory was noticed!

This type of reconstruction involves the automorphism group together with its topology. It
is therefore legitimate to ask whether the abstract group alone suffices to recover the structure.
Unfortunately, in general, it does not: Evans and Hewitt ([EH]) constructed a counterexam-
ple in the countably categorical case, answering a question of Rubin ([R6]). However, model
theorists were (and are) still interested in the question of recovering the topology of a group
from its algebraic structure. To that aim, the small index property was extensively studied.
This property states that all subgroups of countable index are open. The small index property
is equivalent to every homomorphism from the group to S∞ being continuous. Thus, for the
automorphism group of a countable structure, the small index property guarantees that the
algebraic structure of the group already encodes its topology, and that the stronger reconstruc-
tion goes through. This is the case for a great many automorphism groups, such as S∞ itself
(Semmes, [S3]) or the automorphism group of the rationals (Truss, [T2]). See [HHLS] and
[L1] for more details on the small index property and the reconstruction problem.

In [HHLS], Hodges, Hodkinson, Lascar and Shelah introduced a powerful tool, ample
generics, to prove the small index property for automorphism groups of countable structures.
The notion was refined and further investigated by Kechris and Rosendal ([KR]). A Polish
group G has ample generics if for every n in N, the diagonal conjugacy action of G on Gn

admits a comeager orbit. This implies in particular that G has a comeager conjugacy class,
a phenomenon Wesolek ruled out for locally compact Polish groups ([W]). Ample generics
are particularly interesting, for beyond the small index property, they imply a very strong
property: the automatic continuity property. Namely, if G has ample generics, then every
group homomorphism from G to any separable topological group — not just a closed subgroup
of S∞ — is automatically continuous. This beautiful property guarantees that the topology
on the group is the unique Polish topology compatible with its algebraic structure, a powerful
reconstruction result.

For closed subgroups of S∞, seen as automorphism groups of Fraïssé structures, Kechris
and Rosendal exhibited combinatorial conditions that imply ample generics. In particular, if
a Fraïssé class satisfies the free amalgamation property and the extension property, then the
automorphism group of its Fraïssé limit has ample generics (see [M6]). The extension property
states that any partial isomorphism of a finite structure extends to a global isomorphism of a
bigger, but still finite, structure. It was first proved for the class of finite graphs by Hrushovski18

([H2]). This result was generalized by Herwig and Lascar ([HL], see also [S7]) to classes of
finite structures that omit a certain set of configurations, such as triangle-free graphs. Their
techniques were used by Solecki ([S6]) to prove that the extension property holds for finite
metric spaces. As for the free amalgamation property, it guarantees that unions of partial
isomorphisms extend coherently, by amalgamating their domains as independently as possible.
Applying this combinatorial criterion, we get that the automorphism group of the random
graph, that of Henson’s triangle-free graph, and S∞ have ample generics. The automorphism
group of the rationals, on the other hand, has a comeager conjugacy class but does not have
ample generics. Quite a number of other Polish subgroups of S∞, such as the homeomorphism

18Consequently, the extension property is often named the Hrushovski property.
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group of the Cantor space (Kwiatkowska, [K7]), also have ample generics and therefore the
automatic continuity property.

Unfortunately, for larger Polish groups, ample generics often fail badly: in the isometry
group of the Urysohn space, in the automorphism group of the measure algebra of the interval,
in the unitary group of a separable Hilbert space, all conjugacy classes are meager ([K6]).
Nevertheless, even among groups that do not have ample generics, several Polish groups satisfy
the automatic continuity property. Rosendal and Solecki ([RS]) circumvented the absence of
ample generics and proved the automatic continuity property for the automorphism group of
the rationals, the homeomorphism group of the reals and the homeomorphism group of the
circle.

The observation that some large Polish groups fail to have ample generics led Ben Yaacov,
Berenstein and Melleray ([BBM]) to devise a weaker version of ample generics, ample topomet-
ric generics, that more Polish groups satisfy. Crucial to their work is the fact that every Polish
group is the automorphism group of some metric structure. Such an automorphism group,
apart from its usual pointwise convergence topology, then naturally comes equipped with the
metric of uniform convergence. This metric is bi-invariant and in most cases, defines a canonical
bi-invariant uniformity that refines the usual Polish topology. Ample topometric generics are
defined by intertwining the uniform metric and the topology. Following Kechris and Rosendal,
Ben Yaacov, Berenstein and Melleray prove that if G has ample topometric generics, it enjoys
a topometric version of the automatic continuity property: any group homomorphism from
G to a separable group which is continuous for the uniform topology must be continuous for
the usual topology as well. In order to check ample topometric generics for specific metric
structures, Ben Yaacov, Berenstein and Melleray call on dense countable structures19 that do
have ample generics. Combining this with results of Kittrell and Tsankov ([KT]), they obtain
the automatic continuity property for the automorphism group of the measure algebra of the
interval. With the same ideas, Tsankov ([T3]) proved that the unitary group of a Hilbert space
also satisfies the automatic continuity property.

Along the same line, Sabok ([S1]) introduced a method of proving the automatic continuity
property, a step of which is to extract a countable structure with the free amalgamation property
and the extension property. His proof originates in Rosendal and Solecki’s that the group
Homeo(2N) has the automatic continuity property ([RS], which was written before Kwiatkowska
showed that in fact, it had ample generics). More precisely, Sabok isolates a set of combinatorial
properties on a metric structure which mimic ample generics and imply the automatic continuity
property for its automorphism group. The conditions consist of the extension property, a
metric version of the free amalgamation property, an ad hoc condition of local homogeneity
called the isolation property, as well as the notable condition that the structure be exactly
ultrahomogeneous20. From this, Sabok obtained that the isometry group of the Urysohn space
has the automatic continuity property.

We take an interest in a stability property of the class of groups that have the automatic
continuity property: when is it true that if G satisfy the automatic continuity property, then
so does GN? Although it is not true in general that the infinite power of a group with the
automatic continuity property still has the automatic continuity property, ample generics do
carry to countably infinite powers! In their aforequoted paper, Rosendal and Solecki proved
the automatic continuity property not only for Homeo(2N) but also for Homeo(2N)N (before
Homeo(2N) was known to have ample generics). Naturally, it brings the question for Sabok’s
conditions: do they go through to infinite powers? The answer is not clear; however, it turns

19In fact, many countable Fraïssé limits admit continuous analogues, and vice versa. For instance, the
Urysohn space is the continuous counterpart of the rational Urysohn space, which is the Fraïssé limit of the
class of all finite metric spaces with rational distances.

20As we pointed out before, it would be very nice to have a combinatorial characterization of exact ultra-
homogeneity as well!
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out they almost do. Indeed, Malicki ([M1]) proposed a slightly modified version of Sabok’s con-
ditions, designed to mimic ample generics better still, so as to recover the small index property
at the same time as the automatic continuity property. In a similar way to [RS], from a metric
structure M, we build the juxtaposed structure of M, whose automorphism group is the infinite
power of that of M. Then, we prove that Malicki’s conditions carry to juxtaposed structures.
Hence, we obtain that the groups Iso(U)N, U(`2)N and Aut(µ)N satisfy the automatic continuity
property.

As mentioned before, large Polish groups tend to fail having ample generics. Kechris and
Rosendal have actually asked whether there existed a Polish group outside S∞ with ample
generics. A surprisingly simple example of such a group came out of a discussion with François
Le Maître ([KLM]) on possible generalizations of the previous result on automatic continuity
for group powers. Indeed, we remarked that the group GN is no other than the group L0(N, G)
of all G-valued (measurable) functions on the integers. It is therefore natural to consider the
Polish group L0([0, 1], G) of G-valued random variables on the interval. The proof that if G
has ample generics, then so does GN, readily adapts to L0([0, 1], G) by using the Jankov-van
Neumann uniformization theorem. Moreover, the group L0([0, 1], G) is always connected (even
contractible) while S∞ is totally disconnected, so L0([0, 1], G) cannot be a subgroup of S∞.
Hence, since G embeds in L0([0, 1], G), we even prove that every Polish group with ample
generics embeds into a connected one with ample generics. Another class of examples that
we exhibit consists of full groups of type III hyperfinite ergodic equivalence relations, which
happen to embed into L0([0, 1], S∞). Note that simultaneously, Malicki provided yet another
class of Polish groups with ample generics that are not closed subgroups of S∞ ([M1]).

As for extending Malicki’s techniques to the group L0([0, 1], G), sadly, we did not go very
far. If M is a metric structure, then L0([0, 1],Aut(M)) is the automorphism group of a ran-
domization of M, which stays exactly ultrahomogeneous when M is. However, to carry the
other conditions over to the randomization, it appears that one would need them to be uniform
in some sense, which they do not seem to be in our examples. For instance, we still do not
know whether the groups L0([0, 1], Iso(U)) or L0([0, 1],Aut(µ)) satisfy the automatic continuity
property.

Let us now go over a different aspect of the correspondence between groups and structures:
a combinatorial approach to topological dynamics. We have mentioned that a number of large
Polish groups are extremely amenable, that is, any of their continuous actions on a compact
space admits a fixed point. The study of the fixed point on compacta property21 started in
the context of semi-groups (see [M10] and [G4]). The first examples of extremely amenable
topological groups were built by Herer and Christensen ([HC]) and were called exotic22. Later,
more natural examples of extremely amenable groups turned up: the unitary group of a sep-
arable Hilbert space (Gromov-Milman, [GM2]), the group of increasing homeomorphisms of
the interval (Pestov, [P4]), L0([0, 1], S1) (Glasner, [G2]). The proofs used concentration of
measure, see for instance [L2]. Pestov then revealed a relationship between the phenomenon of
concentration of measure and structural Ramsey theory. Using the finite Ramsey theorem, he
proved that the automorphism group of the rationals is extremely amenable ([P4]). With sim-
ilar ideas, he also proved that the isometry group of the Urysohn space is extremely amenable
([P2]).

The general setting underlying this connection was uncovered by Kechris, Pestov and Todor-
čević in [KPT] for closed subgroups of S∞. They proved that the automorphism group of a

21The name "extremely amenable" emerged from a parallel with (one of the multiple characterizations of)
amenability, which we shall discuss later on. It is probably due to Granirer.

22Since this phenomenon cannot appear in the more commonly studied context of locally compact groups,
such a result is indeed very surprising.
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Fraïssé limit is extremely amenable if and only if the Fraïssé class satisfies the Ramsey prop-
erty (under the mild assumption that the objects are rigid; typically, it is the case for ordered
structures). A class K has the Ramsey property if for every palette of k colors, for every small
structure A and medium structure B in K, there is a big structure C still in K such that for
every coloring of the set of copies of the small structure A in C using colors from the palette,
there exists a copy of the medium structure B in C within which all copies of A have the
same color (see figure ). In other words, the Ramsey property guarantees the existence of large
monochromatic substructures.

C

B̃

Figure 0.4. The Ramsey property.

From this powerful characterization, known Ramsey theorems provided new extremely
amenable groups. For instance, Nešetřil and Rödl ([NR]) proved that the Fraïssé class of fi-
nite ordered graphs has the Ramsey property, the automorphism group of the random ordered
graph is then extremely amenable. Remarkably, the equivalence was also used in the reverse
direction: Pestov proved that the isometry group of the Urysohn space is extremely amenable,
which prompted Nešetřil to check that the class of finite ordered metric spaces with rational
distances has the Ramsey property (see [NVT]). Moreover, Kechris, Pestov and Todorčević’s
method was applied to compute the universal minimal flow of several Polish groups; for more
details on the developments of the Kechris-Pestov-Todorčević correspondence, see the recent
survey by Nguyen van Thé ([T1]).

This correspondence was extended to the continuous setting by Melleray and Tsankov
([MT1]). They introduce an approximate version of the Ramsey property and show that
extreme amenability of the automorphism group of a metric Fraïssé limit is equivalent to the
class satisfying this property. This captures a similar result obtained by Pestov ([P2]) for
isometry groups of ultrahomogeneous metric spaces. For this approximate Ramsey property,
a notable change is that they impose a regularity condition on colorings, in order to control
the various epsilons generated by the approximate ultrahomogeneity. Besides, they provide a
criterion to verify the approximate Ramsey property, the intuition for which stems from Kechris
and Rosendal’s observation that if a Fraïssé class has the extension property, then the auto-
morphism group of its limit admits a dense union of compact subgroups, and is hence amenable
([KR]). More precisely, their criterion involves a weakening of the extension property, as well
as a condition that enables the use of concentration of measure. Although this allows them
to recover the extreme amenability of several Polish groups, the criterion has not yet been
applied to find new examples of extreme amenable groups. Nevertheless, the finitary charac-
ter of the approximate Ramsey property allows Melleray and Tsankov ([MT2]) to compute
its complexity: extreme amenability is a Gδ notion, which is very nice from a Baire category
perspective.

In another direction, the Kechris-Pestov-Todorčević correspondence was transferred by
Moore ([M12]) to amenability for closed subgroups of S∞. Amenability was introduced by
von Neumann ([N]) in the late twenties to get a better understanding of the Banach-Tarski23

23Do you know a good anagram of "Banach-Tarski"?
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paradox. It is far better-known a notion than its little sister, as it has been extensively studied
for discrete groups. In that setting, it is defined as the existence of an invariant mean on the
group, and admits equivalent definitions aplenty. We will not touch upon these, though, and
concentrate on topological groups. For the latter, a right definition (which of course coincides
with the previous notion in the discrete case) turns out to be the following. A topological
group is amenable if every time it acts continuously on a compact space, the action admits an
invariant Borel probability measure. Examples of amenable Polish groups abound, all the more
so as amenability does not exclude locally compact groups: compact groups, abelian groups,
solvable groups, S∞, and more generally all automorphism groups of Fraïssé structures with
the extension property are amenable, to name a few.

Amenability also admits a description in terms of finite combinatorics, as was shown by
Tsankov in an unpublished note and by Moore ([M12]). The idea behind this is that extreme
amenability, which provides fixed points for actions, corresponds to colorings admitting large
monochromatic (hence fixed, in some sense) sets. Similarly, amenability provides fixed probabil-
ity measures, which can be thought of as barycenters of Dirac measures. Thus, the appropriate
counterpart of the Ramsey property in that context should guarantee the existence of large
"monochromatic convex combinations of sets". That is precisely the combinatorial content of
amenability. Indeed, Moore introduced the convex Ramsey property and proved that a Fraïssé
class satisfies this property if and only if the automorphism group of its limit is amenable.

Combining this with the ideas of Melleray and Tsankov, we extend Moore’s characteriza-
tion to the continuous setting. Exactly as in [MT1], we replace the classical notion of coloring
with Lipschitz ones to introduce the metric convex Ramsey property, and, closing the diagram,
we prove the exact analogue of Moore’s result for automorphism groups of metric Fraïssé lim-
its. Those combinatorial descriptions of amenability have not yet led to any new examples of
amenable groups. In fact, there is no known technique to prove the convex Ramsey property
directly, let alone the metric one. Nevertheless, our characterization leads to nice structural
properties on amenability. In particular, we obtain that amenability also is a Gδ condition.
This means that amenability essentially boils down to a ∀∃ condition, when it was defined
the other way around (basically, "there exists a measure that gives the same measure to the
translates of all sets"). Moore had showed that for discrete groups, one may indeed swap the
quantifiers in the actual definition of amenability. We prove that the same holds for Polish
groups in the definition of amenability. Note that it follows from the work of Melleray and
Tsankov that the same is true of extreme amenability as well.

Finally, we investigate a last facet of our guiding correspondence: how well does the auto-
morphism group of a Fraïssé limit describe isomorphisms inside the structure? More precisely,
Fraïssé limits are ultrahomogeneous, which means that isomorphism classes of finite structures
are exactly the orbits under the action of the automorphism group. What about isomorphism
classes of larger substructures? Panagiotopoulos ([P1]) provides conditions on a Fraïssé struc-
ture for the isomorphisms between generic structures to extend. We approach the question
from a different angle. Fixing a particular Fraïssé structure, we would like to find out which
substructures have the homogeneity property, that is, to find substructures every isomorphism
between two copies of which extends to an automorphism of the whole structure. This question
was asked to the author by Julien Melleray during a semester program in Bonn.

The first results in that direction can be found in work of Huhunaišvili ([H3]) on the Urysohn
space. Indeed, Huhunaišvili proved that not only is the Urysohn space ultrahomogeneous,
but actually, every isometry between compact subspaces extend to a global isometry of the
Urysohn space. Melleray ([M3], see [M4]) then showed that (relatively) compact subspaces
are the only subsets with this property. To this aim, he characterizes compact spaces as the
only spaces whose one-point metric extensions are compactly determined. With Isabel Müller
and Aristotelis Panagiotopoulos, we introduce an analogue of this property for classical Fraïssé
classes: typical finiteness, which asserts that all types over our substructure are determined by
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a finite set. Then, we prove that a substructure has the homogeneity property if and only if is
typically finite.

We further study typical finiteness in concrete examples; in many examples of Fraïssé struc-
tures, we show that typically finite substructures must in fact be finite. It is the case of all
countably categorical structures, as well as the rational Urysohn space. We hope to obtain a
more explicit description of typically finite substructures. Moreover, our result opens several
perspectives of generalization. For instance, we are currently trying to see what happens in the
metric setting, outside the particular case of the Urysohn space. Inasmuch as metric Fraïssé
limits are not always ultrahomogeneous, it is probably necessary to restrict to those we already
know are ultrahomogeneous. Then, the expected characterizing property should resemble com-
pact determination of types; the exact meaning of compact determination is however not at all
clear.

Besides, we are interested in a weaker version of the homogeneity property: we may only
ask that the automorphism group of the whole Fraïssé structure act transitively on the copies
of the substructure. In the Urysohn space, Melleray showed that this is actually equivalent to
the homogeneity property. We prove that this also holds in classical Fraïssé structures that
admit a stationary independence relation (in the sense of [TZ2]), an important particular case
of which is structures with the free amalgamation property. In general, however, we do not
know whether the two properties are equivalent.

We opted for a tree-like organization of the thesis. The trunk part essentially contains
prerequisites about the words of the title. It aims at the correspondence between Polish groups
and automorphism groups of approximately ultrahomogeneous structures. More specifically,
chapter 1 skims through basic facts we will need about Polish groups. In particular, we briefly
go over the different uniform structures one can equip Polish groups with. In chapter 2, we
present the Urysohn space and its modern construction. Although the Urysohn space is not
strictly speaking essential in the establishing of the correspondence, we felt it deserved to be
given special prominence as a nice object that captures the ideas of continuous logic quite
well. It will be our companion space throughout the thesis as it has been during the last four
years. Chapter 3 then lays the basics of model theory in detail in order to set our conventions
precisely. Besides, we took the opportunity to present both frameworks in parallel, so as to
highlight their similarities and differences in a (hopefully) self-contained exposition. Similarly,
we expose both classical and metric Fraïssé theories in chapter 4. However, the elegant tools
involved on the metric side not being quite well-known, we devote a substantial part of the
chapter to a thorough presentation of those tools. Thus armed, we finally give the proof in
chapter 5 that every Polish group is the automorphism group of a metric Fraïssé limit.

Each branch is then concerned with one aspect of this correspondence, the branches appear-
ing in the same order as in the introduction. Branch 1 begins by a chapter of prerequisites on
countable and separable categoricity, presented side by side as well. Then we carry out the met-
ric version of Ahlbrandt and Ziegler’s reconstruction in chapter 6, which is joint work with Itaï
Ben Yaacov and appeared in [BK3]. The second branch discusses questions of automatic conti-
nuity for infinite powers of Polish groups. It also contains part of a joint work with François Le
Maître, in which we exhibit examples of connected Polish groups with ample generics. Branch
3, which appeared in [K1], describes our combinatorial characterization of amenability for gen-
eral Polish groups. Finally, Branch 4 contains joint work in progress with Isabel Müller and
Aristotelis Panagiotopoulos on the homogeneity property in Fraïssé structures.
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Polish groups

À gauche, à droite!
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A great many structures that we encounter in mathematics come equipped with a natural
Polish topology: a separable topology that admits a compatible complete metric. Those two
properties combine perfectly: completeness provides the Baire category theorem, while separa-
bility allows to construct many countable intersections of open sets to apply it to. Furthermore,
Polish spaces also enjoy many stability properties, which we present and illustrate in the first
section of this chapter.

Polish groups, more particularly, constitute the cynosure of this thesis. Those groups abound
as well, often surfacing as isometry groups. Besides, they have strong rigidity properties, which
we glimpse at in the second section. In the third section of this chapter, we go over several
compatible metrics a Polish group can be endowed with. Actually, we describe these metrics in
the more intrinsic framework of uniform structures, and then compare the properties of Polish
groups with respect to these different uniformities.

1. Polish spaces

Definition 1.1. A Polish space is a separable topological space that admits a compatible
complete metric.

Note that the metric is not part of the data: a Polish space is just a topological space.
We illustrate this fact with the following simple example. However, we will call a metric space
Polish if it is separable and complete.

Example 1.2. The space R is Polish, for its usual metric is complete. This metric does not
induce a complete distance on the open interval ]0, 1[. Yet, the space ]0, 1[ is homeomorphic to
R, hence it is Polish.

Proposition 1.3. Let (Xn)n∈N be a family of Polish spaces. Then the space
∏

n∈N

Xn,

endowed with the product topology, is Polish. In particular, countable powers of Polish spaces
are Polish.

1Ces soirées-là

37
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Proof. If dn is a complete compatible metric on Xn, then the metric defined by

dω(x, x′) =
∑

n∈N

1

2n
min(1, dn(xn, x

′
n))

is complete and compatible with the product topology on
∏

n∈N

Xn. Moreover, the product is

separable: if (U
(n)
m )m∈N is a countable basis of open subsets of Xn, then a countable basis of

open subsets of
∏

n∈N

Xn is given by all sets of the form

U (1)
m1
× ...× U (p)

mp
×
∏

n>p

Xn,

for p and m1, ...,mp in N. �

It is clear that closed subsets of Polish spaces are Polish. Moreover, we saw in example 1.2
an example of an open subset that is Polish. In fact, all Gδ subsets of Polish spaces are Polish
themselves. Recall that a subset is called Gδ if it is a countable intersection of open subsets.

Theorem 1.4. (Alexandroff) Let X be a Polish space and let A be a Gδ subset of X. Then
the space A (endowed with the induced topology) is Polish.

Proof. First, assume that A is open and let d be a complete compatible metric on X. We
claim that the following defines a complete compatible metric on A:

dA(x, y) = d(x, y) +

∣∣∣∣
1

d(x,X \ A)
− 1

d(y,X \ A)

∣∣∣∣ .

Because A is open, this is well-defined on A.
The metric dA induces the same topology as d on A. Indeed, if a sequence (xn) converges to

x in A for d, then it does for dA too, as the map d(·, X \A) is continuous. The other direction
is trivial.

We now prove that dA is complete. Let (xn) be a dA-Cauchy sequence in A. It is in
particular Cauchy for d, so, by completeness of d, it converges to some point x in A. It follows

that d(xn, X \A) converges to d(x,X \A). Moreover, the sequence
(

1

d(xn, X \ A)

)
is Cauchy

in R, so it converges. Thus, (d(xn, X \A)) is bounded away from 0, hence d(x,X \A) is non-zero
and x belongs to A.

For the general case, write A as the intersection of open sets Ui. The first case yields
complete compatible metrics dUi

on the Ui’s. Now A embeds continuously as a closed subset of
the product of the Ui’s. By proposition 1.3, this product is Polish, hence A is Polish too. �

Actually, the converse also holds, providing a very useful characterization of Polish sub-
spaces, a proof of which can be found in [K4, theorems 3.8 and 3.9].

Theorem 1.5. (Kuratowski, Lavrentiev) Let X be a complete metric space and let A be a
subset of X. Then, A is completely metrizable if and only if A is Gδ in X.

One of the most important tools in studying Polish spaces is the Baire category theorem
(see e.g. [K4, theorem 8.4]).

Theorem 1.6. (Baire category) Let (X, d) be a complete metric space. Then every count-
able intersection of dense open subsets of X is also dense. Equivalently, every countable union
of closed sets with empty interiors also has empty interior.

An application is for instance the following non-example.
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Non-example 1.7. The space Q, with its usual topology, is not Polish. Indeed, if it
were, then the Baire category theorem would imply that every countable union of closed sets
with empty interior would have empty interior in Q. But the space Q itself is of this form:
Q =

⋃

q∈Q

{q}, a contradiction.

A comprehensive exposition of the theory of Polish spaces can be found in [K4, chapter I].

2. Polish groups

The focus of this thesis is on Polish structures (metric structures on a Polish space) and on
their automorphism groups, which will be Polish too. Even better, their topology is compatible
with their group structure.

Definition 1.8. A Polish group is a topological group whose topology is Polish.

We present the two main examples of Polish groups we will encounter throughout the thesis.

Example 1.9. The group S∞ of all permutations of N (all of them, not just those with
finite support). We equip S∞ with the topology induced by the product topology on NN, that
is, the topology of pointwise convergence. A basis of neighborhoods of a permutation σ is given
by sets of the form

{τ ∈ S∞ : ∀i ∈ F, τ(i) = σ(i)},
for a finite set F of integers. With this topology, S∞ is a topological group. Moreover, it is Gδ

in the Polish space NN. Indeed, elements of S∞ are characterized as follows:

σ ∈ S∞ ⇔ [∀i 6= j, σ(i) 6= σ(j) and ∀j,∃i, σ(i) = j].

For fixed i and j, the conditions σ(i) 6= σ(j) and σ(i) = j are clopen, so the whole condition
inside brackets is Gδ. Thus, S∞ is a Polish group.

Example 1.10. The isometry group Iso(X, d) of a Polish metric space (X, d). Again, we
endow Iso(X, d) with the topology of pointwise convergence. Basic open sets are the sets of all
isometries that extend a given partial isometry between finite subsets up to a small error: a
basis of neighborhoods of an isometry g is given by the sets of the form

{f ∈ Iso(X, d) : ∀x ∈ F, d(f(x), g(x)) < ε},
for a finite subset F of X and a positive ε.

Enumerate a countable dense subset of X: {xi : i ∈ N}. Consider the map g 7→ (g(xi))i∈N
from Iso(X, d) toXN. It is a homeomorphism onto its image. Indeed, isometries extend uniquely
from the dense set {xi : i ∈ N} to the complete set X, because they are uniformly continu-
ous. Therefore, the map is injective and, since pointwise convergence in Iso(X, d) amounts to
pointwise convergence on the xi’s, it is also a homeomorphism on its image.

Moreover, the space Iso(X, d) is characterized by the following conditions:

g ∈ Iso(X, d)⇔ [∀i, j ∈ N, d(g(xi), g(xj)) = d(xi, xj) and ∀n > 1,∀j ∈ N,∃i ∈ N, d(g(xi), xj) <
1

n
].

Thus, Iso(X, d) is homeomorphic to a Gδ subset of the Polish space XN, hence Iso(X, d) is a
Polish group.

Note that the metric on S∞ we described in example 1.9 coincides with this one, when S∞
is viewed as the isometry group of the space N for the discrete metric.

Remark 1.11. A beautiful result of Gao and Kechris ([GK]) states that every Polish
group is isomorphic to such an isometry group. As a first step towards seeing Polish groups as
automorphism groups, we will use the weaker result that every Polish group is isomorphic to a
subgroup the isometry group of some Polish space (theorem 5.2).

Here is a very useful application of the Baire category theorem to Polish groups.
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Theorem 1.12. Let G be a Polish group and let H be a subgroup of G. If H is Polish
(with respect to the induced topology), then H is closed in G.

Proof. We place ourselves in H, which is a closed subgroup of G, hence a Polish group.
Since H is Polish, theorem 1.5 implies that H is Gδ in H. In other words, H is a dense Gδ

subset of H.
Now, if g is any element of H, the coset gH is also a dense Gδ of H because multiplication

by g is a homeomorphism. Thus, by the Baire category theorem in the space H, these two
dense Gδ sets H and gH have a dense intersection. In particular, the two cosets must intersect.
It follows that they actually coincide, so g belongs to H. Finally, this means that H = H,
hence H is closed. �

Apart from here, the Baire category theorem only barely appears in this thesis. We refer
the reader to [M7] for a deeper overview of Baire category methods. Also, see [G1] for more
details on the very rich theory of Polish groups.

3. Uniformities on Polish groups

In this section, we present several uniformities and compatible metrics one can endow a
Polish group with and we compare their properties.

3.1. Uniform spaces. Uniformities are designed to mimic the behavior of a metric, and in
particular to provide a notion of uniform continuity, on pure topological spaces. Here, we review
some of the basic definitions and facts we will need later on; for a more thorough introduction
to uniformities, see for example [P3, chapter 1] or [E2, chapter 8].

Definition 1.13. A uniform space is a pair (X, E), where X is a set and E is a family of
subsets of X ×X, called entourages of the diagonal, such that

• every entourage V in E contains the diagonal ∆X = {(x, x) : x ∈ X} of X ×X;
• if V is in E and V ⊆ U , then U belongs to E too;
• if U and V are in E , then so is U ∩ V ;
• if V is in E , then the set V −1 = {(y, x) ∈ X ×X : (x, y) ∈ V } is in E ;
• for every V in E , there exists U in E so that U2 = {(x, y) ∈ X ×X : ∃z ∈ X, (x, z) ∈
U and (z, y) ∈ U} is contained in V ;
• the intersection of all the entourages in E is the diagonal2.

Such a family E is called a uniformity on X.
We say that a family B of subsets of X × X is a base for the uniformity E if for every

entourage V in E , there exists U in B such that U ⊆ V . If B is a base for a uniformity, then it
satisfies the following properties.

• If V and W are in B, then there exists U in B such that U ⊆ V ∩W .
• For every V in B, there exists U in B such that U2 ⊆ V .
• The intersection of all sets in B is the diagonal.

Conversely, if B is any family of subsets of X ×X with those properties, then it is the base of
a unique uniformity EB on X, defined by

V ∈ EB ⇔ ∃U ∈ B, U ⊆ V.

We say that EB is the uniformity generated by B.

Intuitively, if (x, y) belongs to an entourage V , it means that x and y are V -close.

Example 1.14. The main example is, as expected, given by metric spaces. If (X, d) is
a metric space, then the corresponding uniformity Ed is generated by all sets of the form
{(x, y) ∈ X ×X : d(x, y) < ε}, where ε is a positive real.

2We only consider Hausdorff uniform spaces, so we include this condition in the definition.
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Conversely, a uniformity naturally induces a topology: if (X, E) is a uniform space and x is
an element in X, then a basis of neighborhoods of x is given by the sets V [x] = {y : (x, y) ∈ V },
for V in E (see [E2, theorem 8.1.1]).

Proposition 1.15. (See [E2, theorem 8.3.13]) Let X be a compact space. Then there
exists a unique uniformity on X that induces the topology of X.

Definition 1.16. Let (X, E) and (Y,F) be uniform spaces. Let f : X → Y be a function.
We say that f is uniformly continuous if for all V in F , there exists U in E such that for all
x, x′ in X, if (x, x′) ∈ U , then (f(x), f(x′)) ∈ V .

If the uniformities are generated by metrics, then this notion coincides with usual uniform
continuity with respect to the metrics.

We now turn to uniform structures on groups. We can equip a topological group with four
natural uniformities that induce its topology. Let G be a topological group.

• The left uniformity EL on G is generated by all entourages of the form
{(g, h) ∈ G×G : g−1h ∈ V },

where V is a neighborhood of the identity in G. Note that all these entourages are
invariant under left translation and thus, the group acts uniformly continuously on
itself by left translation.
• The right uniformity ER on G is generated by all entourages of the form

{(g, h) ∈ G×G : gh−1 ∈ V },
where V is a neighborhood of the identity in G. These entourages are invariant under
right translation. Note also that inversion swaps the left and right uniformities.
• The two-sided uniformity Ets on G is the coarsest common refinement of the left
and right uniformities. It is generated by all entourages of the form

{(g, h) ∈ G×G : g−1h ∈ V and gh−1 ∈ V },
where V is a neighborhood of the identity in G.
• The Roelcke unifomity ERoelcke on G is the finest uniformity that is coarser than
both the left and right uniformities. It is generated by all entourages of the form

{(g, h) ∈ G×G : h ∈ V gV },
where V is a neighborhood of the identity in G.

The reader will find an extensive study of uniformities on groups in [R4].
Left and right uniformly continuous functions on a group will be important in the study of

the amenability of a topological group. Indeed, we will make use of the compactification with
respect to the right uniformity: the Samuel compactification (see chapter 9).

3.2. Metrizable uniformities. If G is a Polish group, then the four uniformities on G
defined above are countably generated. This yields that they are induced by a metric.

Theorem 1.17. (Birkhoff [B], Kakutani [K2]) Let G be group acting on a uniform space
(X, E). Assume that the uniformity E admits a countable generating family of entourages, each
of which is invariant under the action of G. Then there exists a metric on X that induces the
uniformity E and that makes the action of G on X isometric.

Proof. The theorem follows from the same construction as in [E2, theorem 8.1.21] and
[G1, theorem 2.1.1]. It is easy to check that it will indeed yield an isometric action. �

In particular, applying the Birkhoff-Kakutani theorem to the action of a Polish group G on
itself by left (right) translation, we obtain a left-invariant (right-invariant) metric on G which
generates the left (right) uniformity.

If dL is a left-invariant metric, note that we can also produce a right-invariant metric directly
by putting dR(g, h) = dL(g−1, h−1).
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Examples 1.18. • If σ and τ are distinct permutations in S∞, put
n(σ, τ) = min{n ∈ N : σ(n) 6= τ(n)}.

Then

dL(σ, τ) =

{
0 if σ = τ

2−n(σ,τ) if σ 6= τ

defines a left-invariant compatible metric on S∞.
• Let (X, d) be a Polish metric space and let {xn : n ∈ N} be a countable dense subset
of X. Then the following defines a left-invariant compatible metric on Iso(X, d):

dL(g, h) =
∑

n∈N

1

2n
min(1, d(g(xn), h(xn))).

Conversely, every left-invariant compatible metric generates the left uniformity (and simi-
larly on the right).

Proposition 1.19. Let G be group and let d and ρ be two left-invariant metrics that
generate the same topology on G. Then they generate the same uniformity on G.

Proof. Let V = {(g, h) ∈ G × G : d(g, h) < ε} be a basic entourage of the uniformity
induced by d. By left-invariance, we have V = {(g, h) ∈ G × G : d(1, g−1h) < ε}. Now,
since the metrics d and ρ induce the same topology on G, there exists a positive δ such that
Bρ(1, δ) is contained in Bd(1, ε). Thus, the set U = {(g, h) ∈ G × G : ρ(1, g−1h) < δ}, which
by left-invariance of ρ, is equal to the entourage {(g, h) ∈ G×G : ρ(g, h) < δ} is contained in
V . This completes the proof. �

With Polish groups admitting a left-invariant metric and a complete metric, it is very
tempting to believe that they might admit a metric that is both complete and left-invariant.
However, that is not the case. To see this, we need the following definition.

Definition 1.20. Let (X, E) be a uniform space, with the uniformity E being countably
generated.

• A sequence (xn)n∈N of elements of X is Cauchy in (X, E) if for every entourage V in
E , there exists an integer N such that for all n,m > N , we have (xn, xm) ∈ V .
• We say that (X, E) is complete if every Cauchy sequence in (X, E) converges to some
element of X (for the induced topology).
• The completion of the uniform space (X, E) is the quotient space of Cauchy sequences
of (X, E) under the equivalence relation

(xn)n∈N ∼ (yn)n∈N ⇔ ∀V ∈ E ,∃N ∈ N,∀n > N, (xn, yn) ∈ V.
When the uniformity is generated by a metric, it is complete if and only if the metric

is complete. In other words, completeness only depends on the generated uniformity. Also, a
sequence is Cauchy for a metrizable uniformity if and only if it is Cauchy for one (or equivalently
every) metric that generates the uniformity. Thus, as a consequence of proposition 1.19, a Polish
group admits a compatible metric that is both complete and left-invariant (we call the group
cli) if and only if all its compatible left-invariant metrics are complete.

Non-example 1.21. The infinite permutation group is not cli, for the left-invariant metric
from example 1.18 is not complete. Indeed, for each i, consider the permutation σi defined by:

σi(n) =





n+ 1 if n < i

0 if n = i

n if n > i.

As n(σi, σj) = min(i, j), the sequence (σi) is dL-Cauchy. In NN, it converges to the shift, which
is not in S∞.

Actually, the completion of (S∞, EL) is the set of all injective maps from N to N.
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The previous non-example thus shows that the left uniformity on a Polish group is not in
general complete3. On the other hand, in the next subsection, we prove that Polish groups are
Rajkov-complete: complete for the two-sided uniformity.

3.3. Group completion. Let G be a separable topological group and consider the com-
pletion G with respect to the two-sided uniformity. If dL is any left-invariant metric on G, the
two-sided uniformity on the group G is generated by the following metric:

D(g, h) = dL(g, h) + dL(g−1, h−1).

Then G is the metric completion of (G,D). Note that G does not depend on the choice of the
left-invariant compatible metric, by proposition 1.19.

Proposition 1.22. The completion G is a topological group: the group completion.

Proof. Inversion is an isometry of (G,D) so it extends to an isometry of the completion
G. It remains to show that if (gn) and (hn) are D-Cauchy sequences in G, then so is (gnhn).
Again, since inversion is an isometry, it suffices to prove that (gnhn) is dL-Cauchy.

Let ε be positive. For every n,m,N , we have
dL(gnhn, gmhm) 6 dL(gnhn, gnhN) + dL(gnhN , gmhN) + dL(gmhN , gmhm)

= d(hn, hN) + d(gnhN , gmhN) + d(hN , hm).

Since right multiplication by hN is continuous (and dL induces the group topology on G), this
is smaller than ε for large enough n,m,N , so the product of two elements of G is well-defined.

Moreover, multiplication in G is continuous. To see this, take ḡ and h̄ in G, and V an
open neighborhood of the identity in G. Let then W be an open neighborhood of the identity
such that W 2 ⊆ V . Since h̄ is in G, there exists h in G such that h̄ ∈ hW . Moreover, since
right multiplication by h is continuous in G, there exists an open neighborhood of 1 such that
Uh ⊆ hW . Finally, let g be an element of G such that ḡ ∈ gU . Then, we have

ḡh̄ ∈ gUhW ⊆ g(hW )W = ghW 2 ⊆ ghV.

Thus, if k̄ is in gU and l̄ is in hW , then the product k̄l̄ will be in the open neighborhood ghV
of ḡh̄. It follows that multiplication is continuous in G. Since inversion is an isometry, it is also
continuous, hence G is a topological group. �

Corollary 1.23. If G is a Polish group, then G = G and thus G is Rajkov-complete.

Proof. Since G is separable, its group completion G is a Polish group. Now, G is a Polish
subgroup of G so by theorem 1.12, G is closed in G. But G is dense in its completion, so G is
in fact the whole of G. �

3.4. Precompactness.

Definition 1.24. Let (X, E) be a uniform space. We say that (X, E) is precompact if for
every V in E , there exists a finite subset F of X such that X = V [F ] =

⋃

x∈F

V [x].

A special class of Polish groups is that of Roelcke-precompact ones. A topological group G
is said to be Roelcke-precompact if the Roelcke uniformity on G is precompact: if for every
neighborhood V of 1, there exists a finite subset F of G such that G = V FV .

We will see in chapter 6 that Roelcke precompactness is tightly connected to a very im-
portant model-theoretic property: categoricity. Bridges between model theory and topological
group theory in the context of Roelcke-precompact groups are therefore being established (see
for instance [BT1] and [I]).

Note that precompactness with respect to any of the other three uniformities is not relevant
a notion for Polish groups, as illustrated by the following proposition.

3Since inversion exchanges the left and right uniformities, a topological group is cli if and only if its right
uniformity is complete.
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Proposition 1.25. Let G be a Polish group. Then the following are equivalent.
(1) The left uniformity on G is precompact: for every neighborhood V of 1, there exists a

finite subset F of G such that G = FV .
(2) The right uniformity on G is precompact: for every neighborhood V of 1, there exists

a finite subset F of G such that G = V F .
(3) The two-sided uniformity on G is precompact: for every neighborhood V of 1, there

exists a finite subset F of G such that G =
⋃

h∈F

(hV ∩ V h).

(4) The group G is compact.

Proof. (4) ⇒ (1),(2),(3)] A compact space admits a unique compatible uniformity (see
proposition 1.15). Since the left, right, and two-sided uniformities on G generate the topology
on G, this implies that they all coincide and are all precompact.

(3) ⇒ (4)] By corollary 1.23, the two-sided uniformity on G is complete. If it is further
precompact, then G is compact (by [E2, theorem 8.3.16]).

(1),(2) ⇒ (4)] See [S5, lemma 1.2] or [BT2, proposition 4.3]. �



CHAPTER 2

The Urysohn space

À mon avis personnel, c’est un triangle.

Corinne Bouchard1
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This section is devoted to the flagship space of this thesis. The Urysohn space U is a
universal Polish space: it is a complete separable metric space that contains an isometric copy
of every (complete) separable metric space. The space U was built by Urysohn in the early
twenties ([U1]), but was almost forgotten after that. Indeed, another universal and much more
famous Polish space, C([0, 1],R) (Banach-Mazur, see [B1] and [S4]), put the Urysohn space in
the shade for sixty years.

As it turns out, the Urysohn space is remarkable not only for its universality but mainly
for its strong homogeneity properties: up to isometry, it is the unique Polish space that is both
universal and ultrahomogeneous.

Definition 2.1. A metric space X is ultrahomogeneous if every isometry between finite
subsets of X extends to a global isometry of X.

Ultrahomogeneity is a central theme in our work: we will meet this notion again in chapter
4 in a broader context, study it in more detail in chapter 10, and we will use a number of
variations of ultrahomogeneity throughout the thesis.

The Urysohn space attracted renewed interest in the eighties when Katětov ([K3]) provided
a new construction for it. From this construction, Uspenskij ([U4]) proved that not only is U
universal but also its isometry group is a universal Polish group (every Polish group embeds
in Iso(U) as a topological subgroup). In this chapter, we present Katětov’s construction of the
Urysohn space and explain how it yields the universality of its isometry group.

1. Katětov spaces

1.1. One-point metric extensions. Let X be a metric space.

Definition 2.2. A Katětov map on X is a map f : X → R+ such that for all x and x′
in X, one has

|f(x)− f(x′)| 6 d(x, x′) 6 f(x) + f(x′).

A Katětov map corresponds to a one-point metric extension of X: if f is a Katětov map
on X, then we can define a metric on X ∪{f} that extends the metric on X by putting, for all
x in X,

d(f, x) = f(x).

This will indeed be a metric because Katětov maps are exactly those which satisfy the triangle
inequality.

1La vie des charançons est assez monotone
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x

f

X

d(f, x) = f(x)

Figure 2.1. One-point metric extension of X

Example 2.3. If x is a point in X, then the map δx : X → R+ defined by δx(x′) = d(x, x′)
is a Katětov map on X. It correspond to a trivial extension of X: we are adding the point x
to X.

Remark 2.4. The condition of being a Katětov map can be rewritten as follows: for all x,
x′ in X,

|f(x)− d(x, x′)| 6 f(x′).

We denote by E(X) the space of all Katětov maps on X. We equip the space E(X) with
the supremum metric:

d(f, g) = sup
x∈X
|f(x)− g(x)|.

This supremum is always finite: indeed, if f and g are two Katětov maps and x and x0

are two points in X, we have |f(x) − d(x, x0)| 6 f(x0) and |g(x) − d(x, x0)| 6 g(x0) so
|f(x)− g(x)| 6 f(x0) + g(x0), hence the difference between f and g is bounded.

Geometrically, this metric represents the smallest possible distance between the two exten-
sion points.

f

g

X

Figure 2.2. Distance between two Katětov maps

The maps δx of example 2.3 define an isometric embedding of the space X into E(X). We
therefore identify X with its image in E(X) via this embedding.

Remark 2.5. This identification is consistent with the metric we put on X ∪ {f} before:
d(f, δx) = supx′∈X |f(x′)− d(x, x′)| 6 f(x), with equality if x = x′, so d(f, δx) = f(x).

This observation will allow us to build towers of extensions in the next section. The essential
property of those towers is the following.

Proposition 2.6. Every isometry of X extends uniquely to an isometry of E(X).

In particular, the uniqueness implies that the extension defines a group homomorphism
from Iso(X) to Iso(E(X)).
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Proof. Let ϕ be an isometry ofX. If ψ extends ϕ, we must have d(ψ(f), δx) = d(f, δϕ−1(x)) =
f(ϕ−1(x)) for all x in X and f in E(X), hence the uniqueness.

Thus, we extend ϕ to the space E(X) by putting ψ(f) = f ◦ ϕ−1 for all f in E(X). It is
easy to check that the map ψ is an isometry of E(X) that extends ϕ. �

1.2. Separability. In general, the space E(X) is not separable even if X is, which is
unfortunate since we are interested in building Polish spaces. The separability of the Katětov
space was extensively studied by Melleray in [M3] (see also [M4]): he characterized the Polish
spaces X for which E(X) is separable as those satisfying the collinearity property. From this,
he proved that the only Polish spaces on which the isometry group of the Urysohn space acts
transitively are compact. We will discuss this more thoroughly in chapter 10.

To circumvent the problem of separability, Katětov considers only Katětov maps with finite
support.

Definition 2.7. Let S be a subset of X and let f be a Katětov map on X. We say that
S is a support for f if for all x in X, we have

f(x) = inf
y∈S

f(y) + d(x, y).

In other words, S is a support for f if the map f is the largest 1-Lipschitz map on X that
coincides with f on S. In this case, we also say that f is the Katětov extension of f�S.

Remark 2.8. If f and g have a common support S, then the distance between f and g can
be expressed in the following way:

d(f, g) = sup
x∈S
|f(x)− g(x)|.

We denote by E(X,ω) the space of all Katětov maps that admit a finite support2. If the
metric space X is separable, then E(X,ω) remains separable. Luckily, in restricting to this
separable subspace, we keep the essential properties of the Katětov space.

• The space E(X,ω) still embeds X isometrically. Indeed, the map δx has {x} as its
(finite!) support.
• Isometries of X still extend uniquely to isometries of E(X,ω). To see this, note that
if ϕ is an isometry of X and f ∈ E(X) has support S, then the Katětov map f ◦ ϕ−1

has support ϕ(S). Thus, the isometry f 7→ f ◦ ϕ−1 defined in proposition 2.6 induces
an isometry of E(X,ω).

Furthermore, the extension homomorphism is continuous.

Proposition 2.9. (Uspenskij) If X is separable, then the extension homomorphism from
Iso(X) to Iso(E(X,ω)) defined above is continuous.

Proof. Let (ϕn) be a sequence of isometries of X converging to an isometry ϕ and fix f
in E(X,ω). We show that f ◦ ϕ−1

n converges to f ◦ ϕ−1 in E(X,ω).
Let ε be a positive real and let S be a finite support for f . Since ϕn(S)∪ϕ(S) is a common

support for f ◦ ϕ−1
n and f ◦ ϕ−1, remark 2.8 gives that

d(f ◦ ϕ−1
n , f ◦ ϕ−1) = sup

x∈ϕn(S)∪ϕ(S)

|f ◦ ϕ−1
n (x)− f ◦ ϕ−1(x)| 6 d(ϕn(x), ϕ(x)).

But for n large enough, we have that d(ϕn(x), ϕ(x)) < ε for all x in S (because S is finite),
hence the desired convergence. �

We now take on the construction of the Urysohn space. For a more detailed description of
the Katětov spaces, we refer the reader to Melleray’s survey [M4] on the Urysohn space.

2The letter ω is the set-theoretic name for N.
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2. Tower construction of the Urysohn space

The construction of the Urysohn space we present highlights its universality: we start with
an arbitrary Polish space and we build a copy of the Urysohn space around it. Besides, the
construction keeps track of the isometries of the original Polish space, which points to the
universality of its isometry group as well.

Let X be our starting Polish space. We build an increasing sequence (Xn) of metric spaces
inductively, by setting

• X0 = X;
• Xn+1 = E(Xn, ω).

The discussion above guarantees that isometries extend continuously at each step: every isom-
etry of Xn extends to an isometry of Xn+1 and the extension homomorphism from Iso(Xn)

to Iso(Xn+1) is continuous. Thus, if we write X∞ =
⋃

n∈N

Xn, we obtain a continuous extension

homomorphism from Iso(X) to Iso(X∞).
Now, consider the completion X̂∞ of X∞. Since all the Xn are separable, the space X̂∞ is

Polish. Moreover, isometries of X∞ extend to isometries of X̂∞ by uniform continuity, so we
get a continuous extension homomorphism from Iso(X) to Iso(X̂∞).

It remains to explain why the space X̂∞ is the promised ultrahomogeneous and unique
Urysohn space. The key defining property of X∞ is that every one-point metric extension of a
finite subset of X∞ is realized in X∞ over this finite set.

Definition 2.10. A metric space X is said to have the Urysohn property if for every
finite subset A of X and every Katětov map f ∈ E(A), there exists x in X such that for all a
in A, we have d(x, a) = f(a).

Let us show that the space X̂∞ also has the Urysohn property. We first show that it satisfies
a relaxed Urysohn property and then we use completeness to get the full Urysohn property.

Lemma 2.11. Let X be a separable metric space with the Urysohn property. Then the
completion X̂ of X satisfies the approximate Urysohn property: for every ε > 0, every
finite subset A of X̂ and every Katětov map f in E(A), there exists y in X̂ such that for all a
in A, we have |d(y, a)− f(a)| < ε.

Proof. Let ε be positive, let A = {a1, ..., ap} be a finite subset of X̂ and let f be a Katětov
map on A. Assume that the elements of A are ordered so that f(a1) > ... > f(ap) and put
δ = min{d(ai, aj) : i 6= j}. Pick a positive η such that

{
(2p+ 2)η < δ
(2p+ 1)η < ε.

By density of X in X̂, there exist x1, ..., xp in X such that d(xi, ai) < η for all i.
Consider the map g defined on {x1, ..., xp} by g(xi) = f(ai) + 2i η. We prove that g is a

Katětov map. For i < j, we have

g(xi)− g(xj) = f(ai)− f(aj)− 2(j − i)η
6 d(ai, aj)− 2η

6 d(ai, aj)− d(xi, ai)− d(xj, aj)

6 d(xi, xj)
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and also

g(xj)− g(xi) = f(aj)− f(ai) + 2(j − i)η
6 2pη

6 (2p+ 2)η − 2η

6 δ − d(xi, ai)− d(xj, aj)

6 d(xi, xj).

For the other direction, we have

d(xi, xj) 6 d(xi, ai) + d(ai, aj) + d(aj, xj)

6 η + (f(ai) + f(aj)) + η

6 g(xi) + g(xj).

Thus, we can apply the Urysohn property to g and obtain a point x in X such that d(x, xi) =
g(xi) for all i. It follows that

|d(x, ai)− f(ai)| 6 |d(x, ai)− d(x, xi)|+ |d(x, xi)− f(ai)|
6 η + |g(xi)− f(ai)|
6 η + 2iη

< ε,

showing that x is as desired. �

Proposition 2.12. Let X be a separable metric space with the Urysohn property. Then
the completion X̂ of X also satisfies the Urysohn property.

Proof. By lemma 2.11, the space X̂ satisfies the approximate Urysohn property. Let us
prove that it has the full Urysohn property: let A be a finite subset of X̂ and f be a Katětov
map on A. Inductively, we build a sequence (xn) of points of X̂ such that

• for all a in A, we have |d(xn, a)− f(a)| < 2−n;
• d(xn, xn+1) < 2−(n−1).

The resulting sequence will thus be Cauchy in X̂ and converge, by completeness, to a point x
witnessing the Urysohn property for f .

The approximate Urysohn property applied to f directly gives x0. Assume that xn has been
built. Then the restriction fn of the Katětov map δxn to A satisfies that d(f, fn) < 2−n. Now
consider the Katětov map g defined on A∪{xn} by g(a) = f(a) and g(xn) = d(f, fn). We apply
the approximate Urysohn property to find a point xn+1 in X̂ such that |d(xn+1, a) − g(a)| =
|d(xn+1, a)− f(a)| < 2−(n+1) for all a in A and |d(xn+1, xn)− g(xn)| = |d(xn+1, xn)− d(f, fn)| <
2−(n+1) so d(xn+1, xn) < 2−n + 2−(n+1) < 2−(n−1). �

We now prove that the Urysohn property yields ultrahomogeneity.

Theorem 2.13. (Urysohn) Let X be a complete separable metric space. If X has the
Urysohn property, then X is ultrahomogeneous.

Proof. We carry out a back-and-forth argument (we will see plenty of those later on,
especially in chapter 4). Let i : A→ B an isometry between two finite subsets of X. Enumerate
a dense subset {xn : n > 1} of X. Recursively, we build finite subsets An and Bn of X and
isometries in : An → Bn such that

• A0 = A and B0 = B;
• i0 = i;
• An ⊆ An+1 and Bn ⊆ Bn+1;
• xn ∈ An ∩Bn;
• in+1 extends in.
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To this aim, assume An and Bn have been built. Consider the metric extension of An by
xn+1: the corresponding Katětov map is δxn+1 . We push it forward to a Katětov map on Bn

via the isometry in. Now, since the space X satisfies the Urysohn property, we can find an
element yn+1 that realizes it; we add it to Bn and extend in by setting i′n+1(xn+1) = yn+1. This
constitutes the forth step.

For the back step, we apply the same argument to the inverse of the isometry i′n+1 to find
a preimage to xn+1 (see figure 2).

x1 x1

i−1
n+1(xn+1)

yn+1 = in+1(xn+1)

xn+1 xn+1

in

A Bi

Figure 2.3. The back-and-forth argument

In the end, the union of all the isometries in defines an isometry of a dense subset of X, so
it extends to an isometry of the whole space X (because X is complete). This is the desired
extension of i. �

Finally, the same back-and-forth argument shows that any two complete separable metric
spaces with the Urysohn property are isometric.

Thus, we may define the Urysohn space to be the space obtained from any Polish space by
applying the tower construction above.

Definition 2.14. The Urysohn space U is the completion of X∞, with X = {0}.

This uniqueness result guarantees that U indeed embeds every Polish space isometrically.
Moreover, the construction also yields that its isometry group Iso(U) embeds all isometry groups
of Polish spaces, hence all subgroups thereof. The aforementioned theorem 5.2 states that those
actually encompass all Polish groups, so we conclude that Iso(U) is a universal Polish group.
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Model theory

The smaller the bone, the truer the make of the beast.
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Model theory singles out the concept of an abstract structure and chooses to study these
structures from the set of all properties they satisfy. Thereby, from a model-theoretic point of
view, more important than actual elements will be their types : two elements have the same
type if they satisfy the same properties. In order to define the very notion of property, we
need to establish a precise framework for structures and formulas. When it comes to describing
discrete algebraic structures, the framework is well established, and references abound (see for
instance [H1] and [TZ1]). More recently, a model theory more suited for the study of metric
structures was developed (see [BBHU] and [BU2]), generalizing the classical one. Here, we
present both frameworks side by side.

1. Languages and structures

1.1. Classical setting.

Definition 3.1. A (classical) language is a family {Ri, ni}i∈I ∪ {Fj,mj}j∈J , where, for
all i ∈ I and j ∈ J ,

• ni and mj are non-negative integers;
• Ri is a relation symbol of arity ni;
• Fj is a function symbol of arity mj.

Function symbols of arity 0 will be called constant symbols.

Throughout the text, all languages will be countable.

Definition 3.2. Let L = {Ri, ni}i∈I ∪ {Fj,mj}j∈J be a language. An L-structure M is
a set M (the universe of M) endowed with

1as quoted in [D].
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52 3. MODEL THEORY

• a subset RM
i of Mni for every i in I;

• a map FM
j : Mmj →M for every j in J .

Convention 3.3. We always assume that languages contain a symbol = that is interpreted
as the equality in every structure. Thus, the empty language consists only of equality.

Examples 3.4. Here are a few examples of languages and structures.
• Structures in the empty language are pure sets, with no additional structure. For
instance, the set (N,=) is an ∅-structure.
• The rationals can be endowed with many structures:

– a group structure, in the language LG = {0,+,−} of groups;
– a ring structure, in the language LR = {0, 1,+,−,×} of rings;
– an order structure, in the language LOr = {<} of ordered sets.

From the model-theoretic viewpoint, (Q, 0,+,−), (Q, 0, 1,+,−,×) and (Q, <) really
are different structures.
• Let LP = {P} be a language consisting of a single unary relation. Define PQ by
x ∈ PQ ⇔ x > 0. Then (Q, PQ) is an LP -structure.
• Graphs can be described with several languages:

– the language LGr = {E} consisting of one binary symbol for the edge relation;
– the language LGrMet = {dn : n ∈ N}, where dn is a binary relation for being at
distance n in the graph metric.

Definition 3.5. Let L = {Ri, ni}i∈I ∪ {Fj,mj}j∈J be a language and let M be an L-
structure. A substructure of M is an L-structure N such that

• the universe N of N is a subset of the universe of M;
• RN

i = RM
i ∩Nni , for every i in I;

• FN
j (x̄) = FM

j (x̄), for every j in I and x̄ in Nmj .

Definition 3.6. Let L be a classical language and let M be an L-structure. Let A be a
subset of M . The substructure of M generated by A is the smallest substructure of M that
contains A.

Definition 3.7. Let L be a language and let R be a relation symbol in L of arity n. Let
M be an L-structure and let ā be a tuple in Mn. We say that M satisfies R(ā), and we write
M � R(ā), if ā ∈ RM. We also say that ā satisfies R or that R(ā) is true in M.

1.2. Continuous setting. It seems rather tempting to say that in the structure (Q, PosQ)
of example 3.4, P (−2) is less false than P (−1000), for instance. Yet, in a classical structure,
there is no indication of how badly an element can fail to satisfy a relation, no measure of how
far an element is from lying in a relation. This suggests the idea of distance and incites us
to replace equality by a metric and the usual true and false by a continuum of truth values,
a whole spectrum of maybes. Pursuing that line of thought, Ben Yaacov, Berenstein, Henson
and Usvyatsov ([BBHU]) introduced a model theory for metric structures.

Definition 3.8. A continuous language is a family {Pi, ni, κi}i∈I ∪ {Fj,mj,Λj}j∈J ,
where, for all i ∈ I and j ∈ J ,

• ni and mj are non-negative integers;
• κi and Λj are non-negative reals;
• Pi is a predicate of arity ni;
• Fj is a function symbol of arity mj.

Sometimes we call predicates relation symbols by analogy with the classical setting.

As was the case for classical languages, all our continuous languages will be countable.

Definition 3.9. Let L = {Pi, ni, κi}i∈I ∪ {Fj,mj,Λj}j∈J be a continuous language. An
L-structure M is a complete metric space (M,d) of diameter bounded by 1 endowed with
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• a κi-Lipschitz predicate PM
i : Mni → [0, 1] for every i in I;

• a Λj-Lipschitz map FM
j : Mmj →M for every j in J .

Structures in a continuous language are called metric structures.

Convention 3.10. Like for classical languages, we always assume that continuous lan-
guages contain a symbol d for the metric.

Remarks 3.11. • One may only ask that the predicates and functions are uniformly
continuous, in which case the language must specify a modulus of uniform continuity for
each symbol. This would not change the associated model theory too much though,
for definable predicates would remain unchanged. Indeed, definable predicates will
be defined as uniform limits of formulas (see section 6) and Lipschitz functions are
uniformly dense in uniformly continuous ones (see the proof of proposition 9.17).
• The requirement that metric spaces must be bounded allows one to carry arguments
of compactness. In particular, it guarantees that the space of types will be compact in
the logic topology (theorem 3.51). However, we will conveniently drop this assumption
whenever those compactness considerations are irrelevant.
• Note that unbounded metric spaces can be made bounded by replacing the metric with
the following equivalent one

d′(x, y) =
d(x, y)

1 + d(x, y)
,

which is bounded by 1. We will especially apply this to the Urysohn space in chapters
6 and 8, where the boundedness requirement applies.

Example 3.12. Any classical structure becomes a metric structure when endowed with the
discrete metric. Relations are identified with their indicator functions (that take their values
in {0, 1}). Note that this identification is somehow unusual, as true corresponds to 0 and false
corresponds to 1.

From now on, we will state our definitions only for metric structures, with classical structures
being an important particular case (where the motivation comes from). We shall still emphasize
the different behaviors of the two settings whenever such differences occur.

Examples 3.13. Here are a few examples of metric structures, both bounded and un-
bounded.

• Complete metric spaces, with no additional structure, are metric structures in the
empty continuous language.
• The measure algebra of the unit interval with its Lebesgue measure µ, denoted by

MALG(µ), is a metric structure in the language LBool = {0, 1,∪,∩, µ}. The metric is
given by d(A,B) = µ(A4B).
• The Hilbert space `2 is a metric structure in the language LHilb = {0,+,−, 〈·〉, (mλ)λ∈R}.
Since it is not bounded, the structure we often consider instead is its unit ball, which
captures all the relevant information about the Hilbert space.

Definition 3.14. Let L = {Pi, ni, κi}i∈I ∪ {Fj,mj,Λj}j∈J be a continuous language and
let M be a metric L-structure. A substructure of M is an L-structure N such that

• the universe (N, dN) of N is a (necessarily closed) metric subspace of the universe
(M,dM) of M;
• PN

i (x̄) = PM
i (x̄), for every i in I and x̄ in Nni ;

• FN
j (x̄) = FM

j (x̄), for every j in I and x̄ in Nmj .

Definition 3.15. Let L be a continuous language and let M be an L-structure. Let A
be a subset of M . The substructure generated by A is the smallest substructure of M that
contains A.
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1.3. Parameters. Very often, we want to include some elements of a given structure in
the language, treating them as parameters (for instance, to talk about types over a set).

If M is an L-structure and X is a countable subset of M , then we define the language LX
as follows. For each element x of X, we add a constant symbol cx to the language L, so that
LX = L ∪ {cx : x ∈ X}.

This way, M naturally becomes an LX-structure: we interpret the symbol cx as x. We
denote this new structure by (M, X).

2. Isomorphisms, automorphism groups

Definition 3.16. Let L be a continuous language. Let M and N be two metric L-
structures. An embedding of N into M is a map f : N→M such that

• for every predicate P in L of arity n and every tuple (x1, ..., xn) in Nn, we have

PN(x1, ..., xn) = PM(f(x1), ..., f(xn));

• for every function symbol F in L of arity m and every tuple (x1, ..., xm) in Nm, we
have

f(FN(x1, ..., xn)) = FM(f(x1), ..., f(xm)).

Remarks 3.17. • Since the language contains the metric, embeddings are isometric.
In particular, they are injective.
• If f : N→M is an embedding, then the image of N by f is a substructure of M.

Definition 3.18. An isomorphism is a surjective embedding.

Definition 3.19. LetM be a metric structure. The automorphism group ofM, denoted
by Aut(M), is the group of all self-isomorphisms of M. We endow it with the topology of
pointwise convergence.

Example 3.20. The automorphism group of the pure set N is S∞, as presented in example
1.9.

The topology on Aut(M) is generated by all sets of the form

{g ∈ Aut(M) : d(g(ā), b̄) < ε},
where ā, b̄ are tuples in M and ε > 0.

Remark 3.21. If M is a classical structure, the topology on Aut(M) is the permutation
group topology, generated by all sets of the form

{g ∈ Aut(M) : g(ā) = b̄},
where ā, b̄ are tuples in M .

Equivalently, the topology on Aut(M) is generated by all sets of the form

{g ∈ Aut(M) : g extends f},
where f is an isomorphism between two finitely generated substructures of M.

Proposition 3.22. Let M be a metric structure. Then the automorphism group of M
is a closed subgroup of Iso(M,d). In particular, if M is a countable classical structure, then
Aut(M) is a closed subgroup of S∞.

Proof. Preserving the values of continuous predicates is a closed condition for the pointwise
topology, so Aut(M) is closed in Iso(M,d). �

Corollary 3.23. If M is a separable metric structure, then Aut(M) is a Polish group.

Our leitmotiv (chapter 5) is that the converse of these two results also holds.
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3. Formulas

Formulas are expressions, depending on variables, that can be written within the language.
They are built inductively as follows. We fix a countable set V of variables beforehand.

Definition 3.24. Let L be a language. The class of L-terms is the smallest class of
expressions such that

• constant symbols in L are L-terms;
• variables in V are L-terms;
• if F is an m-ary function symbol in L and if t1, ..., tm are L-terms, then the expression
F (t1, ..., tm) is an L-term.

Thus, each term depends on a finite number of variables. In any structure, terms can be
interpreted by elements of the structure, by substituting a finite number of elements to the
variables.

Definition 3.25. Let L be a language and let M be an L-structure. Let t(x̄) be an L-term
that depends on a finite tuple x̄ = (x1, ..., xn) of variables. Let ā = (a1, ..., an) be a tuple of
elements of M . By induction on the complexity of the term t, we define the element t(ā) of M .

• If t(x̄) is a constant symbol c, then t(ā) = cM.
• If t(x̄) is a variable xi, then t(ā) = ai.
• If t(x̄) = F (t1(x̄), ..., tm(x̄)), where F is an m-ary function in L and t1(x̄), ..., tm(x̄) are
L-terms depending on x̄, then

t(ā) = FM(t1(ā), ..., tm(ā)).

Definition 3.26. Let L be a language. An atomic L-formula is an expression of the form
P (t1, ..., tn), where P is an n-ary relation or predicate symbol in L and t1, ..., tn are L-terms.

Remark 3.27. If L is a classical language, it contains a relation symbol for equality, so in
particular, if t1 and t2 are L-terms, then the expression t1 = t2 is an atomic L-formula.

Similarly, if L is a continuous language, there is a predicate for the metric, so if t1 and t2
are L-terms, then the expression d(t1, t2) is an atomic L-formula.

In order to get the class of all formulas, we need to connect atomic formulas together.
Connectives differ significantly from the classical to the metric case, so we will deal with the
two settings separately.

3.1. Classical connectives. The connectives we use in the classical setting are the usual
logical operations: conjunction (∧), disjunction (∨) and negation (¬), as well as the universal
and existential quantifiers: ∀ and ∃.

Definition 3.28. Let L be a classical language. The class of L-formulas is the smallest
class such that

• atomic L-formulas are L-formulas;
• if ϕ and ψ are two L-formulas, then the expressions ϕ ∧ ψ and ϕ ∨ ψ are L-formulas;
• if ϕ is an L-formula, then the expression ¬ϕ is an L-formula;
• if ϕ is an L-formula and x is a variable in V , then the expressions ∀x, ϕ and ∃x, ϕ are
L-formulas.

Definition 3.29. Let ϕ be an L-formula. Let x be a variable in V that appears in the
expression of ϕ. We say that x is bound in ϕ if it lies in a subformula of ϕ of the form ∀x, ψ
or ∃x, ψ. Otherwise, we say that x is a free variable of ϕ.

We will say that a formula depends on its free variables.

Each formula also contains a finite number of variables. Formulas are then interpreted in any
structure in the obvious way, by substituting elements of the structure to their free variables.
The formulas, with parameters, that are obtained this way can be either true or false.
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Definition 3.30. Let L be a classical language and M be an L-structure. Let ϕ(x̄) be an
L-formula depending on the tuple of variables x̄ = (x1, ..., xk). Let ā = (a1, ..., ak) be a tuple
of elements of M . By induction on the complexity of the formula ϕ, we define what it means
that M satisfies ϕ(ā), denoted M � ϕ(ā).

• If ϕ(x̄) = R(t1(x̄), ..., tn(x̄)), where R is an n-ary relation in L and t1(x̄), ..., tn(x̄) are
L-terms depending on x̄, then

M � ϕ(ā)⇔M � R(t1(ā), ..., tn(ā)).

• If ϕ(x̄) = ϕ1(x̄) ∧ ϕ2(x̄), then

M � ϕ(ā)⇔ [M � ϕ1(ā) and M � ϕ2(ā)].

• If ϕ(x̄) = ϕ1(x̄) ∨ ϕ2(x̄), then

M � ϕ(ā)⇔ [M � ϕ1(ā) or M � ϕ2(ā)].

• If ϕ(x̄) = ¬ψ(x̄), then

M � ϕ(ā)⇔M 6� ψ(ā).

• If ϕ(x̄) = ∀y, ψ(x1, ..., xk, y), then

M � ϕ(ā)⇔ [∀b ∈M,M � ψ(a1, ..., ak, b)].

• If ϕ(x̄) = ∃y, ψ(x1, ..., xk, y), then

M � ϕ(ā)⇔ [∃b ∈M,M � ψ(a1, ..., ak, b)].

3.2. Continuous connectives. In the continuous setting, we use a much broader class of
connectives: all (uniformly) continuous functions.

Definition 3.31. Let L be a continuous language. The class of L-formulas is the smallest
class such that

• atomic L-formulas are L-formulas;
• if u : [0, 1]n → [0, 1] is a continuous function and ϕ1, ..., ϕn are L-formulas, then the
expression u(ϕ1, ..., ϕn) is an L-formula;
• if ϕ is an L-formula and x is a variable in V , then the expressions supx ϕ and infx ϕ
are L-formulas.

The notions of bound and free variables are defined as in the classical case.

Definition 3.32. Let ϕ be an L-formula. Let x be a variable in V that appears in the
expression of ϕ. We say that x is bound in ϕ if it lies in a subformula of ϕ of the form supx ψ
or infx ψ. Otherwise, we say that x is a free variable of ϕ.

We will say that a formula depends on its free variables.

Again in the continuous setting, each formula contains a finite number of variables and a
formula is interpreted in any structure by substituting elements of the structures to its free
variables. However, this time, the interpreted formulas take their values in [0, 1].

Definition 3.33. Let L be a continuous language and M be an L-structure. Let ϕ(x̄) be
an L-formula depending on the tuple of variables x̄ = (x1, ..., xk). Let ā = (a1, ..., ak) be a tuple
of elements ofM . By induction on the complexity of the formula ϕ, we define the value ϕM(ā)
of ϕ(ā) in the structure M.

• If ϕ(x̄) = P (t1(x̄), ..., tn(x̄)), where P is an n-ary predicate in L and t1(x̄), ..., tn(x̄) are
L-terms depending on x̄, then

ϕM(ā) = PM(t1(ā), ..., tn(ā)).

• If ϕ(x̄) = u(ϕ1(x̄), ..., ϕn(x̄)), where u : [0, 1]n → [0, 1] is a continuous function, then

ϕM(ā) = u(ϕM
1 (ā), ..., ϕM

n (ā)).
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• If ϕ(x̄) = supy ψ(x1, ..., xn, y), then

ϕM(ā) = sup
b∈M

ψM(a1, ..., an, b).

• If ϕ(x̄) = infy ψ(x1, ..., xn, y), then

ϕM(ā) = inf
b∈M

ψM(a1, ..., an, b).

If ϕM(ā) = r, we say that M satisfies that ϕ(ā) = r, and we write M � ϕ(ā) = r.

Remark 3.34. The interpretation ϕM : Mk → [0, 1] is uniformly continuous.

As hinted at in subsection 1.2, the intuition as for the truth of a continuous formula is: the
smaller, the truer. Therefore, the continuous quantifiers sup and inf can be viewed as analogues
of the classical ones ∀ and ∃. However, note that these analogues are in no way canonical: this
interprets conjunction as a maximum, but it could as well be represented as a sum, for instance.
As for negation, it does not —and should not — have any satisfying continuous analogue. See
[BM1] for a more extensive discussion about the continuous analogues of Boolean operations
(in the context of grey sets).

Remark 3.35. The automorphism group preserves the interpretations of formulas: if ϕM(ā) =
r and g is an automorphism of M, then ϕM(g(ā)) = r too.

3.3. Sentences and conditions.

Definition 3.36. Let L be a language. An L-sentence is an L-formula with no free
variable.

Remark 3.37. If M is an L-structure and ϕ is an L-sentence, then the interpretation ϕM

of ϕ in M is constant. In the classical setting, a sentence is either true in M or false in M.

Definition 3.38. Let L be a continuous language. An L-condition is an expression of
the form ϕ(x̄) = r, where ϕ(x̄) is an L-formula and r is a real in [0, 1].

Definition 3.39. Let L be a continuous language. A closed L-condition is an expression
of the form ϕ = r, where ϕ is an L-sentence and r is a real in [0, 1].

Remarks 3.40. • In the classical case, the only relevant conditions are of the form
“ϕ(x̄) is true” and “ϕ(x̄) is false". So we will identify formulas and conditions.
• Note that an expression of the form ϕ 6 r can also be seen as condition, for it is a
rewriting of the condition max(0, ϕ− r) = 0.

The semantics of conditions is defined the natural way, as in definition 3.33.

4. Theories and models

Definition 3.41. Let L be a language. An L-theory is a set of closed L-conditions.

An important example of theory is the theory of a structure: given a structure, look at all
the closed conditions it satisfies.

Definition 3.42. Let L be a language and let M be an L-structure. The theory of M,
denoted Th(M), is the set of all closed L-conditions satisfied in M. Any theory of that form is
called a complete theory.

Dually, given a theory, we can consider all structures which satisfy this theory.

Definition 3.43. Let L be a language and let T be an L-theory. A model of T is an
L-structure which satisfies every closed L-condition in T . In other words, an L-structure M is
a model of T if and only if T ⊆ Th(M).
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Example 3.44. The structure (Q, <) is a linear order, so its theory contains the closed
condition ∀x,∀y, [(x < y) ∨ (y < x) ∨ (x = y)]. Hence, all models of the theory of (Q, <) are
linear orders. Similarly, all models of Th(Q, <) are dense orders without endpoints. In fact,
(Q, <) is the only countable dense linear order without endpoints, up to isomorphism: it is the
only countable model of its theory (see chapter 6).

5. Spaces of types

Let L be a continuous language and let T be a complete L-theory. Let M be a model of T
and let X be a countable subset of M . Moreover, let TX be the LX-theory of (M, X).

5.1. Types. The type of an element over the set X is everything the language can say,
using parameters from X, to describe this element.

Definition 3.45. Let NX be a model of TX and let ā = (a1, ..., an) be a tuple in NX .
The type of ā over X in NX is the set of all LX-conditions of the form ϕ(x1, ..., xn) = r,
where ϕ(x1, ..., xn) is an LX-formula with free variables among x1, ..., xn, such that NX �
ϕ(a1, ..., an) = r. We denote it tp(ā/X).

Remark 3.46. Let NX be a model of TX . Let g be an automorphism of NX (g corresponds
to an automorphism of N that fixes X pointwise). Then for every tuple ā in NX , the tuples ā
and g(ā) have the same type over X in NX . We will see in chapter 4 classes of structures in
which the converse is true.

Types are all sets of conditions of the above form.

Definition 3.47. Let p be a set of LX-conditions with free variables among x1, ..., xn. The
set p is an n-type over X if there exists a model NX of TX and a tuple ā in Nn

X such that
p = tp(ā/X).

We then say that the tuple ā is a realization of p in the model NX .
The space of all n-types over X is denoted by Sn(X), the Stone space of X.

Remark 3.48. Similarly, we can define quantifier-free types, as restrictions of types to
formulas that do not contain any quantifier. When two tuples have the same quantifier-free
type, it means that there exists an isomorphism between the structures they generate.

Example 3.49. In the Urysohn space, the Katětov space E(X) is the space of quantifier-
free 1-types over X. Actually, since the theory of U eliminates quantifiers, E(X) is the space
of all 1-types over X.

The space of types can be endowed with two different topologies, each of which enjoys nice
properties. In the next two subsections, we go over those two topologies and explain how they
intertwine.

5.2. The logic topology. The first topology, called the logic topology, is designed to
deal with questions of satisfiability of sets of conditions. The powerful compactness theorem
([BBHU, corollary 5.12]) says that it suffices for every finite subset of conditions to be satisfi-
able (in the continuous setting, up to an arbitrarily small error) for all the conditions in the set
to be satisfiable at the same time. As the name suggests, a restatement of this result is that
the space of types, endowed with this topology, is compact.

Definition 3.50. Assume that L is a classical language. The logic topology on Sn(X)
is defined as follows. If p is an n-type over X, a basis of neighborhoods of p is given by all sets
of the form

[ϕ] = {q ∈ Sn(X) : ϕ ∈ q},
where ϕ is an LX-condition contained in p.

Theorem 3.51. (See [BBHU, proposition 8.6]) Assume that L is a classical language.
Then the space Sn(X) is compact Hausdorff for the logic topology.
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The logic topology has a natural continuous analogue. Assume now L is a continuous
language.

Definition 3.52. Let ϕ be a LX-formula with free variables among x1, ..., xn. Let also ε
be a positive real. We define the set [ϕ < ε] as follows:

[ϕ < ε] = {q ∈ Sn(X) : ∃δ ∈ [0, ε[, the LX-condition ϕ 6 δ is in q}.
Definition 3.53. The logic topology on Sn(X) is defined as follows. If p is an n-type

over X, a basis of neighborhoods of p is given by all sets of the form [ϕ < ε], where ϕ = 0 is an
LX-condition contained in p and ε is a positive real.

Theorem 3.54. (See [BBHU, proposition 8.6]) The space Sn(X) is compact Hausdorff for
the logic topology.

5.3. The metric topology. In the continuous setting, there is another natural topology
to consider on the space of types, accounting for the distance between realizations of types.

Fix a model NX of TX in which every type over X is realized. Such a model exists (see
[BBHU, proposition 7.6]) and is called sufficiently saturated. We are going to define a
metric in this fixed model. Several results in the rest of this chapter will use more sophisticated
model-theoretic tools, such as saturation, that are not needed to present the work of this thesis.
Whenever such is the case, we will give a reference for the proof, together with some of the
ideas involved.

Definition 3.55. Let p and q be two types in Sn(X). We define
d(p, q) = inf{max

16i6n
d(ai, bi) : ā and b̄ are realizations of p and q in NX respectively }.

It can be shown that this number does not depend on our choice of a sufficiently saturated
model.

Proposition 3.56. The map d defines a metric on the space Sn(X).

Proof. It is easy to see that d is a pseudometric on Sn(X). To prove that d is a metric, we
use the compactness theorem and the sufficient saturation of NX : see [BBHU, page 44]. �

Remark 3.57. In the case when the language is classical, this metric is discrete.

Theorem 3.58. The metric space (Sn(X), d) is complete.

Proof. We choose a sufficiently saturated model that has homogeneity properties to build
limits of Cauchy sequences. See [BBHU, proposition 8.8]. �

Proposition 3.59. The metric topology on Sn(X) is finer than the logic topology.

Proof. That follows from the uniform continuity of interpretations of formulas (remark
3.34). Let [ϕ < ε] be a basic open set of Sn(X) in the logic topology and let p be a type in this
open set. There exists 0 6 δ < ε such that the LX-condition ϕ 6 δ is in p. Put now r = ε−δ

2
.

The interpretation ϕN : Nn → [0, 1] of the formula ϕ is uniformly continuous so there exists a
positive η such that for all ā, b̄ in Nn with d(ā, b̄) < η, we have |ϕN(ā)− ϕN(b̄)| 6 r.

We claim that the ball B(p, η) around p in the metric topology is contained in the set
[ϕ < ε]. Indeed, let q be type in B(p, η). There exist realizations ā of p and b̄ of q in Nn such
that d(ā, b̄) < η. This implies that |ϕN(ā)− ϕN(b̄)| 6 r. Besides, since the condition ϕ 6 δ is
in p, we have ϕN(ā) 6 δ, so ϕN(b̄) 6 r + δ < ε, which completes the proof. �

The space of types is the archetype of a topometric space, in the sense of Ben Yaacov ([B3]):
a space where we can juggle between a topology and a metric that refines it nicely. We will see
in chapter 6 an illustration of those interactions and a characterization of when the logic and
metric topologies coincide.

Another archetypal topometric space is the automorphism group of a metric structure, with
its usual topology of pointwise convergence together with the distance of uniform convergence.
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In topometric groups such as this one, this juggling between topologies has proved particu-
larly successful: Ben Yaacov, Berenstein and Melleray ([BBM]) obtained a beautiful result of
automatic continuity.

6. Definability

Definable objects include everything that the language can express. In the classical setting,
definable predicates are exactly formulas and definable sets are the sets of tuples that verify
a formula. In the continuous setting, however, the notion of definability is more delicate to
delineate.

Definition 3.60. Let L be a continuous language. Let M be an L-structure and let X
be a countable subset of M . Let P : Mn → [0, 1] be a function. We say that P is definable
in M over X if it is the uniform limit of LX-formulas: if there exists a sequence (ϕk)k∈N of
LX-formulas in n free variables such that (ϕM

k ) converges uniformly to P .

Remarks 3.61. • Definable predicates are uniformly continuous.
• Each formula only contains a finite number of elements of X in its expression. But
unlike the classical case, the number of parameters from X needed to define a predicate
can still be infinite.

We would still like to have a more concrete description of definable predicates, to mirror the
classical case. To this aim, we widen the class of connectives: we allow infinitary connectives.

Endow [0, 1]N with the metric defined by

ρ(x, y) =
∑

k∈N

1

2k
|xk − yk|.

Proposition 3.62. Let L be a continuous language. Let M be an L-structure and let
X be a countable subset of M . Let P : Mn → [0, 1] be a uniformly continuous function.
Then P is definable is M over X if and only if there exists a (uniformly) continuous function
u : [0, 1]N → [0, 1] and a sequence (ϕk)k∈N of LX-formulas in n free variables such that, for all
ā in Mn,

P (ā) = u(ϕM
k (ā)|k ∈ N).

Proof. ⇐] Assume that P has the specified form and let ε be a positive real. To show
that P is definable in M over X, we find an LX-formula whose interpretation in M uniformly
approaches P up to ε. Since u is uniformly continuous, there exists a rank K in N such that
for all sequences (rk) and (sk) in [0, 1]N that coincide up to the K-th coordinate, |u(rk|k ∈
N) − u(sk|k ∈ N)| 6 ε. Let now uK : [0, 1]K+1 → [0, 1] be the associated truncated function:
uK(r0, ..., rK) = u(r0, ..., rK , 0, ...0, ...). This map uK is (uniformly) continuous so the expression
ϕ(x̄) = uK(ϕ0(x̄), ..., ϕK(x̄)) defines an LX-formula, which is as desired. Indeed, for every tuple
ā in Mn, we have

|P (ā)− ϕM(ā)| = |u(ϕM
k (ā)|k ∈ N)− uK(ϕM

0 (ā), ..., ϕM
K (ā))| 6 ε.

⇒] Conversely, assume that the predicate P is definable in M over X: for every k in N,
there is an LX-formula ϕk such that for every ā in Mn, we have |P (ā) − ϕM

k (ā)| 6 1
2k
. Note

that P is the limit of the sequence (ϕM
k ).

We extend the limit map to a continuous map on [0, 1]N. To this aim, consider the set C of
all sequences (rk) in [0, 1]N such that for every K in N and every two indices k and l greater
than K, we have |rk − rl| 6 1

2K
. All sequences in C are Cauchy and thus converge. Moreover,

the set C is closed in [0, 1]N and the limit map from C to [0, 1] is continuous, so the Tietze
extension theorem yields a continuous map u : [0, 1]N → [0, 1] that extends the limit map.

Now our choice of formulas guarantees that for every ā in Mn, the sequence (ϕM
k (ā))k∈N is

in C. Consequently, for every ā in Mn, we have

P (ā) = limϕM
k (ā) = u(ϕM

k (ā)|k ∈ N).
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�

The following theorem characterizes definable predicates as continuous functions on the
space of types.

Theorem 3.63. Let L be a continuous language. Let M be an L-structure and let X be a
countable subset of M . Let P : Mn → [0, 1] be a function. Then P is definable in M over X
if and only if there exists a map Φ : Sn(X)→ [0, 1] that is continuous with respect to the logic
topology on Sn(X) such that for all ā in Mn,

P (ā) = Φ(tp(ā/X)).

Proof. See [BBHU, theorem 9.9]. �

From the notion of a definable predicate, we can also define what it means for a set and for
a function to be definable.

Definition 3.64. Let L be a continuous language. Let M be an L-structure and let X be
a countable subset of M .

• Let D be a closed subset of Mn. We say that the subset D is definable in M over X
if the predicate d(x̄, D) : Mn → [0, 1] is.
• Let F be a function from Mm to M . We say that the function F is definable in M
over X if its graph is (as a subset of Mm+1).

We stress that in the continuous setting, being definable means much more than being
the zeroset of a definable predicate. The following proposition illustrates this distinction and
provides a more graspable characterization of definable sets. We shall use it in chapter 6 to
describe principal types.

Proposition 3.65. Let L be a continuous language. Let M be an L-structure and let X
be a countable subset ofM . Let D be a closed subset ofMn. Then the following are equivalent.

• The set D is definable in M over X.
• There is a predicate P : Mn → [0, 1], definable over X, such that for all x̄ in D, we
have P (x̄) = 0, and for every positive ε, there exists δ > 0 such that for all x̄ in Mn,
we have

P (x̄) 6 δ ⇒ d(x̄, D) 6 ε.

• There is a sequence (ϕm) of LX-formulas and a sequence (δm) of positive reals such
that for all m and all x̄ in D, we have ϕM

m (x̄) = 0, and for all m and all x̄ in Mn, we
have

ϕM
m (x̄) 6 δm ⇒ d(x̄, D) 6 2−m.

Proof. See [BBHU, proposition 9.19]. �
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In [F], Fraïssé gave a way of building random structures as limits of finite objects that
are glued together. A wide class of random structures is that of ultrahomogeneous structures,
for which randomness means that every finite configuration can be found everywhere in the
structure. Fraïssé theory permits, conversely, to study such structures combinatorially through
their finitely generated substructures.

1. Classical Fraïssé theory

Definition 4.1. A classical countable structure M is ultrahomogeneous if every isomor-
phism between finitely generated substructures of M extends to an automorphism of the whole
structure M. In other words, M is ultrahomogeneous if and only if any two tuples with the
same quantifier-free type in M can be sent each to the other by an automorphism of M.

Ultrahomogeneous structures thus have rich automorphism groups: automorphisms have
to account for all local behaviors. Moreover, isomorphisms between two finitely generated
substructures define non-empty open sets in the automorphism group (see definition 3.19).

Remark 4.2. We shall see a notion of ultrahomogeneity more suited for metric structures
in section 2.

Examples 4.3. Here a few examples of ultrahomogeneous structures.
(1) Pure sets: bijections between finite sets extend to bijections of the whole set.
(2) The rationals, with their order. If f is a finite increasing bijection, we extend f with

piecewise linear maps. Another proof is by a back-and-forth argument, as we have
done in chapter 2 for the Urysohn space.

1Chanson populaire
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64 4. FRAÏSSÉ THEORY

(3) The infinite k-regular tree Tk, with the graph distance. Let A and B be two sub-
graphs and let f be an isomorphism between A and B. First, f extends uniquely
to an isomorphism between the induced subtrees (see figure 4.1). Indeed, consider a
connected component of A and one of the nearest other connected component. In the
tree Tk, there exists a unique shortest path between them, say (a, x1, ..., xn, a

′), with
a and a′ in A, and the xi’s outside A. Now, since d(a, a′) = n + 1, we also have that
d(f(a), f(a′)) = n + 1. Thus, there exists a path (f(a), y1, ..., yn, f(a′)) between them
in Tk. The choice of a and a′ guarantees that the yi’s are not in B. Thus, we may
extend f by putting f(xi) = yi.

Figure 4.1. The induced subtree

Assume now that A and B are subtrees and consider a vertex a in A. Since Tk is
regular, the sets {x ∈ Tk \A : d(x, a) = 1} and {y ∈ Tk \B : d(y, f(a)) = 1} have the
same size. Thus, we may extend f to these sets. Moreover, if x and y are neighbor
of a and f(a) respectively, the subtrees emerging from x and y are isomorphic, so f
extends to those emerging subtrees as well.

We apply this process to every vertex in a. This is consistent, since no vertex outside
A can be a neighbor of two distinct vertices in A (otherwise, since A is connected, it
would create a cycle in Tk). Thus, the isomorphism f extends to an automorphism of
the whole structure.

(4) The infinite infinitely splitting tree. The proof works the same way.

We now describe Fraïssé’s construction of countable ultrahomogeneous structures as limits
of their finitely generated substructures.

A Fraïssé class is a class of finitely generated structures that enjoys good amalgamation
properties.

Definition 4.4. Let L be a classical language. A Fraïssé class is a class K of finitely
generated L-structures with the following properties.

• Hereditary property (HP): If B is in K and A embeds in B, then A is also in K.
• Joint embedding property (JEP): IfA andB are inK, then there exists a structure
C in K in which both A and B embed.

C

A B

• Amalgamation property (AP): If A, B and C are in K, and fB : A → B and
fC : A → C are embeddings, then there exists a structure D in K and embeddings
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gB : B→ D and gC : C→ D such that gB ◦ fB = gC ◦ fC.

D

B C

A

gB gC

fB fC

• Denumerability: The class K is countable, up to isomorphism.

Remark 4.5. The joint embedding property is equivalent, modulo AP, to there being a
unique structure generated by the empty set in K.

The most essential property, and the trickiest to check, is the amalgamation property. In
the examples, we will therefore often content ourselves with proving this one.

Examples 4.6. The following form Fraïssé classes.
(1) Finite sets. If A is included in both B and C, a natural amalgam of B and C over A

is given by B ∪ (C \A).
(2) Finite ordered sets. To amalgamate B and C over A, start with A and insert points

of B and C at the right places by declaring that if b ∈ B and c ∈ C fall in the
same interval, b is smaller than c (see figure 4.2). Note that this construction is not
symmetric in B and C.

B C

Figure 4.2. The amalgam of linear orders B and C over the orange suborder.

(3) Finite graphs. If B ∩C = A, an amalgam of B and C over A is given by the union
of B and C, without any additional edge, so that there is no edge between B \A and
C \A.

(4) Finite triangle-free graphs. Since we added no superfluous edge, the above amalgam
will stay triangle-free if both B and C were.

Note, though, that the class of bowtie-free graphs is not a Fraïssé class (see figure
4.3).

Figure 4.3. Any amalgam of those two graphs over the orange subgraph con-
tains a bowtie.
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(5) Finite metric spaces with rational distances, in the language consisting of predicates
dq, for all q in Q, defined by dq(x, y) ⇔ d(x, y) = q. If A is a non-empty metric
subspace of both B and C, then we can define the maximal distance amalgam of
B and C over A as follows. In the amalgam, the distance between an element b of B
and an element c of C is given by

d(b, c) = min
a∈A

d(b, a) + d(a, c).

In other words, we put B and C as far away as the triangle inequality allows (see figure
4.4).

A

B C

b c

Figure 4.4. The maximal distance amalgam.

If A is empty, then we amalgamate B and C over an arbitrary extra point.
(6) Finitely generated vector spaces over Q. Assume that A is the intersection of vector

spaces B and C. Let A be a basis for A and complete A into a basis B of B and a
basis C of C. Then an amalgam of B and C over A is given by the span of B∪ (C \A).

Remark 4.7. In examples (1), (3) and (4), the amalgam that we described is the free
amalgam: there is no relation between elements of B \A and C \A. If such an amalgam can
be found inside the class K for all triplets of structures, then we say that the class K has the
free amalgamation property.

In the metric setting, it does not make any sense to say that there is no relation, for there
is always the metric. However, the maximal distance amalgam is the freest amalgam. This
falls within the more general framework of structures with a stationary independence relation,
which was developed by Tent and Ziegler in [TZ2].

Ultrahomogeneous structures naturally provide Fraïssé classes, through their ages.

Definition 4.8. Let M be an L-structure. The age of M, denoted by Age(M) is the class
of all finitely generated L-structures that embed in M.

The age of a structure consists of all its finitely generated substructures (and of all the
structures isomorphic to them).

Proposition 4.9. Let M be a countable ultrahomogeneous L-structure. Then the age of
M is a Fraïssé class.

We will see in theorem 4.11 that all Fraïssé classes are actually obtained that way.

Proof. The hereditary property is clear.
If A and B embed in M via f and g, then both A and B embed in f(A) ∪ g(B), which

proves the joint embedding property.
As for the amalgamation, the key assumption is ultrahomogeneity. Let A, B and C be in

the age of M and fB : A→ B, fC : A→ C be embeddings. We may assume that B and C are
substructures of M. Now the map fC ◦ f−1

B is an isomorphism between the two copies fB(A)
and fC(A) of A. Since M is ultrahomogeneous, this isomorphism extends to an automorphism
g of M. Then g ◦ fB = fC, hence the isomorphisms gB = g�B and gC = idC are as desired.

Moreover, it is easy to see that the age of a countable structure is countable, up to isomor-
phism. �
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If K is a Fraïssé class, we say that a countable structure M is a Fraïssé limit of K if M is
ultrahomogeneous and the class K is the age of M. Ultrahomogeneous structures are sometimes
called Fraïssé structures.

Fraïssé limits of a class are actually characterized by a seemingly weaker property. We say
that a structure M is K-rich if for any two structures A and B in K and any two embeddings
f : A→ B and g : A→M, there exists an embedding h : B→M such that h ◦ f = g.

B M

A

h

f
g

It is easily checked that a Fraïssé limit of K is K-rich. The following theorem states the
uniqueness of K-rich structures of age K. It yields that the Fraïssé limit is unique.

Theorem 4.10. (Fraïssé) Let K be a Fraïssé class and let M and N be two countable
structures of age K. Assume thatM andN are K-rich. Then, for every isomorphism f : A→ B
between finitely generated substructures of M and N respectively, there exists an isomorphism
between M and N that extends f .

When applied to M = N, the previous theorem yields that K-rich structures of age K are
in fact ultrahomogeneous, hence Fraïssé limits of K.

Proof. We proceed by back-and-forth. Exhaust M and N as increasing unions of finitely
generated substructures (that is, structures in K): M =

⋃

n∈N

An and N =
⋃

n∈N

Bn. Since K is

the age of the two structures, we may as well assume that A0 = A and B0 = B. By induction,
we build a chain (fn)n∈N of isomorphisms between finitely generated substructures of M and
N such that

• f0 = f ;
• the domain of fn contains An;
• the range of fn contains Bn.

Assume that fn has been built. For the forth step, consider the substructure Cn+1 of M
generated by dom(fn) ∪ An+1. This a structure in K, thus in the age of N: there exists
a substructure Dn+1 of N isomorphic to Cn+1 via g. Thus, g(dom(fn)) embeds into N via
fn ◦ g−1, as well as into g(Cn+1) = Dn+1 via the inclusion map. This implies, by K-richness of
the structure N, the existence of an embedding h of Dn+1 into N that extends fn ◦ g−1. Now
set fn+1 = h ◦ g. The map fn+1 is an extension of fn to Cn+1.

For the back step, we apply the same argument to the inverse of the map fn+1 we just
obtained.

Finally, the union of all fn’s is an isomorphism between M and N which extends f , as
desired. �

Theorem 4.11. (Fraïssé) Every Fraïssé class admits a Fraïssé limit.

Proof. Let K be a Fraïssé class. As per theorem 4.10, it suffices to build a K-rich countable
structure whose age is the classK. We do so by induction: we build a chain (Cn)n∈N of structures
in K such that for all A and B in K with A included in B and for every embedding f : A→ Cn,
there exists m > n and an embedding g : B→ Cm that extends f .

Assume the chain has been built and put M =
⋃

n∈N

Cn. Let us prove that M is the desired

Fraïssé limit. The age of M is K. Indeed, it is clear that the age of M is included in K.
Conversely, let A be a structure in K. The joint embedding property gives a structure B into
which both A and C0 embed. But now, the defining property of the chain ensures that B will
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embed into one of the Cn’s, hence into M. Thus, A belongs to the age of M. Moreover, our
assumption on the Cn’s yields K-richness directly.

It remains to construct the Cn’s. To that aim, choose a countable set P of pairs (A,B) of
structures in K with A ⊆ B so that P contains a representative of each isomorphism type of
such pairs. Also fix a bijection π : N × N → N such that for all n and m, the integer π(n,m)
is greater than n. Now, start the construction with any structure C0 in K. If the structure Cn

has been built, enumerate all triples of the form (f,A,B) where (A,B) is in P and f is an
embedding of A into Cn as {(fn,m,An,m,Bn,m) : m ∈ N}.

The idea is to take care of fn,m at step π(n,m). The amalgamation property gives a structure
D in K and embeddings such that the following diagram commutes.

D

Cπ(n,m)

Bn,m Cn

An,m

fn,m

Then, we add D to the structure Cπ(n,m) to make Cπ(n,m)+1. This process guarantees that every
isomorphism fn,m will indeed extend to some Ci, which completes the proof. �

We now go over the Fraïssé classes in 4.6 and give their Fraïssé limits. We will recover the
ultrahomogeneous structures from example 4.3 this way.

Examples 4.12. (1) Finite sets: the associated Fraïssé limit is the countably infinite
set (N for instance).

(2) Finite ordered sets: the Fraïssé limit is (Q, <).
(3) The Fraïssé limit of the class of finite graphs is called the random graph, and is often

denoted by R.
There are several other ways to build the random graph. One possible construction

is percolation: start with countably many vertices, and for every pair of vertices, flip
a coin to decide whether to put an edge between them. Almost surely, the result is
isomorphic to the random graph.

The random graph is characterized by the following property: for any two disjoint
finite subgraphs A and B, there exists a vertex in R that is related to every point in
A but to no point in B (see figure 4.5).

BA

Figure 4.5. The defining property of the random graph.

(4) The Fraïssé limit of the class of finite triangle-free graphs was built by Henson in [H2],
and is therefore called the Henson triangle-free graph.
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(5) The Fraïssé limit of the class of finite metric spaces with rational distances is called
the rational Urysohn space, and denoted by QU.

The original construction of U by Urysohn — thirty years before Fraïssé! — re-
sembled this one very much. The Urysohn metric space was actually constructed as
the metric completion of the rational Urysohn space.

Note that, although Aut(QU) is the group of isometries of the rational Urysohn
space, the topology on Aut(QU) does not correspond to pointwise convergence, it is
still the permutation group topology.

(6) Finitely generated vector spaces over Q: the Fraïssé limit is the countably infinite-
dimensional Q-vector space.

2. Metric Fraïssé theory

We described the Urysohn space as the completion of a classical Fraïssé limit, but it would
be natural to see it as a Fraïssé limit in its own right: the Fraïssé limit of finite metric spaces.
In this section, we present Ben Yaacov’s generalization of Fraïssé’s construction to separable
metric structures ([B5]), which constitute the metric counterpart of countable structures.

To do so, we need to allow arbitrarily small errors and thus to relax the amalgamation
properties of a Fraïssé class.

Definition 4.13. Let L be a metric language and let K be a class of finitely generated L-
structures. We say that K has the near amalgamation property (NAP) if for all A = 〈ā〉,
B and C in K, for all embeddings fB : A → B and fC : A → C, and for every ε > 0,
there exists a structure D in K and embeddings gB : B → D and gC : C → D such that
d(gB ◦ fB(ā), gC ◦ fC(ā)) < ε.

D

B ε-commutes C

ā

gB gC

fB fC

Furthermore, the denumerability of the class needs to be replaced by a condition of separa-
bility together with a condition of completeness.

If K is a class of finitely generated structures that satisfies JEP and NAP, then, for every
integer n, we denote by Kn the class consisting of all pairs (a,A), where A is in K and a is an
n-tuple that generates A. We equip Kn with the following pseudometric:

dn((a,A), (b,B)) = inf{dC(i(a), j(b)) : C ∈ K, i : A→ C and j : B→ C embeddings}.

Definition 4.14. Let L be a metric language. A metric Fraïssé class is a class K of
finitely generated L-structures that satisfies properties HP, JEP, NAP and such that for all n,
the space (Kn, dn) is separable and complete.

Examples 4.15. The following are metric Fraïssé classes.
(1) Finite metric spaces. A possible amalgam is again the maximal distance amalgam.
(2) Finite measure algebras. The amalgam of B and C over their intersection is the

coarsest common refinement of B and C.
(3) Finite-dimensional euclidean spaces. Let A, B and C be finite-dimensional euclidean

spaces, with A = B ∩C. Let A be an orthonormal basis for A and complete A into
orthonormal bases B and C of B and C respectively. Then define the amalgam of B
and C over A to have B ∪ C as an orthonormal basis.

(4) Finitely generated Banach spaces. Define the amalgam of B and C over A as the space
B⊕ Vect(C \A) and set ‖b+ c‖ = ‖b‖+ ‖c‖ for b in B \A and c in C \A.
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(5) Finite metric spaces with a binary 1-Lipschitz predicate. Here, 1-Lipschitz refers to
the `1 metric on X2 (otherwise, the argument does not go through): a binary predicate
P on X is 1-Lipschitz if for all x, x′, y and y′ in X, we have |P (x, x′) − P (y, y′)| 6
d(x, x′) + d(y, y′). If (B, P ) and (C, P ) both contain (A, P ), then it is easy to check
that P : B2 ∪ C2 → R is still 1-Lipschitz with respect to the metric in the maximal
distance amalgam. Thus, it extends to a 1-Lipschitz map on the metric amalgam of B
and C over A.

The ultrahomogeneity of the limit also need relaxing.

Definition 4.16. A structure M is approximately ultrahomogeneous if for every
finitely generated substructures A = 〈ā〉 and B of M, every isomorphism f : A → B and
every ε > 0, there exists an automorphism g of M such that one has d(g(ā), f(ā)) < ε.

Exactly as in proposition 4.9, the age of a separable approximately ultrahomogeneous struc-
ture is a metric Fraïssé class. Conversely, an approximately ultrahomogeneous structure M is
a metric Fraïssé limit of a metric Fraïssé class K if K is the age of M. We also call approx-
imately ultrahomogeneous structures metric Fraïssé structures.

The analogue of Fraïssé’s theorem holds. It was originally proven by Schoretsanitis in [S2],
although in a somewhat different formalism, but Ben Yaacov ([B5]) proposed a different and
elegant proof, which we will present in details in the next section.

Theorem 4.17. Every metric Fraïssé class admits a metric Fraïssé limit. Moreover, the
metric Fraïssé limit is unique, up to isomorphism.

Our favorite examples of metric Fraïssé limits will be the following.

Examples 4.18. (1) As expected, the Urysohn space is the metric Fraïssé limit of the
class of finite metric spaces.

(2) The measure algebra of the unit interval is the metric Fraïssé limit of the class of finite
measure algebras.

To see that it is ultrahomogeneous, let A and B be two finite measure subalgebras
and let f be an isomorphism between them. The atoms of A and B induce finite
partitions (A1, ..., An) and (B1, ..., Bn) of [0, 1], with f(Ai) = Bi. Since Ai and Bi have
the same measure, the measure algebras of (Ai, µ�Ai

) and of (Bi, µ�Bi
) are isomorphic,

say via fi. Gluing the fi’s together, we obtain the desired extension of f .
(3) The separable Hilbert space (the space `2) is the metric Fraïssé limit of the class of

finitely generated euclidean spaces.
(4) The metric Fraïssé limit of the class of finitely generated Banach spaces is called the

Gurarij space and is denoted by G. It was constructed by Gurarij in [G6] and its
uniqueness was proved ten years later by Lusky ([L3]).

It is interesting to note that in the three first examples above, the metric Fraïssé limit is
not only approximately ultrahomogeneous but exactly ultrahomogeneous. Exact homogeneity
will be needed in chapter 8 when considering questions of automatic continuity. It would be
very nice to have a characterization of metric Fraïssé classes whose limit is exactly ultrahomo-
geneous, but unfortunately, no such characterization is known. An obvious requirement is for
the amalgamation property to be exact, but this does not suffice. Indeed, although the class of
finitely generated Banach spaces satisfies AP, the Gurarij space is not exactly ultrahomogeneous
(smooth points cannot be mapped to non-smooth points).

Question 4.19. Can exact ultrahomogeneity of the metric Fraïssé limit be read on the
class?

Actually, when the limit is separably categorical (see chapter 6), exact ultrahomogeneity is
equivalent to all the finite tuples in the class being d-finite. Ben Yaacov and Usvyatsov observed
in [BU1] that in continuous structures, finite tuples tend to behave like infinite tuples do in the
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classical case. Thus, they introduce the notion of d-finiteness to discriminate those nice tuples
that behave as we expect of finite tuples. However, d-finiteness can be quite a tricky condition
to check, and even in very simple examples, the answer is unclear.

Question 4.20. Is the metric Fraïssé limit of the class of finite metric spaces equipped with
a binary 1-Lipschitz predicate exactly ultrahomogeneous?

3. Approximate maps

This section is devoted to the proof of theorem 4.17 and the tools this metric Fraïssé con-
struction involves. Instead of considering embeddings that almost satisfy the amalgamation
property and of keeping track of all the epsilons, we rather consider approximate maps: ap-
proximetries and is-almost-phisms2. This way, instead of dealing with maps that almost extend
one another, we will have almost-maps that do extend one another. This elegant theory is due
to Ben Yaacov ([B5]) and was inspired by Uspenskij, who introduced approximetries in [U5]
to compute the Roelcke compactification of the isometry group of the Urysohn sphere.

Throughout this section, X, X ′, Y , Y ′, Z and Z ′ will denote metric spaces.
The idea is the same as in continuous logic: just like equality was replaced by a metric,

and a set by the distance function to this set, we replace any isometry f : X → Y by the map
ψf : X × Y → R+ defined by

ψf (x, y) = d(f(x), y).

3.1. Operations on approximate maps. Given an isometry f : X → Y , let us see how
this new function ψf behaves with regards to operations on f .

• Inversion: for all x in X and y in Y , we have

ψf−1(y, x) = d(f−1(y), x) = d(y, f(x)) = ψf (x, y).

• Composition: if g : Y → Z is another isometry, then, for all x in X and z in Z, for
every y ∈ Y , we have

ψg◦f (x, z) = d(g ◦ f(x), z)

= d(f(x), g−1(z))

6 d(f(x), y) + d(y, g−1(z))

= ψf (x, y) + ψg(y, z).

Moreover, for y = f(x), this is an equality, so

ψg◦f (x, z) = inf
y∈Y

ψf (x, y) + ψg(x, z).

These observations provide us with the intuition for the following definitions.

Definition 4.21. Let ψ : X × Y → [0,∞] and ϕ : Y × Z → [0,∞] be two functions. We
define a composition ϕψ : X × Z → [0,∞] and an inverse ψ∗ : Y ×X → [0,∞] by:

ϕψ(x, z) = inf
y∈Y

ψ(x, y) + ϕ(y, z),

ψ∗(y, x) = ψ(x, y).

These operations of composition and inversion behave as we expect them to: composition is
associative, inversion is an involution and for all approximate maps ψ and ϕ (with compatible
domain and range), we have (ϕψ)∗ = ψ∗ϕ∗.

2Writing the thesis in English, my only regret is to not be able to use the beautiful words of presqu’isométrie
and presqu’isomorphisme. To make up for this, instead of using Itaï’s approximate isometry and approximate
isomorphism, I opted for highly questionable puns. By the way, I thank François D. for coming up with
is-almost-phism!



72 4. FRAÏSSÉ THEORY

3.2. Approximetries. An approximetry must respect the metric structure. The right
meaning for this is to preserve the triangle inequality.

Definition 4.22. Let ψ : X × Y → [0,∞] be a function. We say that ψ is an approx-
imetry, and we write ψ : X  Y , if ψ is bi-Katětov, that is, Katětov in each variable: for
all x, x′ in X, y, y′ in Y ,

ψ(x, y) 6 dX(x, x′) + ψ(x′, y) and dX(x, x′) 6 ψ(x, y) + ψ(x′, y),

ψ(x, y) 6 dY (y, y′) + ψ(x, y′) and dY (y, y′) 6 ψ(x, y) + ψ(x, y′).

The definition is consistent with our intuition: the approximate map associated to an isom-
etry is indeed an approximetry.

Examples 4.23. There are two distinguished approximetries, which we will turn up quite
often.

• The metric dX on X×X, which corresponds to the identity of X. Note that d∗X = dX .
• The constant map equal to∞. It is the empty approximetry: it corresponds to the
empty isometry.

Remarks 4.24. The property of being Katětov translates into more global conditions on
ψ involving the metric.

• Note that the inequality ψdX 6 ψ always holds. Indeed, we have
ψdX(x, y) = inf

x′∈X
dX(x, x′) + ψ(x′, y)

6 ψ(x, y) with x′ = x.

• The reverse inequality holds if and only the map ψ is 1-Lipschitz in the first variable.
• The map ψ is Katětov in the first variable (respectively in the second variable) if and
only if ψ = ψdX and dX 6 ψ∗ψ (respectively ψ = dY ψ and dY 6 ψψ∗).
• Therefore, ψ is an approximetry if and only if it satisfies all those conditions:

ψ = ψdX = dY ψ,

dX 6 ψ∗ψ,

dY 6 ψψ∗.

Thus, in the world of approximetries, the identification dX = idX is consistent with
multiplication.

Proposition 4.25. Let ψ : X  Y and ϕ : Y  Z be two approximetries. Then
(1) the inverse ψ∗ is an approximetry;
(2) the composition ϕψ is an approximetry.

Proof. (1) We apply inversion to the defining properties of an approximetry, remark-
ing that inversion preserves the order and recalling that the metric corresponds to the
identity.

(2) First, ϕψ = ϕ(ψdX) = (ϕψ)dX and ϕψ = (dZϕ)ψ = dZ(ϕψ) so the first item in the
definition is satisfied. Second, we have

(ϕψ)∗(ϕψ) = ψ∗(ϕ∗ϕ)ψ

> ψ∗(dY ψ)

= ψ∗ψ

> dX ,

and similarly with dZ , hence ϕψ is an approximetry.
�

Example 4.26. If f : X → Y is an isometry and ϕ : Y  Z is an approximetry, then the
composition ϕψf is defined by ϕψf (x, z) = ϕ(f(x), z).
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Approximetries were introduced by Uspenskij with the following geometric interpretation
in mind.

Proposition 4.27. Let ψ : X × Y → [0,∞[. Let Z be the disjoint union of X and Y .
Equip Z with the map dZ that extends both dX and dY defined by

dZ(x, y) = dZ(y, x) = ψ(x, y),

for all x in X and y in Y . Then dZ is a pseudometric on Z if and only if the map ψ is an
approximetry.

In other words, approximetries define amalgams of metric spaces: the Katětov conditions
precisely say that the new pseudometric satisfies the triangle inequality.

3.3. Partial isometries, extensions. Approximetries present the advantages of encoding
not only isometries but also partial isometries, as well as their compositions without needing
to check whether their domains and ranges are compatible.

Definition 4.28. Let f : X 99K Y be a partial isometry, let f ′ : dom(f) → Y be the
function f seen as a total map on its domain, and let i : dom(f)→ X the inclusion map. We
define the approximetry ψf : X  Y by ψf = ψf ′ψ

∗
i :

ψf (x, y) = inf
x0∈dom(f)

d(x, x0) + d(f(x0), y).

We will identify partial isometries with their associated approximetries. Thus, extending
partial isometries (at least formally) becomes possible, while it is not at all easy when staying
in the range of ordinary functions.

Definition 4.29. Let ψ : X  Y be an approximetry and let i : X → X ′ et j : Y → Y ′

be isometric embeddings. Then the trivial extension of ψ to X ′ and Y ′ is the approximetry
jψi∗ : X ′  Y ′. Its value at x′ and y′ is given by infy∈Y infx∈X d(x, x′) + ψ(x, y) + d(y, y′).

The trivial extension is a two-sided counterpart to the Katětov extension defined in chapter
2.

It carries to the composition and the inverse.

Proposition 4.30. Let ψ : X  Y and ϕ : Y  Z be two approximetries. Let also
i : X → X ′, j : Y → Y ′ and k : Z → Z ′ be isometric embeddings. Then

• The trivial extension of ψ∗ to Y ′ and X ′ is the inverse of the trivial extension of ψ to
X ′ and Y ′.
• The trivial extension of ϕψ to X ′ and Z ′ is the composition of the trivial extensions
of ϕ to Y ′ and Z ′ and of ψ to X ′ and Y ′.

Proof. We have that (jψi∗)∗ = iψ∗j∗. Moreover, since j is an actual isometry, we have
j∗j = idY , so we have (kϕj∗)(jψi∗) = kϕ(idY ψ)i∗ = k(ϕψ)i∗. �

Therefore, in all that follows, we will also identify approximetries with their trivial exten-
sions.

3.4. Measure of the totality of an approximetry. The aim of this section is to quantize
how far an approximetry is from being an actual map.

Definition 4.31. Let ψ : X  Y be an approximetry and let r be a positive real.
• We say that ψ is r-total if for all x ∈ X and all s > r, there exists y ∈ Y such that
ψ(x, y) < s, that is, inf

y∈Y
ψ(x, y) 6 r.

• We say that ψ is r-surjective if for all y ∈ Y and all s > r, there exists x ∈ X such
that ψ(x, y) < s, that is, inf

x∈X
ψ(x, y) 6 r.

• If ψ is both r-total and r-surjective, we say it is r-bijective.
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Remark 4.32. If f : X 99K Y is a partial map, then ψf is r-total if and only if the domain
of f is r-dense in X. Similarly, ψf is r-surjective if and only if the range of f is r-dense in Y .

The notions of r-totality and r-surjectivity admit more intrinsic reformulations.

Proposition 4.33. Let ψ : X  Y be an approximetry and let r be a positive real.

• The approximetry ψ is r-total if and only if ψ∗ψ 6 idX +2r.
• The approximetry ψ is r-surjective if and only if ψψ∗ 6 idY +2r.

Proof. We only give the argument for the first item; the second one is similar.
⇒] Assume that ψ is r-total and let x and x′ be two elements of X. Since ψ is Katětov in

the first variable, we have

ψ∗ψ(x, x′) = inf
y∈Y

ψ(x, y) + ψ(x′, y)

6 inf
y∈Y

ψ(x, y) + dX(x′, x) + ψ(x, y)

6 dX(x, x′) + 2r.

⇐] Conversely, assume that ψ∗ψ 6 idX +2r and let x be an element of X. We know that
for all y in Y , we have ψ(x, y) = inf

x′∈X
dX(x, x′) + ψ(x′, y). Thus, we have

2 inf
y∈Y

ψ(x, y) = inf
y∈Y

inf
x′∈X

dX(x, x′) + ψ(x′, y) + ψ(x, y)

= inf
x′∈X

dX(x, x′) + ψ∗ψ(x, x′)

6 inf
x′∈X

dX(x, x′) + dX(x, x′) + 2r

= 2r,

so ψ is r-total. �

The following proposition says that totality indeed corresponds to being an actual function.

Proposition 4.34. Assume Y is complete and let ψ : X  Y be r-total for all r > 0.
Then there exists an isometric map f : X → Y such that ψ = ψf .

Note that since ψ is an approximetry, if such a function f exists, it is necessarily isometric.
Moreover, it is unique.

Proof. Let x be a point in X. For every n in N, the 2−n-totality gives a point yn in Y
such that ψ(x, yn) < 2−n. Then, since ψ is Katětov in the second variable, (yn) is a Cauchy
sequence. The completeness of Y ensures that (yn) converges to some y in Y .

Note that ψ(x, y) = 0. Indeed, |ψ(x, y)−ψ(x, yn)| 6 d(y, yn) so ψ(x, y) 6 d(y, yn)+2−n −→
0. It follows in particular that y does not depend on the choice of yn’s : if y′ ∈ Y satisfies
ψ(x, y′) = 0, then d(y, y′) 6 ψ(x, y) + ψ(x, y′) = 0. Thus we set f(x) = y.

We now show that the obtained map f is as desired. Let x be in X and y be in Y . Then we
have |ψ(x, y)−ψ(x, f(x))| 6 d(y, f(x)) = ψf (x, y) and since ψ(x, f(x)) = 0, this gives ψ(x, y) 6
ψf (x, y). Conversely, we have ψf (x, y) = d(f(x), y) 6 ψ(x, y) + ψ(x, f(x)) = ψ(x, y). �

Remark 4.35. If ψ is moreover r-surjective for all r > 0, the corresponding map f will be
surjective.

Therefore, in order to build real isometries from approximetries, we will construct finer and
finer approximations of it while adding more totality at every step (see theorem 4.52). To do
so, we first need to know what finer means.
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3.5. Refinement. The notions of refinement we present mimic extension of isometric maps
in the broader context of approximetries.

Definition 4.36. Let ψ, ϕ : X  Y be two approximetries. We say that ψ approximates
ϕ, or that ϕ refines ψ, if ϕ 6 ψ pointwise.

As in continuous logic, since the refinement is smaller, it is more precise (in particular, it
vanishes more often).

Example 4.37. • If f and g are two isometries such that g extends f , then ψg refines
ψf . Indeed, write f : X → Y and g : X ′ → Y with X ⊆ X ′. Then (after identifying
ψf with its trivial extension), we have

ψf (x
′, y) = inf

x∈X
d(x′, x) + d(f(x), y)

= inf
x∈X

d(g(x′), g(x)) + d(g(x), y)

> d(g(x′), y) = ψg(x
′, y).

• The definition of an approximetry ensures that an approximetry refines any of its
restrictions.

We would like approximate ultrahomogeneity to be witnessed by approximetries, so we
introduce a notion of strict refinement that will define an open condition on approximetries in
the product topology, and will be used later on to define open sets in the automorphism group
(see section 5).

Definition 4.38. Let ψ, ϕ : X  Y be two approximetries. We say that ψ strictly
approximates ϕ, or that ϕ strictly refines ψ, and we write ϕ < ψ, if there exist finite sets
X0 ⊆ X and Y0 ⊆ Y , a positive ε and an approximetry χ : X0  Y0 such that ϕ+ ε 6 χ 6 ψ.

The notation ϕ < ψ can be misleading: it is stronger than having the inequality ϕ(x, y) <
ψ(x, y) everywhere. In particular, as startling as it can be, ψ does not necessarily strictly refine
ψ + r. Actually, when ψ is the identity, this characterizes total boundedness, as the following
proposition shows.

Proposition 4.39. The following assertions are equivalent.
(1) The space X is totally bounded.
(2) For all r > 0, one has idX < idX +r.

Proof. (1) ⇒ (2)] Let X0 ⊆ X be a finite set such that X ⊆ B(X0, r). Then idX <
idX +5r. Indeed, we always have idX < idX0 +r because idX +r 6 idX0 +r. For the other
inequality, let x and x′ be two elements of X and pick x0 and x′0 in X0 such that d(x, x0) < r
and d(x′, x′0) < r. Then

id
X0

(x, x′) + r 6 d(x, x0) + id
X0

(x0, x
′
0) + d(x′0, x

′) + r

< d(x0, x
′
0) + 3r

6 d(x, x′) + 5r.

(2)⇒ (1)] Assume, towards a contradiction, that X is not totally bounded. Then there exists
a positive r such that for every finite subset X0 of X, there is a point of X which is not in
B(X0, r). In particular, for every χ is an approximetry between finite subsets X0 and Y0 of X,
there is a point x such that x 6∈ B(X0 ∪ Y0, r). But then, for every such χ, we have

inf
x0∈X0,y0∈Y0

d(x, x0) + χ(x0, y0) + d(y0, x) > 2r,

which prevents the inequality idX +ε 6 χ 6 idX +r. �

Nevertheless, when the domain and range are finite (as it is the case for χ in the definition),
we fall back on our intuition.
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Proposition 4.40. Let X0 ⊆ X and Y0 ⊆ Y be two finite subsets. Let ϕ : X  Y and
χ : X0  Y0 be two approximetries. Then ϕ < χ if and only if for all x0 in X0, y0 in Y0, one
has ϕ(x0, y0) < χ(x0, y0).

Proof. By definition, the condition ϕ < χ is equivalent to the following: for all x ∈ X,
y ∈ Y , ϕ(x, y) < infx0∈X0,y0∈Y0 d(x, x0) + χ(x0, y0) + d(y0, y).
⇒] If ϕ < χ, then in particular, we have ϕ(x0, y0) < χ(x0, y0) for every x0 in X0 and y0 in

Y0.
⇐] Conversely, if for every x0 in X0 and y0 in Y0, ϕ(x0, y0) < χ(x0, y0), then we have

inf
x0∈X0,y0∈Y0

d(x, x0) + ϕ(x0, y0) + d(y0, y) < inf
x0∈X0,y0∈Y0

d(x, x0) + χ(x0, y0) + d(y0, y).

But since ϕ is bi-Katětov, it refines its restriction to X0 × Y0, so for all x in X and y in Y , we
have

ϕ(x, y) 6 inf
x0∈X0,y0∈Y0

d(x, x0) + ϕ(x0, y0) + d(y0, y),

which completes the proof. �

Remark 4.41. In particular, if f is a partial isometry between finite sets and ε is positive,
then f + ε strictly approximates f .

Example 4.42. The empty approximetry strictly approximates every approximetry, includ-
ing itself.

In the next proposition, we go over the stability properties of strict refinement.

Proposition 4.43. (1) If ϕ < ψ, then ϕ∗ < ψ∗.
(2) Let ψ, ϕ : Y  Z be two approximetries such that ϕ < ψ. Let ρ : X  Y be an

approximetry on X finite. Then ϕρ < ψρ.
(3) Let ψ, ϕ : Y  Z and ψ′, ϕ′ : X  Y be approximetries such that ϕ < ψ and ϕ′ < ψ′.

Then ϕϕ′ < ψψ′.
(4) Conversely, if ρ > ϕψ, then there exist ϕ′ and ψ′ such that ϕ < ϕ′, ψ < ψ′ and

ρ > ϕ′ψ′.
(5) Let ϕ, ϕ′, ψ, ψ′, χ, χ′ be approximetries such that ϕ < ψ, ϕ′ < ψ′ and χ 6 χ′. Then

ϕχϕ′ < ψχ′ψ′.

Proof. (1) If ϕ+ ε 6 χ 6 ψ, then ϕ∗ + ε 6 χ∗ 6 ψ.
(2) Since ϕ < ψ, there are ε > 0, finite sets Y0 ⊆ Y , Z0 ⊆ Z and an approximetry

χ : Y0  Z0 such that ϕ + ε 6 χ 6 ψ. Then the map χi∗ρ, where i : Y0 → Y is
the inclusion map, is an approximetry between the finite sets X and Z0, and we have
ϕρ+ ε 6 χi∗ρ 6 ψρ.

Indeed,

ϕρ(x, z) + ε = inf
y∈Y

ρ(x, y) + ϕ(y, z) + ε

6 inf
y∈Y

ρ(x, y) + χ(y, z)

= inf
y∈Y,y0∈Y0,z0∈Z0

ρ(x, y) + d(y, y0) + χ(y0, z0) + d(z0, z)

= inf
z0∈Z0

χi∗ρ(x, z0) + d(z0, z)

6 inf
y∈Y

ρ(x, y) + ψ(y, z)

= ψρ(x, z).

(3) There exist finite sets X0 ⊆ X, Y0, Y
′

0 ⊆ Y and Z0 ⊆ Z, a positive ε and approximetries
χ : Y0  Z0 and χ′ : X0  Y ′0 such that ϕ+ ε 6 χ 6 ψ and ϕ′ + ε 6 χ′ 6 ψ′.

Set χ′′ = χχ′. We show that ϕϕ′ + 2ε 6 χ′′ 6 ψψ′.
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ϕϕ′(x, z) + 2ε = inf
y∈Y

(ϕ′(x, y) + ε) + (ϕ(y, z) + ε)

6 inf
y∈Y

χ′(x, y) + χ(y, z) = χχ′(x, z)

6 inf
y∈Y

ψ′(x, y) + ψ(y, z)

= ψψ′(x, z)

(4) There exist a positive ε and finite sets X0 ⊆ X, Z0 ⊆ Z such that ρ > (ϕψ)�X0×Z0 + ε.
Finiteness ensures that there exists a finite subset Y0 of Y such that (ϕψ)�X0×Z0 =
(ϕ�Y0×Z0)(ψ�X0×Y0). Thus, we have that ρ > (ϕ�Y0×Z0)(ψ�X0×Y0) + ε, which is equal to
(ϕ�Y0×Z0 + ε

2
)(ψ�X0×Y0 + ε

2
).

(5) The proof works like for the third point.
�

It will be important, once we relate approximetries with Fraïssé theory, to know when an
approximetry strictly approximates the identity (for instance, when defining strict is-almost-
phisms, see definition 4.45).

Proposition 4.44. Let ψ : X  Y be an approximetry, with X, Y ⊆ Z and X, Y finite.
Then the following conditions are equivalent:

• ψ strictly approximates idX .
• ψ strictly approximates idY .
• ψ strictly approximates idZ .

We will thus say that ψ strictly approximates the identity without further precision.

Proof. The triangle inequality gives that idX > idZ . Therefore, if ψ > idX , then ψ > idZ .
Conversely, if ψ > idZ , then ψ = ψ idX > idZ idX = idX by proposition 4.43. Likewise for
Y . �

4. An approximate route to metric Fraïssé theory

4.1. Is-almost-phisms. We now add some structure to the theory of approximetries in
order to approximate isomorphisms between structures of a Fraïssé class. Let K be class of
finitely generated metric structures.

Intuitively, is-almost-phisms should be approximetries which approximate an isomorphic
embedding. More precisely, it would be tempting to define an is-almost-phism as an approx-
imetry all perturbations of which strictly approximate an isomorphic embedding. However, as
we have seen in proposition 4.39, the identity does not satisfy this condition in general, so we
have to be a bit more careful in the definition and speak only of finite generating sets for our
structures.

Definition 4.45. • Let ā and b̄ be two finite subsets that generate structures in K.
Let ψ : ā b̄ be an approximetry. We say that ψ is a strict is-almost-phism from
ā to b̄ if there exists C in K and embeddings i : 〈ā〉 → C and j : 〈b̄〉 → C such that
jψi∗ > id, or equivalently ψ > j∗i.

C

ā b̄

i

ψ

j

• Let A and B be two structures in K. An approximetry ψ : A  B is a strict is-
almost-phism if ψ approximates a strict is-almost-phism ψ′ : ā  b̄ between finite
tuples ā of A and b̄ of B.
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• An approximetry from A to B is an is-almost-phism if all its strict approximations
are strict is-almost-phisms.

We denote by Alm(A,B) the set of is-almost-phisms from A to B and by Str(A,B) the set
of strict is-almost-phisms.

From the topological viewpoint, strict is-almost-phisms play the role of finite isomorphisms:
they strictly approximate automorphisms and thus define open subsets in the automorphism
group (see section 5). Note that strict is-almost-phisms are preserved under approximation.

Example 4.46. As expected, actual isomorphisms are is-almost-phisms.

If ψ is a strict is-almost-phism, then so is ψ∗. Moreover, we see that an approximetry
between structures of K is a strict is-almost-phism if and only if it strictly approximates an
is-almost-phism, hence the terminology.

Remark 4.47. If ψ is in Str(a, b), then there exists δ > 0 such that ψ− δ stays in Str(a, b).
Define ∆(ψ) to be the supremum of all such δ’s.

In the remainder of this section, we endeavor to express properties of metric Fraïssé classes
in terms of is-almost-phisms. The use of is-almost-phisms will allow us to build some kind of
limit, which we will then recognize as the desired Fraïssé limit.

4.2. Near amalgamation. Let us first reformulate the near-amalgamation property:
the class K has NAP if for all A = 〈ā〉, B and C in K, for all embeddings fB : A → B and
fC : A→ C, and for every ε > 0, there exists a structure D in K and embeddings gB : B→ D
and gC : C→ D such that f ∗Bg∗BgCfC 6 idā +ε.

D

B refines idA +ε C

ā

gB gC

fB fC

The near amalgamation property guarantees that is-almost-phisms compose.

Lemma 4.48. The following conditions are equivalent.
(1) The class K satisfies NAP.
(2) The composition of any two strict is-almost-phisms is again a strict is-almost-phism.
(3) The composition of any two is-almost-phisms is again an is-almost-phism.
(4) Every partial isomorphism between elements of K is an is-almost-phism.

Proof. (1) ⇒ (2)] Let ψ : A  B et ϕ : B  C be strict is-almost-phisms. Then
ψ and ϕ are approximations of strict is-almost-phisms ψ′ : ā  b̄ and ϕ′ : b̄  c̄ (modulo
trivial extension, we may assume the domain and range tuples in B are the same). There exist
structures D and E in K which embed A, B and B,C respectively such that ψ′ > j∗DiD and
ϕ′ > j∗EiE.

F

D E

ā b̄ c̄

iF jF

iD

ψ′

jD iE

ϕ′

jE
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Pick ε < ∆(ψ′) so that ψ′− ε > j∗DiD. We apply NAP to B, D, E (with embeddings jD and
iE) and ε to get a structure F and embeddings iF and jF such that j∗Di∗FjFiE 6 idB +ε. Then,
we have

ϕψ > ϕ′ψ′

= ϕ′(ψ′ − ε) + ε

> j∗EiEj
∗
DiD + ε

= j∗EiE(id
B

+ε)∗j∗DiD

> j∗EiE(i∗Ej
∗
FiFjD)j∗DiD

= j∗Ej
∗
FiFiD,

hence ϕψ is a strict is-almost-phism.
(2)⇒ (3)] Let ψ and ϕ be two is-almost-phisms and let χ be a strict approximation of ϕψ.

Then, by proposition 4.43, there exist ϕ′ and ψ′ such that ϕ < ϕ′, ψ < ψ′ and χ > ϕ′ψ′. Since
ψ and ϕ are is-almost-phisms, their strict approximations ψ′ and ϕ′ are strict is-almost-phisms.
Now, by (2), the composition ϕ′ψ′ is a strict is-almost-phism, and so is χ. Thus, ϕψ is an
is-almost-phism.

(3) ⇒ (4)] Let f : A 99K B be a partial isomorphism and let f ′ : dom(f) → rng(f) be
the underlying isomorphism. We identify f with its trivial extension jψf ′i∗. Since ψf ′ and the
embeddings j and i are is-almost-phisms, item (3) implies that f is an is-almost-phism too.

(4) ⇒ (1)] Let A, B and C be structures in K and let fB : A → B and fC : A → C be
embeddings and let ε be a positive real. Then the composition ψ = fC ◦ f ∗B is again a partial
isomorphism, hence an is-almost-phism. Moreover, since its domain is finite, ψ + ε is a strict
approximation of ψ, hence a strict is-almost-phism. Thus, there exists a structure D in K and
embeddings gB and gC of B and C in D such that ψ + ε > g∗CgB, which precisely means that
idā +ε > f ∗Cg

∗
CgBfB. �

4.3. Fraïssé limits. In a metric Fraïssé class, finite partial isomorphisms are is-almost-
phisms, as per proposition 4.48. Moreover, all of their perturbations are strict is-almost-phisms
(see remark 4.41). Thus, as approximate ultrahomogeneity (of a Fraïssé limit) states that
every such finite partial isomorphism can be extended to an automorphism, its is-almost-phism
counterpart will imply that every strict is-almost-phism can be refined by an automorphism.
Actually, the definition of a Fraïssé limit we propose in this context is more finitary: for the
back-and-forth argument of theorem 4.52, we will use it in the following guise.

Definition 4.49. Let K be a Fraïssé class. A limit of K is a separable structure M whose
age is contained in K that satisfies the following property: for every (ā,A) in Kn, every ψ in
Str(a,M) and every ε > 0, there exists a strict is-almost-phism from ā to M which is ε-total
and strictly refines ψ.

All our classes and structures are separable; the following lemma says that it suffices to
check the above condition for dense countable objects.

Lemma 4.50. Let K be a Fraïssé class and let M be a separable structure whose age is
contained in K. Let D ⊆M be a dense countable subset and, for all n, let Kn,0 be dn-dense in
Kn. Assume that the criterion for being a Fraïssé limit holds whenever ε is rational, ā ∈ Kn,0,
b̄ ∈ Dn for some n and ψ�ā×b̄ only takes rational values. Then M is a Fraïssé limit of K.

Proof. Let ā be an element of Kn and ψ in Str(ā,M), which approximates some ψ′ in
Str(ā, b̄) and let ε be a positive real. Possibly increasing n and extending ā et b̄ arbitrarily,
we may assume that the tuples ā and b̄ have the same length. We may also assume that ε
is rational. Put δ = 1

4
min(ε,∆(ψ)). Pick ā′ in Kn,0 and b̄′ in Dn such that d(ā, ā′) < δ and

d(b̄, b̄′) < δ.
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Consider the is-almost-phisms χ = db̄×b̄′ and ρ = dā′×ā which witness the above inequalities
and we put ψ′′ = χψρ−3δ. Then, by proposition 4.48 and by our choice of δ, the approximetry
ψ′′ is a strict is-almost-phism from ā′ to b̄′. Pick a strict is-almost-phism ψ̃ with rational values
such that ψ̃ < ψ′′. Then our assumption gives an (ε − δ)-total strict is-almost-phism ϕ̃ in
Str(ā′,M) such that ϕ̃ < ψ̃. Then the strict is-almost-phism ϕ = ϕ̃ρ∗ ∈ Str(ā,M) is ε-total
and ϕ < ψ′′ρ∗ < ψ′ρ∗ < χψρρ∗ − 3δ < ψ. �

Theorem 4.51. Every metric Fraïssé class admits a limit.

Proof. Let K be a Fraïssé class. Fix a dense countable subclass Kn,0 of Kn, for each n.
We build an increasing chain of structures Bn from K, together with a dense subset Bn,0 of Bn

such that
• B0 is the unique structure in K generated by the empty set;
• Bn,0 is contained in Bn+1,0;
• For every ā in Kn,0, every b̄ in Bn

n,0 and every ψ in Str(ā, b̄) with rational values, there
exists an m and an embedding ϕ : 〈ā〉 → Am such that ϕ < ψ.

This is done inductively, as in the classical proof (see theorem 4.11), using proposition 4.48.
Let M be the completion of the union of all An’s. The structure M is separable, since M0 =⋃
n∈NAn,0 is dense in M. Lemma 4.50 ensures that our conditions suffice to make M a limit of
K. �

Any two limits of a metric Fraïssé class are isomorphic. Even better, we can impose the
isomorphism to strictly refine any given strict is-almost-phism. From this, it follows in particular
that a limit is approximately ultrahomogeneous.

Theorem 4.52. Let K be a metric Fraïssé class. Let M and N be two limits of K and let
ψ : M N be a strict is-almost-phism. Then there exists an isomorphism from M to N that
strictly refines ψ.

Proof. As in the classical case, we carry a back-and-forth argument. Let {an} and {bn} be
enumerations of dense subsets of M and N respectively. We will build two increasing sequences
of finite tuples cn in M et dn in N, as well as a decreasing sequence θn ∈ Str(cn, dn) of strict
is-almost-phisms such that

• an ∈ cn+1;
• bn ∈ dn+1;
• θn is 2−n-total if n is odd and 2−n-surjective if n is even (and positive).

We start with c0 ∈M and d0 ∈ N such that ψ approximates some θ0 in Str(c0, d0) (for instance,
we can restrict ψ itself). Given θn with n even, put cn+1 = (cn, an). Then, since N is a limit
of K, there exists a strict is-almost-phism θn+1 in Str(cn+1, dn+1), for some dn+1 in N, that is
2−n-total such that θn > θn+1. Trivially extending, we may assume that dn+1 extends (dn, bn).
We deal with the odd case analogously, keeping in mind that an approximetry is r-total if and
only if its inverse is r-surjective.

Now let θ be the pointwise limit of the decreasing sequence (θn). We show that θ induces
the desired isomorphism. The map θ is the limit of 1-Lipschitz maps, so it is 1-Lipschitz. Thus,
by density of {an} and {bn}, it extends to M×N.

Moreover, θ is an actual isomorphism: indeed, proposition 4.34 ensures that there is an
isometry f : M→ N such that θ = ψf . It remains to show that f preserves the structure. Let
P be a predicate (for the sake of simplicity, assume that P is unary) and let a be an element
of M. We show that P (f(ā)) = P (ā).

Consider a subsequence (aϕ(n)) converging to a. Since the predicates are continuous, we
also have that (P (aϕ(n)) converges to P (a). Now θϕ(n) is an is-almost-phism, so there exist a
structure C dans K and embeddings i and j into C such that :

θϕ(n)(aϕ(n), f(aϕ(n))) + 2−ϕ(n) > d(i(aϕ(n)), j(f(aϕ(n)))).
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Taking the limit, we obtain that d(i(aϕ(n)), j(f(aϕ(n)))) goes to 0. Since P is continuous, it
follows that P (j(f(aϕ(n)))) has the same limit as P (i(aϕ(n))). But i and j are embeddings so
P (i(aϕ(n))) = P (aϕ(n)) → P (a) and P (j(f(aϕ(n)))) = P (f(aϕ(n))) → P (f(a)), so P (f(a)) =
P (a), which completes the proof. �

5. Topology on the automorphism group

5.1. An approximate basis of open sets. If K is a Fraïssé class and M is its Fraïssé
limit, recall that the topology on Aut(M) is given by specifying the behavior of automorphisms
on a finite set: the basic open sets are all those sets of the form

{g ∈ Aut(M) : d(g(ā), f(ā)) < ε},
where f : 〈ā〉 → 〈b̄〉 is a finite partial isomorphism between elements of K and ε is a positive
real. Ultrahomogeneity guarantees that such open sets always are non-empty.

In the context of approximate maps, we can rewrite this topology once again by replacing
extension up to ε of an isomorphism by strict refinement of a strict is-almost-phism. If ψ is a
strict is-almost-phism, we define

[ψ] = {g ∈ Aut(M) : g < ψ}.
Theorem 4.52 ensures that those sets are non-empty as well. Moreover, we defined strict
refinement so as to make them open. The following proposition states that those sets too form
a basis of the topology on the automorphism group.

Proposition 4.53. The sets [ψ], where ψ is a strict is-almost-phism of M, form a basis of
open sets for Aut(M).

Proof. Let U be an open set in Aut(M). We may assume that U = {g ∈ Aut(M) :
d(g(ā), f(ā)) < ε}, where f : ā→ b̄ is a finite partial isomorphism and ε is a positive real.

Put ψ = ψf + ε. By lemma 4.48 and remark 4.41, ψ is a strict is-almost-phism. We show
that U contains [ψ]. If g is in [ψ], we have

d(g(ā), f(ā)) < ψ(ā, f(ā)) by proposition 4.40
= d(f(ā), f(ā)) + ε

= ε,

so g ∈ U , which completes the proof. �

5.2. The Roelcke uniformity. As mentioned before, the original motivation for intro-
ducing approximetries was to give a concrete description of the Roelcke compactification of the
isometry group of the Urysohn sphere. Indeed, since the Urysohn sphere is a separably cate-
gorical structure (see chapter 6), its isometry group is Roelcke-precompact. Uspenskij proved
in [U5] that its Roelcke compactification is the space of [0, 1]-valued approximetries (which is
indeed compact), endowed with its unique uniformity. He then studied a semi-group structure
of this compact space to show that Iso(U1) is topologically simple and minimal.

In the general case of a metric Fraïssé limit, the Roelcke uniformity can also be expressed
in terms of is-almost-phisms.

Proposition 4.54. Let K be a metric Fraïssé class and let M be the Fraïssé limit of K.
Let G be the automorphism group of M. The Roelcke uniformity on G is generated by the sets

Eψ = {(f, g) ∈ G2 : f < ψgψ},
where ψ ranges over strict is-almost-phisms such that id < ψ.

Proof. We first check that the Eψ’s belong to the Roelcke uniformity. Let ψ be a strict
approximation of id and let V = [ψ] be the associated open neighborhood of 1. Then the
Roelcke entourage {(f, g) ∈ G2 : f ∈ V gV } is contained in Eψ, by proposition 4.43.
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Conversely, let V be an open neighborhood of 1 in G. By proposition 4.53, we may assume
that V = [ψ], with ψ in Str(M,M). Shrinking V , we may also assume that ψ is finite: that
ψ is in Str(ā, b̄), with finite tuples ā and b̄. Since ψ is a strict is-almost-phism, there exists a
positive ε such that ψ − 3ε is still strict.

As M is a limit of K, there exists an ε-total is-almost-phism ϕ which strictly refines ψ− 3ε.
Since ψ is finite, it follows that ϕ+ 2ε < ψ (proposition 4.40).

We now show that if (f, g) is in Eϕ, then f ∈ V gV . Pick an automorphism h in [ϕ]. Since
ϕ < ψ, we have in particular that h is in V . Put h′ = g−1h−1f so that f = hgh′. It remains
to show that h′ belongs to V . We have h < ϕ, so h−1 < ϕ∗ (proposition 4.43). Combined with
f < ϕgϕ, we get that

h′ = g−1h−1f

6 g−1(ϕ∗ϕ)gϕ

6 g−1(id +2ε)gϕ

6 ϕ+ 2ε

< ψ,

hence h′ is indeed in V . �

We may now wonder whether Uspenskij’s result still holds for any separably categorical
structure, with is-almost-phisms in place of approximetries. Let M be a separably categorical
ultrahomogeneous structure and let G be its automorphism group. Now is a good time to
assume that our structure is bounded so that G is Roelcke-precompact. Let also Θ be the
compact space of [0, 1]-valued is-almost-phisms ofM, which embeds the automorphism groupG.
Although Θ seems like a good candidate to be the Roelcke compactification of G, it is not always
the case : the uniformity on G induced by Θ does not coincide with the Roelcke uniformity.
Indeed, when the structure is discrete, the uniformity induced by Θ on the automorphism group
is discrete, hence, it cannot be precompact (unless the group is finite).
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Leitmotiv
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We have seen that automorphism groups of separable metric structures are Polish groups.
Actually, those encompass all Polish groups. From this observation arises a very fertile cor-
respondence between topological groups and model-theoretic structures, which constitutes the
guiding line of our work. We shall indeed explore several facets of this correspondence over the
next chapters.

Further still, not only is every Polish group the automorphism group of some metric struc-
ture, but the structure can also be chosen to be approximately ultrahomogeneous. From here,
Fraïssé theory opens a fruitful combinatorial approach to the study of Polish groups

1. Non-archimedean Polish groups

Let us first present the proof for closed subgroups of S∞, which we know include auto-
morphism groups of countable classical structures. Those groups admit a basis at the identity
that consists of open subgroups, we say they are non-archimedean. Actually, every non-
archimedean Polish group is isomorphic to a subgroup of S∞ (see [G1, theorem 2.4.1]).

Theorem 5.1. (Folklore) Let G be a Polish group. Then the following are equivalent.
(1) G is a closed subgroup of S∞.
(2) There exists a countable ultrahomogeneous structure in a classical language whose

automorphism group is G.

Proof. (2) ⇒ (1)] This is proposition 3.22 (and we do not need that the structure is
ultrahomogeneous).

(1) ⇒ (2)] Since G is a subgroup of S∞, it acts on N; we thus define a structure on N. For
every n, we consider on Nn the orbit equivalence relation induced by the diagonal action of G:

ā ∼n b̄⇔ ∃g ∈ G, g(ā) = b̄.

Call Cn the collection of all ∼n-classes, and let C be the union of all the Cn.
From this, we define a language by naming each orbit: let L consist of an n-ary relation

symbol Rc, for each class c in C. Note the L is countable. Now we build an L-structure M,
with universe N, the natural way: for every c in C, put RM

c = c. We prove that G = Aut(M).
First, it is clear that G is contained in Aut(M). Conversely, let f be an automorphism of M.

Since G is closed, it suffices, for every n, to find an element gn in G which coincides with f on
{0, ..., n}. Now, since f is an automorphism, we have that RM

c (0, ..., n)⇔ RM
c (f(0), ..., f(n−1))

for every c in Cn+1. By definition of the relation Rc, this means there exists an element gn in
G such that for all i 6 n, we have gn(i) = f(i), as desired.

Moreover, the construction ensures that the structure M is ultrahomogeneous. �

1Tata Yoyo
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2. General Polish groups

As for general Polish groups, the argument goes similarly. Instead of naming orbits in the
language, we will name closed orbits (or rather the associated distance predicate). But in order
to speak about orbits, we need to view our Polish group as a closed subgroup of some isometry
group. It turns out that there is a natural way to do so.

Let G be a Polish group. Equip G with a compatible left-invariant metric dL (theorem 1.17),
and consider the completion (X, d) of (G, dL). This is a Polish space which fits our purposes.

Theorem 5.2. The group G is isomorphic to a closed subgroup of Iso(X, d).

Proof. Consider the action of G on itself by left translation. By continuity of the group
operations, the action is continuous. Moreover, the action is isometric when G is endowed with
dL. Thus, it extends to an action of G on X by isometries.

We now show that this action is continuous. To this aim, let (gm) be a sequence that
converges to g in G and let (hn) be a Cauchy sequence in (G, dL) that converges to x in X.
Then we have

d(g · x, gm · x) 6 d(g · x, ghn) + d(ghn, gmhn) + d(gmhn, gm · x).

For a large enough n, the lefthand and righthand terms are smaller than ε, and, by continuity
of right multiplication in G, for large enough m’s, the middle term is smaller than ε too. Thus,
the action is continuous. Hence, we have a continuous injective homomorphism f from G to
Iso(X, d).

Finally, let us show that the inverse of f is continuous. If f(gn) tends to idX (with respect
to the pointwise convergence topology), then f(gn)(1G) tends to 1G in X, that is, gn tends to
1G, so the inverse of f is continuous.

As a consequence, G is isomorphic to a subgroup of Iso(X, d). Since G is Polish, it must be
closed in Iso(X, d) (theorem 1.12). �

This yields a canonical structure Ĝ, whose automorphism group is G and which we call the
hat structure of G (see [M5, theorem 6] for its construction).

The universe of Ĝ is the left completion (X, d) of G. Analogously to the classical case, we
consider the following equivalence relation on Xn:

ā ∼n b̄⇔ ā ∈ G · b̄.
Let Cn be the collection of all ∼n-classes and C the union of all Cn. The language then consists
of an n-ary predicate Pc for each c in C. The predicates are naturally interpreted as follows:
P Ĝ
c (x̄) = d(x̄, c).
As desired, we have the following.

Theorem 5.3. (Melleray) The automorphism group of the structure Ĝ is G.

Proof. Again, it is clear that G is contained in Aut(Ĝ). For the converse direction, let
f be an automorphism of Ĝ. Let ā be a tuple in Xn. Then, since f is an automorphism,
we have ā ∼n f(ā). Thus, for every positive ε, there exists a group element g in G such that
d(g(ā), f(ā)) < ε. It follows that f is a pointwise limit of elements of G, hence in G, because
G is closed in Iso(X, d). �

Moreover, the construction again ensures that Ĝ is approximately ultrahomogeneous, thus
proving that Polish groups are exactly automorphism groups of separable approximately ultra-
homogeneous structures.

Remark 5.4. Melleray asked whether every Polish group is the automorphism group of an
exactly ultrahomogeneous structure. That is not the case, as was proved by Ben Yaacov in
[B7]. He provided examples of Roelcke-precompact groups that cannot admit any transitive
continuous action by isometries on a non-trivial complete metric space.
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CHAPTER 6

Categoricity
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In this chapter, we present a distinguished class of structures, rigid enough to allow for a
rich correspondence between them and their automorphism groups.

Let L be a language and let T be a complete L-theory.

Definition 6.1. • If L is classical, we say that T is countably categorical or
ℵ0-categorical if any two countable models of T are isomorphic.
• If L is continuous, we say that T is separably categorical if any two separable models
of T are isomorphic.
• An L-structure is called countably or separably categorical if its theory is.

Remark 6.2. Throughout the chapter, the requirement that metric structures be bounded
is in order, as the compactness theorem will be used fully.

The previous conditions may seem too restrictive, but in fact, categorical structures are
plentiful.

Examples 6.3. • The countably infinite pure set is ℵ0-categorical. The theory says
exactly that the structure is infinite: for all n, the formula

∃x1, ..., xn,

(∧

i 6=j

xi 6= xj

)

is in the theory. Now, any two countable infinite sets are in bijection.
• The rationals with their order are ℵ0-categorical. The structure (Q, <) is a dense linear
order without endpoints, and these properties can be expressed by formulas:
– transitivity: ∀x,∀y,∀z, (x < z) ∨ ¬[(x < y) ∧ (y < z)];
– antisymmetry: ∀x,∀y,¬[(x < y) ∧ (y < x)];
– linearity: ∀x,∀y, [(x < y) ∨ (y < x) ∨ (x = y)];
– density: ∀x,∀z, [¬(x < z) ∨ (∃y, x < y < z)];
– no endpoints: ∀x,∃y, (x < y) and ∀x, ∃y, (y < x),

so this is part of the theory. Now an easy back-and-forth argument shows that any
two countable dense linear orders without endpoints are isomorphic.

1Saltimbanque
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• The random graph is countably categorical. As mentioned in example 4.12, the random
graph is characterized by the following property: for any two disjoint subgraphs A and
B, there exists a vertex in R that is related to every point in A but to no point in B.
This property can also be expressed by formulas, so R is ℵ0-categorical.
• The Urysohn sphere is separably categorical. This will follow from the Ryll-Nardzewski
theorem.
• On the other hand, the Urysohn space (when made bounded, see remark 3.11) is
not separably categorical. Indeed, in this shrinked Urysohn space, no two points are
at distance 1, which corresponds to an infinite distance in U. However, the theory
cannot prevent it (we recall that in metric model theory, there is no negation): it still
contains the formula supx supy d(x, y) = 1. Note that the theory of the Urysohn space

says that all maps of the form
f

1 + f
, where f is a Katětov map for d, are realized.

Since these maps are Katětov maps with respect to the shrinked metric, we may still
apply the Katětov construction with these maps in place of the usual Katětov maps.
For instance, we build another model of the theory of U as follows. Start from a
metric space consisting of two points at distance 1 (this corresponds to having a point
at infinity). Then, apply the new Katětov construction to this metric space. The
resulting structure then has the same theory as the Urysohn space, but cannot be
isomorphic to it.

We now present a most powerful characterization of categoricity: a topological condition
on the space of types, which is due to Ryll-Nardzewski ([RN]) in the classical case and to
Henson, as well as Ben Yaacov and Usvyatsov ([BU1, fact 1.14]) in the continuous setting.
This characterization has a wide array of consequences, most important among which is a
description of the action of the automorphism group and strong homogeneity properties.

1. Ryll-Nardzewski

Let L be a language and let T be an L-theory.

1.1. Principal types. We start by describing a specific class of types, principal types,
which will happen to be the only types that countably or separably categorical structures
realize.

Definition 6.4. A type p in S(T ) is said to be principal if in every model M of T , the
set of realizations of p in M is definable.

It can be shown (see [BBHU, lemma 12.3]) that it suffices that the set of realizations of p in
some model is definable and non-empty for p to be principal. Even better, this implies that the
set of realizations of p is definable and non-empty in every model. Applying this observation
to a sufficiently saturated model, we obtain the following.

Proposition 6.5. Principal types are realized in every model.

In the next section, we prove a strong converse to this proposition. To do so, we will again
place ourselves in a sufficiently saturated model, in order to get a grasp on the metric on the
space of types (see subsection 5.3 of chapter 3). The essential result is the following topological
characterization of principal types.

Theorem 6.6. Let p be a type in Sn(T ). Then p is principal if and only the logic topology
and the metric topology coincide at p.

Proof. Let N be a sufficiently saturated model of T . The discussion above guarantees
that p is principal if and only the set of realizations of p in N is definable (by saturation, it is
already non-empty).
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⇒] Assume p is principal. By proposition 3.65, for every integer m, there exists an L-
formula ϕm and δm > 0 such that the condition ϕm = 0 is in p and every type q ∈ Sn(T ) that
contains the condition ϕm 6 δm satisfies d(p, q) 6 2−m. Then the d-ball B(p, 2−m) contains the
open neighborhood [ϕm < δm] of p in the logic topology. Since, in addition, the metric topology
is finer than the logic topology (proposition 3.59), it follows that the two topologies coincide at
p.
⇐] Conversely, suppose that [ϕ < r] is an open neighborhood of p contained in the d-

ball B(p, 2−m). Then, by definition, there exists δ, with 0 < δ < r, such that the condition
ϕ 6 δ belongs to p. Let ϕm be the formula max(0, ϕ − δ) and let δm be any real such that
0 < δm < r− δ. Then the condition ϕm = 0 is in p and for every type q in Sn(T ) that contains
the condition ϕm 6 δm, we have d(p, q) 6 2−m. Thus, by proposition 3.65 again, the type p is
principal. �

When the language is classical, the metric topology is discrete, so p is principal if and only if
{p} is clopen in Sn(T ). Consequently, principal types are also called isolated. Moreover, since
Sn(T ), endowed with the logic topology, is compact, theorem 6.6 implies that if the space of
types is not metrically compact, it contains non-principal types. In particular, in the classical
case, if the space of types is infinite, then it contains a non-principal type.

As we have seen, every model of the theory realizes all principal types. Conversely, principal
types are the only ones with this property.

Theorem 6.7. (Omitting types) Let p be a type in S(T ). Then the following are equivalent.
(1) p is principal.
(2) p is realized in every model of T .

Proof. (1) ⇒ (2)] This is proposition 6.5.
(2) ⇒ (1)] Suppose that p is not principal. Then, by theorem 6.6, we find a d-ball B(p, ε)

around p whose interior for the logic topology is empty. In other words, for every formula and
every positive δ, the open set [ϕ < δ] is either empty or contains a type q such that d(q, p) > ε.

From there, an application of the compactness theorem gives a model of T in which every
realized type q satisfies d(q, p) > ε (see [BBHU, theorem 12.16]). Thus, in this model, p cannot
be realized. �

1.2. Atomic models. In view of the previous theorem, it is interesting to study models
which realize only principal types. Such models are called atomic. We prove the uniqueness
of countable or separable atomic models. In fact, we prove a stronger result, which yields that
such atomic models are (approximately) homogeneous. To clarify the proof, we start with the
classical case.

Proposition 6.8. Assume that the language is classical and let M and N be two countable
atomic models of T . Let ā ∈Mn and b̄ ∈ Nn be two tuples that satisfy the same type. Then
there exists an isomorphism from M to N sending ā to b̄.

Proof. Since ā and b̄ have the same type, the map f sending ā to b̄ is a partial isomorphism.
By back-and-forth, we extend f to a global isomorphism. Let us explain how the first step
forward works, the others are similar. Pick a new point a in M and consider the type p of
(a, ā). Atomicity ensures that p is principal, hence isolated in Sn+1(T ). This means that there
exists a formula ϕ such that [ϕ] = {p}.

Now M satisfies the condition ∃x, ϕ(x, ā). In other words, the condition ∃x, ϕ(x, x̄) belongs
to the type of ā, hence to the type of b̄. Let then b be a point in N such that N � ϕ(b, b̄). Since
[ϕ] = {p}, the type of (b, b̄) is the same as that of (a, ā). In particular, we may extend f to a
partial isomorphism by putting f(a) = b. �

In the metric case, the homogeneity needs relaxing, as usual.
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Proposition 6.9. Let M and N be two separable atomic models of T . Let ā ∈ Mn and
b̄ ∈ Nn be two tuples that satisfy the same type. Then, for every positive ε, there exists an
isomorphism f : M→ N such that d(f(ā), b̄) < ε.

Proof. The argument is essentially the same as in the classical case, with the small dif-
ference that we need to keep track of the error. As before, we proceed by back-and-forth on
dense subsets of M and N and we extend ā 7→ b̄, up to ε, to an isomorphism. Consider a new
point a in M and the type p of (a, ā). Also, denote by q the type of ā (and b̄).

Since p and q are realized in M, they are principal. Thus, the sets of all their realizations
is definable, say by definable predicates P (x, x̄) and Q(x̄).

Consider now the following definable predicate:

F (x̄) = inf
x
|Q(x̄)− P (x, x̄)|.

Observe that Q(ā) = 0 and F (ā) = 0. We deduce that Q(b̄) = 0 and F (b̄) = 0 too, because
the tuples ā and b̄ have the same type. It follows in particular that infx P (x, b̄) = 0. Therefore,
there exists b1 in N such that P (b1, b̄) <

ε

2
.

But P is the distance to the set of realizations of p, so there is a realization (c1, c̄1) of p such
that d(c1, b1) <

ε

2
and d(c̄1, b̄) <

ε

2
. We now replace f with the partial isomorphism that sends

(a, ā) to (c1, c̄1). For the next step, we do the same thing with precision
ε

4
and so on. �

As mentioned before, the two previous propositions imply in particular that atomic models
are (approximately) homogeneous: any two tuples with the same type can be sent one
onto the other (or arbitrarily close to one another) by an automorphism. We would like to
stress, however, that this holds for tuples that really have the same type, not only the same
quantifier-free type: this property is weaker than (approximate) ultrahomogeneity.

As a corollary, we obtained the promised characterizations of countably and separably
categorical structures.

Theorem 6.10. (The Ryll-Nardzewksi theorem; Henson, Ben Yaacov-Usvyatsov) The fol-
lowing are equivalent.

(1) The theory T is separably categorical.
(2) Every type in S(T ) is principal.
(3) Every model of T is atomic.
(4) The logic topology and the metric topology on Sn(T ) coincide, for every n.
(5) For every n, the space (Sn(T ), d) is compact.

Proof. (1) ⇒ (2)] Suppose that p ∈ S(T ) is not principal. By the compactness theorem,
T admits a model in which p is realized. Also, by the omitting types theorem (6.7), there
exists a model of T in which p is not realized. Two such models can be chosen to be separable,
thanks to the Löwenheim-Skolem theorem (see [BBHU, proposition 7.3]). But they cannot be
isomorphic, contradicting the separable categoricity.

(2) ⇒ (3)] Immediate.
(3)⇒ (1)] Proposition 6.9 guarantees that any two separable models of T , which are atomic

by assumption, are isomorphic, so T is separably categorical.
The equivalence between (2), (4) and (5) follows from theorem 6.6 and the ensuing discus-

sion. �

2. Action of the automorphism group

The Ryll-Nardzewski theorem establishes tight links between model theoretic properties of
a separably categorical structure and topological properties of its automorphism group. In the
next chapter, we will see that there is actually a perfect correspondence between the two.
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2.1. Definability. First, we prove that in separably categorical structures, definability
amounts to invariance under the action of the automorphism group.

Proposition 6.11. Let M be a separably categorical metric structure and G its automor-
phism group. Let P : Mn → [0, 1] be a continuous predicate on M. Then P is definable in M
if and only if P is G-invariant.

Proof. ⇒] If P is definable, there is a sequence (ϕk)k>1 of formulas which converges
uniformly to P . Now G preserves (interpretations of) formulas so P is also G-invariant.
⇐] Suppose that P is G-invariant. If ā and b̄ have the same type in Mn, then, since M is

approximately homogeneous (proposition 6.9) and P is continuous, the G-invariance of P gives
that P (ā) = P (b̄).

Thus, P induces a metrically continuous map Φ : Sn(T ) → [0, 1] on types, defined by
Φ(p) = P (ā) for ā ∈Mn of type p. Since, by the Ryll-Nardzewski theorem (6.10), every type
is realized in M, the map Φ is well-defined.

Now, by the Ryll-Nardzewski theorem again, the logic topology and the metric topology
on Sn(T ) coincide. This implies that Φ is continuous for the logic topology as well. Thus, by
theorem 3.63, the predicate P is definable. �

Remark 6.12. The same holds for predicates in an infinite number of variables. In fact,
if Mω is endowed with dω (where dω is defined just below), then the Ryll-Nardzewski theorem
can be reformulated as follows: a metric structure M is separably categorical if and only if
the space (Sω(M), dω) of types in infinitely many variables is compact. Thus, the proof above
readily adapts to an infinite number of variables.

We introduce an item of notation that we will use freely in the remainder of the thesis.

Notation 6.13. If ρ is a bounded pseudometric on a structure M, then (M, ρ) will denote
the quotient metric space induced by ρ. We write (̂M, ρ) for its completion. For such a ρ, let
ρω be the pseudometric on Mω defined by

ρω(a, a′) =
∑

n<ω

1

2n
ρ(an, a

′
n).

When ρ is a metric, so is ρω, which then induces the product topology on Mω.

2.2. Oligomorphicity. On a slightly different note, categoricity translates as a dynamical
property of the automorphism group.

If a group G acts on a set X, we consider the diagonal action of G on Xn by
g · (x1, ..., xn) = (g · x1, ..., g · xn).

Definition 6.14. Let G be a group acting by isometries on a complete metric space X.
• The action of G on X is called oligomorphic if for every n, the diagonal action of G
on Xn only admits finitely many orbits.
• It is called approximately oligomorphic if for every positive ε and every n, there
exists finitely many elements ā1, ..., ām of Xn such that for every x̄ in Xn, there is a
group element g and an i such that d(x̄, g · āi) < ε.

Remark 6.15. Consider the space Xn // G of orbit closures of Xn under G. We endow
Xn // G with the following pseudometric:

d(G · ā, G · b̄) = inf{d(x̄, ȳ) : x̄ ∈ G · ā, ȳ ∈ G · b̄}.
Since G acts on X by isometries, this pseudometric is the distance between orbits, so it is
actually a metric. Moreover, the space Xn //G is complete when X is. We will write [ā] for the
closure of the orbit of ā.

Now the action of G on X is approximately oligomorphic if and only if for every n, the
space Xn // G is totally bounded, hence compact.



92 6. CATEGORICITY

Theorem 6.16. Let M be a separable model of T . Then the following are equivalent.
(1) The structure M is separably categorical.
(2) The action of Aut(M) on M is approximately oligomorphic.

Proof. (1) ⇒ (2)] By the Ryll-Nardzewski theorem and proposition 6.9, the structure M
is approximately homogeneous. This implies that two tuples with the same type are in the
same orbit closure. Since automorphisms preserve types, the converse also holds, hence the
space Mn // Aut(M) is Sn(T ) endowed with the metric topology. But the Ryll-Nardzewski
theorem ensures that (Sn(T ), d) is compact, so the action of Aut(M) on M is approximately
oligomorphic.

(2)⇒ (1)] We show that the space (Sn(T ), d) is compact. By the Ryll-Nardzewski theorem,
this will complete the proof. Consider the space X of realized types:

X = {p ∈ Sn(T ) : p is realized in M}.
We will first show that (X, d) is compact and then that X = Sn(T ).

Since any two tuples that are in the same orbit have the same type, the space (X, d) is
the continuous image of Mn // Aut(M) under the map ā 7→ tp(ā). Hence, the approximate
oligomorphicity gives that (X, d) is compact.

But the logic topology is coarser than the metric topology, so X is also compact in the
logic topology. In particular, X is closed in the logic topology. Thus, it suffices to show that
X is dense in Sn(T ) (for the logic topology). To do so, consider a non-empty basic open set
[ϕ < r] in Sn(T ) and let q be a type in that open set. Then there exists δ, with 0 6 δ < r
such that the condition ϕ 6 δ belongs to q. It follows that the theory contains the formula
infx max(0, ϕ(x)−δ) = 0, and therefore that M satisfies this condition. Thus, for every positive
ε < r − δ, we can find a tuple ā in Mn such that ϕM(a) 6 δ + ε < r. Finally, the type of ā is
in X as well as in our open set [ϕ < r], which completes the proof. �

Remark 6.17. Note that the proof actually shows that in general, the space of types that
are realized in some fixed model of T is dense in Sn(T ).

The previous proof provides a very nice example of the juggling between topologies in the
topometric space of types, which we mentioned at the end of section 5 of chapter 3.

Approximate oligomorphicity turns out to be an intrinsic condition on the automorphism
group: Roelcke precompactness. First, approximate oligomorphicity implies Roelcke precom-
pactness. In particular, the automorphism group of a separably categorical structure is Roelcke-
precompact.

Theorem 6.18. (Rosendal, see [R3, theorem 5.2]) Let G act continuously by isometries on
a complete metric space X. If the action of G on X is approximately oligomorphic, then G is
Roelcke-precompact.

Independently, Rosendal ([R4, proposition 1.22]) and Ben Yaacov and Tsankov ([BT1,
theorem 2.4]) established a converse to the previous theorem.

Theorem 6.19. Let G be a Polish group. Then the following are equivalent.
(1) G is Roelcke-precompact.
(2) Whenever G acts continuously by isometries on a complete metric space X and X //G

is compact, the action is approximately oligomorphic.
(3) There exists a separably categorical metric structure whose automorphism group is G.

Proof. (1) ⇒ (2)] We proceed by induction. Assume Xn // G is compact. We prove that
Xn+1 // G is compact. More precisely, we prove that it can be covered with finitely many balls
of radius 2ε, for every positive ε.

We cover Xn // G with finitely many balls of radius ε, say centered at [ȳ1], ..., [ȳm]. By
assumption, X // G is also compact, so we can cover it with balls of radius ε centered at [z1],
..., [zp]. Let V be a symmetric neighborhood of 1 in G such that for all j and k, we have
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d(yj, V · yj) < ε and d(zk, V · zk) < ε. Now, by Roelcke precompactness, there exists a finite
subset F of G such that G = V FV . Consider the finite subset of Xn+1 defined by

W = {(ȳj, f · zk) : j ∈ {1, ...,m}, k ∈ {1, ..., p}, f ∈ F} .
We show that Xn+1 // G is covered by balls of radius 2ε centered at the closure of orbits of
elements of W . Let (x̄, xn+1) be in Xn+1. There exists group elements g, gn+1 and ȳj, zk such
that d(x̄, g · ȳj) < ε and d(xn+1, gn+1 · zk) < ε. Also, write g−1gn+1 = vfv′, with v, v′ in V and
f in F . Now, we have

d([x̄, xn+1], [ȳj, f · zk]) 6 d([x̄, xn+1], [g · ȳj, gn+1 · zk]) + d([g · ȳj, gn+1 · zk], [ȳj, f · zk])
< ε+ d([v−1 · yj, fv′ · zk], [ȳj, f · zk])
< 2ε,

which completes the proof.
(2)⇒ (3)] Consider the hat structure Ĝ. As we have seen in theorem 5.3, G is the automor-

phism group of Ĝ. Besides, the space Ĝ // G is a singleton, so it is compact. Thus, condition
(2) gives that the action of G on Ĝ is approximately oligomorphic. By the Ryll-Nardzewski
theorem, this means the structure Ĝ is separably categorical.

(3) ⇒ (1)] This is a consequence of the previous theorem (and of the Ryll-Nardzewski
theorem). �

The Roelcke precompactness of several Polish groups was already known, which allows us
to recover separable categoricity for the associated structures.

Examples 6.20. The following automorphism groups act transitively and are Roelcke-
precompact, so, by item (2) of theorem 6.19, the structures are separably categorical.

• The isometry group of the Urysohn sphere (Uspenskij, [U5], see section 3 in chapter
4).
• The unitary group of the separable Hilbert space (Uspenskij, [U3]).
• The group of measure preserving bijections of the interval (Glasner, [G3]).

3. Homogeneity

Whereas countably categorical structures are homogeneous, separably categorical ones are
only approximately homogeneous. This brings up the question of exact homogeneity again. We
observe that exact homogeneity amounts to remaining categorical whenever we name a finite
tuple in the structure.

Proposition 6.21. Let M be a separably categorical metric structure. The following are
equivalent.

• The structure M is exactly homogeneous.
• For every tuple ā in M, the structure (M, ā) is again separably categorical.

Proof. ⇒] Suppose (M′, ā′) is a separable structure that has the same theory as (M, ā).
Then M and M′ have the same theory, so, by separable categoricity, there exists an isomor-
phism f : M′ → M. This isomorphism sends ā′ to some ā′′ in M. Now, since M is exactly
homogeneous and ā and ā′′ have the same type, there exists an automorphism g of M sending
ā to ā′′. Thus, the map f−1 ◦ g is the desired isomorphism between (M, ā) and (M′, ā′), hence
the structure (M, ā) is separably categorical.
⇐] Conversely, let ā and ā′ have the same type in M. Then the two structures (M, ā) and

(M, ā′) have the same theory. By categoricity, they are thus isomorphic, which means there
exists an automorphism of M sending ā to ā′. �

In particular, proposition 6.8 implies that this condition always holds in classical structures.
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Categoricity offers an ideal setting for reconstruction: a lot of model-theoretic information
on a categorical structure is retained by the action of its automorphism group on it, thanks
to the Ryll-Nardzewski theorem. A fact we will use extensively is that definability is exactly
invariance under the action of the automorphism group (proposition 6.11).

In this chapter, we focus on a reconstruction result due to Ahlbrandt and Ziegler ([AZ])
which states that countably categorical structures are determined, up to bi-interpretability,
by their automorphism groups (regarded as topological groups). We extend Ahlbrandt and
Ziegler’s result to the continuous setting. More precisely, we introduce the notion of an inter-
pretation between metric structures and prove that two separably categorical structures are
bi-interpretable if and only if their automorphism groups are topologically isomorphic. This is
joint work with Itaï Ben Yaacov ([BK3]).

This guarantees that every model-theoretic property of separably categorical structures will
translate into a topological property of their automorphism groups. Ben Yaacov and Tsankov
([BT1]), and then Ibarlucía ([I]), are precisely studying model-theoretic properties directly on
groups.

Although our result encompasses its classical counterpart, the proof we give is fundamentally
metric and is quite different from the original one. Indeed, we apply Melleray’s construction of
the hat structure (see section 2 in chapter 5), which provides a canonical way to make a metric
structure out of any Polish group. The heart of the reconstruction consists in showing that
every separably categorical metric structure is in fact bi-interpretable with the hat structure of
its automorphism group.

1. Reconstruction up to interdefinability

We begin by reconstructing separably categorical structures up to interdefinability, mirror-
ing Ahlbrandt and Ziegler’s theorem 1.1 (in [AZ]). The proof is exactly the same as in the
discrete setting.

Definition 7.1. Let M and N be two structures on the same universe. We say that M

and N are interdefinable if they have the same definable predicates.

1Je l’aime à mourir
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Proposition 7.2. Let M and N be two separably categorical metric structures on the
same universe, in languages LM and LN respectively. Then M and N are interdefinable if and
only if their automorphism groups are equal.

Proof. ⇒] Assume that M and N are interdefinable and let R be a relation in LN. Since
it is definable in N, it is definable in M as well, so it is Aut(M)-invariant. Thus Aut(M)

preserves every relation in LN. Similarly, if F is a function symbol in LN, then the distance
predicate d(F (x), y) is definable in N, hence in M. Thus, Aut(M) ⊆ Aut(N). Symmetrically,
we obtain that Aut(N) ⊆ Aut(M).
⇐] Conversely, assume that Aut(M) = Aut(N) and let P be definable in M. Then, by

proposition 6.11, it is Aut(M)-invariant hence Aut(N)-invariant by assumption. Thus, P is
definable in N and the two structures have the same definable predicates. �

2. Reconstruction up to bi-interpretability

2.1. Interpretations. In the classical setting, an interpretation of a structure M in an
other structure N is an embedding of M into a definable quotient of a finite power of N, that
is, into the imaginaries of N. As Ben Yaacov and Usvyatsov pointed out in [BU2], the right
definition of imaginaries in metric structures should allow classes of infinite tuples and this is
also true for interpretations.

Definition 7.3. Let M and N be two metric structures in languages LM and LN respec-
tively. An interpretation of M in N consists of the following data:

• a definable pseudometric ρ on Nω and
• an isometric map ϕ : (M, dM)→ ̂(Nω, ρ)

such that

• the predicate P : Nω → [0, 1] defined by P (x) = ρ(x, ϕ(M)) is definable in Nω and
• for every formula F in LM, the formula PF : ϕ(M)r → [0, 1] defined by PF (x) =

F (ϕ−1(x)) is definable in Nω, that is, there exists a definable ρ-invariant predicate on
Nω that induces PF .

To verify the last condition, it suffices to check it on relation symbols in LM and on predicates
of the form (x, y) 7→ d(x, F (y)), where F is a function symbol in LM.

Remark 7.4. If M and N are classical structures, they can be made into discrete metric
structures. Then every interpretation of M in N (in the metric sense, as defined above) induces
a classical interpretation of M in N. To see this, given a metric interpretation ϕ of M in N,
use the continuity of the associated pseudometric to choose a big enough n such that the
elements in the image ϕ(M) (which is discrete) are determined by their restriction to the first
n coordinates. Then the equivalence relation on Nn induced by restriction of ρ is well-defined
and definable, and it yields an interpretation of M in N.

If M, N and K are metric structures, ϕ : (M, dM) → ̂(Nω, ρN) is an interpretation of M
in N and ψ : (N, dN) → ̂(Kω, ρK) is an interpretation of N in K, then we can compose the
interpretations ψ and ϕ as follows.
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Taking the power of ψ, we get an isometric map ψω : (Nω, dωN) → ̂(Kω×ω, ρωK) = ̂(Kω, ρωK).
Now, since ψ(N) is definable in ̂(Kω, ρK), the image ψω(Nω) is definable in ̂(Kω, ρωK) too.
Besides, ρN is a definable pseudometric, so its pushforward by ψω also is. Then, it extends to a
definable pseudometric ρ on ̂(Kω, ρωK) (this is [B4, proposition 3.6]). Thus, the isometric map
ψω ◦ ϕ : (M, dM)→ ̂(Kω, ρ) is an interpretation of M in K.

Definition 7.5. Let M and N be two metric structures. We say that M and N are bi-
interpretable if there exist interpretations ϕ of M in N and ψ of N in M such that ψ ◦ϕ and
ϕ ◦ ψ are definable.

In the rest of this section, we argue that interpretations between separably categorical
structures correspond to continuous homomorphisms between their automorphism groups.

2.2. From interpretations to group homomorphisms. The first side of this corre-
spondence is not too surprising, for it amounts to saying one can get information on the auto-
morphism group from the structure. The process is however nicely functorial.

Proposition 7.6. Let M and N be two metric structures and ϕ an interpretation of M in
N. Then ϕ induces a homomorphism Ind(ϕ) of topological groups from Aut(N) to Aut(M).

Proof. Let g be an automorphism of N and a an element of M. We put Ind(ϕ)(g)(a) =

ϕ−1(g(ϕ(a))). Then Ind(ϕ) is the conjugation by ϕ so it is a group homomorphism. And since
ϕ and ϕ−1 are continuous, it is easy to see that Ind(ϕ) is continuous. �

Remark 7.7. If N is separably categorical, then the automorphism group of N acts ap-
proximately oligomorphically on Nω. In particular, any structure that is interpretable in a
separably categorical one is itself separably categorical. Indeed, if ϕ is an interpretation of
M in a separably categorical structure N, then the group Ind(ϕ)(Aut(N)) acts approximately
oligomorphically on ϕ(M). It follows that the whole automorphism group of M acts approx-
imately oligomorphically on M, hence M is separably categorical, by the Ryll-Nardzewski
theorem. That is the reason why it is necessary to impose an oligomorphicity restriction in
theorems 7.12 and 7.14.

The map ϕ 7→ Ind(ϕ) is functorial: it respects composition.

Lemma 7.8. Let M, N and K be metric structures, ϕ an interpretation of M in N and ψ
an interpretation of N in K. Then Ind(ψ ◦ ϕ) = Ind(ϕ) ◦ Ind(ψ).

Lemma 7.9. Let M be a separably categorical metric structure and ϕ an interpretation of
M in itself. Then ϕ is definable in M if and only if Ind(ϕ) = idAut(M).

Proof. ⇒] If ϕ is definable, then ϕ is Aut(M)-equivariant. Then, if g ∈ Aut(M) and
a ∈ M , we have Ind(ϕ)(g)(a) = ϕ−1(g(ϕ(a))) = ϕ−1(ϕ(g(a))) = g(a) and thus Ind(ϕ) is the
identity.
⇐] If Ind(ϕ) is the identity, the same computation shows that ϕ is Aut(M)-equivariant.

Since ϕ is continuous (it is isometric), this implies that ϕ is definable (by proposition 6.11). �

This lemma will yield the first direction of theorem 7.15.



98 7. RECONSTRUCTION OF SEPARABLY CATEGORICAL STRUCTURES

2.3. A special structure: a group with a hat. We now proceed to the second part
of the correspondence: the actual reconstruction. This comes down to a canonical structure
built from the automorphism group and with which the structure is bi-interpretable: the hat
structure (see section 2 of chapter 5).

Let M be a separable metric structure and let G be its automorphism group. Fix a dense
sequence ξ ∈ Mω. Then, the metric on G given by dξ(g, h) = d(gξ, hξ) is a compatible left-
invariant metric, from which we can define the hat structure on G.

Proposition 7.10. If M is separably categorical, then the structure Ĝ (obtained from this
particular metric dξ) is interpretable in M.

Proof. Consider the map ψ : g 7→ gξ from (G, dξ) to G · ξ ⊆ Mω. It is isometric so it
extends to the left completion of G. Then ψ is an interpretation of Ĝ in M.

Indeed, the predicate P : x 7→ d(x, ψ(Ĝ)) = d(x,G · ξ) onMω isG-invariant so it is definable
in M by proposition 6.11. Moreover, if C is an orbit closure and R = RC is the associated
predicate in Ĝ, we have, for x in ψ(Ĝ):

PR(gx) = R(ψ−1(gx))

= R(gψ−1(x))

= R(ψ−1(x)) because R is invariant by the automorphism group

= PR(x),

so PR is definable, which completes the proof. �

Remark 7.11. In fact, since the image of ψ is dense, G · ξ is exactly the left completion of
G and from now on, we identify Ĝ with G · ξ.

The above proposition, along with remark 7.7, implies that if M is separably categorical,
then so is Ĝ. And in that case, if dL is any other compatible left-invariant metric, then
the associated hat structure is bi-interpretable with Ĝ: the two metrics generate the same
topology so they are continuous with respect to each other, and their left-invariance implies,
by proposition 6.11, that they are definable from each other. Thus, the identity map from
the dL-hat structure to the quotient of Ĝ by dL is an interpretation. Therefore, all the hat
structures obtained from G are bi-interpretable and we will therefore identify them.

Moreover, if M is separably categorical, then the structure M is also interpretable in Ĝ. In
fact, we have the following more general result which will be the key ingredient in the proof of
theorem 7.14.

Theorem 7.12. Let N be a metric structure and let H be a subgroup of Aut(N) which
acts approximately oligomorphically on N. Then N is interpretable in Ĥ.

Proof. Let ζ be a dense sequence in N. Then Ĥ = H · ζ. Now the assumption ensures
that the space N // H of orbit closures of N by H is compact.

The intuition for the proof is to say that N is not far from being the product Ĥ ×N // H

and moreover that compact spaces should be interpreted in every structure. As a matter of
fact, we will build a particular system of representatives of N // H that Ĥ will interpret.

We begin by building a tree T representing this compact quotient N // H. For this, we
will choose representatives, within ζ, of a dense sequence of orbit closures that witnesses the
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compactness of this quotient, and T will be the tree of their indices in ζ. More precisely, we
build the tree by induction: first, there exist ζn1 , ..., ζnk

in ζ such that the balls of radius 1
2

centered in the closures of the orbits of ζn1 , ..., ζnk
cover all of the quotient. The indices of

those elements constitute the first level of our tree. For the next step, we cover each of the
balls B(ζni

, 1
2
) in N with a finite number of balls of radius 1

4
centered in elements of ζ so that

the second level of our tree consists of the indices of those centers, and so on (vertices at level
n + 1 come from a covering of an open ball at level n, and a vertex at level n is related by an
edge to all corresponding vertices at level n+ 1).

The construction ensures that for every infinite branch of T , the sequence (ζσ(i)) converges
inN. Moreover, every orbit closure corresponds to an infinite branch of T (maybe even several):
for every a in N, there exists an infinite branch σ of T such that the limit of the sequence (ζσ(i))

is in the closure of the orbit of a. Let [T ] be the set of infinite branches of T .
We now embed N isometrically into (the completion of) a quotient of H · ζ × [T ], which we

identify with Ĥ × [T ]. This will give the base map for our interpretation.
Endow the set H · ζ × [T ] with the following pseudometric

ρ((x, σ), (y, τ)) = lim
i→∞

d(xσ(i), yτ(i)).

Since for every branch σ in [T ], the sequence (ζσ(i)) converges, this is also true of every (xσ(i))

with x in H · ζ, so ρ is well-defined.
We now define a map ϕ : (H · ζ × [T ], ρ) → N by ϕ(x, σ) = lim

i→∞
xσ(i). By definition of ρ,

the map ϕ is isometric. In addition, the image of ϕ is dense in N. Indeed, let a be an element
of N and ε > 0. There exists a branch σ in [T ] such that (ζσ(i)) converges to some a′ in N

which is in the same H-orbit closure as a, that is, there exists h ∈ H such that d(h(a′), a) < ε,
so d(ϕ(hζ, σ), a) < ε, hence the density.

Thus, the isometric map ϕ can be extended to an isometry from the completion of (H · ζ ×
[T ], ρ) onto N. Then its inverse, call it ϕ̃, is the desired isometric map between N and the
completion of (Ĥ × [T ], ρ). This was the first step in our construction.

In order to see ϕ̃ as an interpretation of N in Ĥ, it remains to interpret [T ] in Ĥ, in other
words, to code the branches of T in a power of Ĥ (that is H · ζ via the identification of remark
7.11). The map ϕ̃ will then induce a mapN→ Ĥ×Ĥω, which will be the desired interpretation.

A branch can be coded by a sequence of zeroes and ones2. Then we code3 each bit by a pair
of elements of H · ζ. Consider the pseudometric on H · ζ ×H · ζ defined by

δ((x, x′), (y, y′)) = |d(x0, x
′
0)− d(y0, y

′
0)|,

which compares the differences between the first coordinates of the two sequences of the pair.
This is a definable pseudometric and we code the bit 0 by the δ-class of (ζ, ζ) and the bit 1 by

2There are many ways of doing so; we pick one. For instance, we may say that given a branch of T , we
follow the levels of T one by one, and we put a 1 in our sequence when we hit an element of our branch and a
0 otherwise.

3There are also many ways of coding zeroes and ones in a power of H · ζ. Here we go for a method which
compares two sequences of a pair in a very simple way.
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the δ-class of (ζ, h0ζ) where h0 is some element of H that does not fix ζ0. Note that the code
is invariant under the action of H.

Finally, we identify branches of T with their codes in (Ĥ2, δ)ω and we transfer the pseudo-
metric ρ on Ĥ × [T ] to a definable pseudometric ρ̃ on Ĥ × (Ĥ2, δ)ω. Note that the elements
of (Ĥ2, δ)ω that code a branch of [T ] may not cover the whole of (Ĥ2, δ)ω, but we extend ρ̃ to
(Ĥ2, δ)ω all the same (this is [B4, proposition 3.6]).

So we can now rewrite the map ϕ̃ as a map from N to the completion of (Ĥ × (Ĥ2, δ)ω, ρ̃).
The oligomorphicity of the action of H on N implies that the structure Ĥ = H · ζ, whose
automorphism group is H, is separably categorical. Since ρ̃ is invariant under the action of
H, proposition 6.11 then yields that the pseudometric ρ̃ is definable in Ĥ. Besides, since ϕ̃ is
H-equivariant, the predicates P (x) = ρ(x, ϕ̃(N)) and PF (x) = F (ϕ̃−1(x)) are definable in Ĥ.
Therefore, this new map ϕ̃ is an interpretation of N in Ĥ. �

Corollary 7.13. If M is separably categorical and G = Aut(M), then the structures M
and Ĝ are bi-interpretable.

Proof. Theorem 7.12 implies in particular that M is interpretable in Ĝ. Thus, it suffices
to show that the compositions of the interpretations constructed in theorem 7.12 and 7.10 are
definable. Both interpretations respected the actions of the automorphism groups so proposition
6.11 and remark 7.7 allow us to conclude. �

2.4. Reconstruction. We are now ready to complete the reconstruction.

Theorem 7.14. Let M and N be two metric structures, with M separably categorical. Let
f : Aut(M) → Aut(N) be a continuous group homomorphism whose image is closed and acts
approximately oligomorphically on N. Then N is interpretable in M.

Proof. Set G = Aut(M) and H = f(G). Since H acts approximately oligomorphically on
N, theorem 7.12 implies that N is interpretable in Ĥ. And by proposition 7.10, the structure
Ĝ is interpretable in M. It then suffices to show that Ĥ is interpretable in Ĝ.

Now, since H is closed, H is topologically isomorphic to the quotient of G by the closed
normal subgroup Ker(f). If dL is a left-invariant metric on G, then we can endow G with the
following left-invariant pseudometric

d′L(g1, g2) = inf{dL(g1k1, g2k2) : k1, k2 ∈ Ker(f)}.

Since Ker(f) is normal, this indeed defines a pseudometric, which induces a compatible metric
on H. Then ̂(H, d′L), which we identify with Ĥ (see subsection 3.3), is the quotient4 of Ĝ by
the definable pseudometric d′L and is thus interpretable in Ĝ. �

Theorem 7.15. Let M and N be separably categorical metric structures. Then M and
N are bi-interpretable if and only if their automorphism groups are isomorphic as topological
groups.

4Here, we do not even need to go to a power of Ĝ to interpret Ĥ.
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Proof. ⇒] Assume that ϕ and ψ are interpretations that witness the bi-interpretability
of M and N. Then lemma 7.9 implies that Ind(ϕ ◦ ψ) = idAut(N) and Ind(ψ ◦ ϕ) = idAut(M).
But Ind(ϕ ◦ ψ) = Ind(ϕ) ◦ Ind(ψ) so Ind(ϕ) = Ind(ψ)−1 and Ind(ψ) is an isomorphism of
topological groups between Aut(M) and Aut(N). Note that for this direction, we do not need
the categoricity of the structures.
⇐] By corollary 7.13, M is bi-interpretable with Âut(M) and N with Âut(N). Now if

the two groups are isomorphic as topological groups, then their associated hat structures are
bi-interpretable (by the discussion following remark 7.11). �

Example 7.16. In [B6], it is shown, by an explicit computation, that the probability
algebra M of the unit interval is bi-interpretable with the space N of [0, 1]-valued random
variables, identified up to equality almost everywhere and endowed with the L1 metric. Our
reconstruction theorem allows us to recover this result in a more abstract way. Indeed, the
probability algebra of [0, 1] is separably categorical, thus its automorphism group G = Aut(µ)

is Roelcke-precompact ([R3, theorem 5.2]).
Moreover, G is also the automorphism group of N. We will show that the space of orbit

closures of N under the action of G can be identified with the space of probability measures
on [0, 1]. It follows that the space of orbit closures of N is compact. This suffices, by theorem
6.19, to get that the action of G on N is approximately oligomorphic, hence that the structure
N is also separably categorical. Theorem 7.15 then applies, proving that M and N are bi-
interpretable.

Let us now see how to identify the space of orbit closures of N under the action of G with
the space of probability measures on [0, 1]. From a measurable map f in N, we will build an
element g of G such that f ◦ g is increasing. The resulting map will then be the repartition
function of some probability measure on I.

Define the desired increasing map by

h(r) = inf {t ∈ [0, 1] : µ({x ∈ I : f(x) < t}) > r} .

By definition, we have that

µ({x ∈ I : f(x) 6 h(r)}) > r and µ({x ∈ I : f(x) < h(r)}) 6 r.

To build the automorphism g, we specify the set Ar = {x ∈ I : g(x) 6 r} for every rational
point r in [0, 1]: we will set

Ar = {x ∈ I : f(x) < h(r)} ∪Br,

with Br being a subset of {x ∈ I : f(x) = h(r)} of adequate measure (such as to bring the
measure of Ar up to r). In order to choose the set Br, we intersect the set {x ∈ I : f(x) = h(r)}
with bigger and bigger intervals until we get a subset of measure m(r) = r − µ({x ∈ [0, 1] :

f(x) < h(r)}). More precisely, let

s(r) = inf {t ∈ I : µ([0, t[∩{x ∈ I : f(x) = h(r)}) > m(r)}

and let Br = [0, s(r)] ∩ {x ∈ I : f(x) = h(r)}.
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The family {Ar : r ∈ [0, 1] ∩ Q} is increasing and the union of all the Ar’s has measure 1.
Therefore, we may define g as follows (on a full measure subset):

g(s) = inf{r ∈ [0, 1] ∩Q : s ∈ Ar}.

As desired, we have that f ◦ g = h. Moreover, it is easy to see that g is a measure-preserving
automorphism of I. This completes the proof.
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CHAPTER 8

Automatic continuity for infinite powers of Polish groups

Comme des inconnus qui n’ont rien à se dire
[...] nous restons côte à côte.

Charles Aznavour1
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In the last chapter, we have seen how to reconstruct some automorphism groups from the
associated structures. Here, we tackle a different kind of reconstruction, although it will still
be read on the properties of the underlying structure. Namely, we are interested in recovering
the topology on the group from its algebraic structure, by means of the automatic continuity
property. A separable topological group G has the automatic continuity property if every group
homomorphism from G to any separable group is continuous.

However strong this may seem, many Polish groups satisfy the automatic continuity prop-
erty; we refer the reader to Rosendal’s survey [R2] for more details. We are interested in
finding more of those, by looking at infinite powers of Polish groups that satisfy the automatic
continuity property. Such powers do not always have the automatic continuity property, even
(if not especially) in the simplest of cases. Yet, they do when the Polish groups in question have
ample generics, a very strong topological property. We prove that they also do with a weaker
requirement: in the very particular framework, introduced by Sabok ([S1]) and Malicki ([M1]),
where automatic continuity of the automorphism group is witnessed by specific combinatorial
properties of the structure.

Moreover, in the course of a discussion on this question with François Le Maître, we dis-
covered connected Polish groups with ample generics. This answers a question of Kechris and
Rosendal (see theorem 8.54), who asked whether the only Polish groups with ample generics
were subgroups of S∞. Malicki has simultaneously answered this question in [M1], though with
different examples.

1Comme des étrangers
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1. Automatic continuity

Definition 8.1. Let G be a separable topological group. We say that the group G satisfies
the automatic continuity property if every group homomorphism from G to a separable
topological group is continuous.

Note that the separability assumption on the range group is necessary: without it, we can
always endow the group G with the discrete topology and the identity map of G will fail to be
continuous (when G is not discrete).

Proposition 8.2. A finite product of groups that all satisfy the automatic continuity
property also satisfies the automatic continuity property.

Proof. Let G1, ..., Gn be topological groups that satisfy the automatic continuity property.
Let H be a separable group and let ϕ : G1× ...×Gn → H be a group homomorphism. For each
i, consider the group homomorphism ϕi : Gi → H defined by ϕi(gi) = ϕ(1, ..., 1, gi, 1, ..., 1).
Since each Gi satisfies the automatic continuity property, all of the homomorphisms ϕi are
continuous. Since there are finitely many groups in the product, we can write ϕ as (g1, ..., gn) 7→
ϕ1(g1)...ϕn(gn) so ϕ is continuous. �

However, the automatic continuity property does not carry over to infinite products in
general. The following will be our companion (non-)example throughout this chapter.

Example 8.3. The group Z/2Z is discrete. Thus, it satisfies the automatic continuity prop-
erty. However, the group (Z/2Z)N does not have the automatic continuity property. Indeed, let
U be any non-principal ultrafilter on N. It corresponds to a normal subgroup HU of (Z/2Z)N

of index 2, and since U is non-principal, the subgroup HU is not open. But then the group
homomorphism from (Z/2Z)N into Z/2Z of kernel HU cannot be continuous.

The general question we would like to address is the following.

Question 8.4. If G is a group with the automatic continuity property, when is it the case
that the group GN also has the automatic continuity property?

In this chapter, we only touch upon this question. We answer it for Polish groups, seen as
automorphism groups, in the particular case when automatic continuity results from certain
combinatorial properties of the structure.

1.1. The Steinhaus property. Rosendal and Solecki introduced in [RS] a very useful
tool to prove the automatic continuity property.

Definition 8.5. Let G be a topological group. We say that the group G is Steinhaus if
there exists an integer k such that for every symmetric countably syndetic2 subset W of G, W k

contains an open neighborhood of the identity. We also say that G is k-Steinhaus.

Theorem 8.6. (Rosendal-Solecki, [RS, proposition 2]) Let G be a separable topological
group. If G is Steinhaus, then G satisfies the automatic continuity property.

Proof. Assume that G is k-Steinhaus. Let H be a separable topological group and let
ϕ : G → H be a group homomorphism. It suffices to show that ϕ is continuous at 1G. Let U
be an open neighborhood of 1H . By continuity of multiplication in H, we can find a symmetric
open neighborhood V of 1H such that V k ⊆ U .

2A subset W of G is said to be countably syndetic if there exists a sequence (gn)n∈N of elements of G
such that G =

⋃

n∈N
gnW .
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Then the set W = ϕ−1(V ) is symmetric and countably syndetic in G. Indeed, since H is
separable, so is ϕ(G), hence we can write ϕ(G) ⊆

⋃

n∈N

ϕ(gn)V . Thus, we have

G = ϕ−1(ϕ(G))

⊆
⋃

n∈N

ϕ−1(ϕ(gn)V )

=
⋃

n∈N

gnϕ
−1(V ).

Now, since the group G is k-Steinhaus, it follows that W k contains an open neighborhood
of 1G. But W k is contained in ϕ−1(V k), which is in turn contained in ϕ−1(U), by our choice of
V . Thus, ϕ−1(U) contains an open neighborhood of 1G, which completes the proof. �

Example 8.7. Since the group Z/2Z is discrete, it is Steinhaus. However, the group
(Z/2Z)N is not (otherwise, it would have the automatic continuity property).

It is unclear whether a finite product of Steinhaus groups also is Steinhaus. But since
the Steinhaus property was introduced with the sole aim of proving the automatic continuity
property, it does not matter too much in view of proposition 8.2.

We would like to argue that the group Z/2Z has the automatic continuity property for the
wrong reason (a trivial reason, discreteness).

1.2. Better reasons than discreteness to be Steinhaus: ample generics. Kechris
and Rosendal introduced in [KR] the property of having ample generics for a topological group,
and they proved that if a topological group has ample generics, then it satisfies the automatic
continuity property ([KR, theorem 6.24]).

Definition 8.8. A subset of a Polish space X is called comeager if it contains a countable
intersection of dense open subsets of X.

Definition 8.9. Let G be a topological group. We say that G has ample generics if for
every positive integer n, the diagonal conjugacy action of G on Gn, which is given by

g · (g1, ..., gn) = (g−1g1g, ..., g
−1gng),

admits a comeager orbit.

Remark 8.10. By the Effros theorem (see [G1, theorem 3.2.4]), comeager orbits are in fact
Gδ.

Many closed subgroups of S∞ have ample generics: the automorphism groups of the random
graph, of the rational Urysohn space, of the infinitely splitting regular rooted tree. Also, if a
Fraïssé class satisfies two combinatorial properties, namely the extension property and the
free amalgamation property (see sections 3 and 4 for a definition), then the automorphism
group of its Fraïssé limit has ample generics (see [M6, theorem 4.5]; the result follows from
[KR, proposition 6.4]).

However, bigger groups often fail to have ample generics. For instance, in the groups Iso(U),
Aut(µ) and U(`2), every conjugacy class is meager. Actually, Kechris and Rosendal asked in
[KR, question 6.13 (1)] whether there exist Polish groups with ample generics that are not
subgroups of S∞. With Le Maître ([KLM]), we exhibited an example of such a group (see
theorem 8.54).

For our purposes, ample generics come out as particularly powerful, for they do carry to
infinite powers.

Proposition 8.11. Let G be a topological group with ample generics. Then GN also has
ample generics.
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Proof. Let n be an integer. We can naturally identify the group (GN)n with (Gn)N. Since
G has ample generics, there exists a tuple ϕ̄ in Gn whose orbit is comeager in Gn. Now consider
the constant sequence f̄ = (ϕ̄)i∈N in (Gn)N. We prove that the orbit of f̄ under the diagonal
action of GN is comeager in (Gn)N.

The orbit of ϕ̄ is dense Gδ: G · ϕ̄ =
⋂

k∈N

Uk, where each Uk is a dense open subset of Gn.

Then we have

GN · f̄ = {(ḡi)i∈N ∈ (Gn)N : for all i in N, ḡi ∈ G · ϕ̄}

=
⋂

i∈N

{(ḡi)i∈N ∈ (Gn)N : ḡi ∈ G · ϕ̄}

=
⋂

i∈N

⋂

k∈N

{(ḡi)i∈N : ḡi ∈ Uk}

=
⋂

i∈N

⋂

k∈N

Ai,k.

Since (Gn)N is endowed with the product topology, each of the Ai,k’s is open and dense in
(Gn)N, hence the orbit of f̄ is comeager and GN has ample generics. �

We will see in section 6 a generalization of this fact to the group of G-valued random
variables.

1.3. Mimicking ample generics. As mentioned before, ample generics fail for quite a
number of big Polish groups. Yet, it is still possible to circumvent their absence: before they
knew that the group Homeo(2N) had ample generics3, Rosendal and Solecki ([RS, theorem 13])
managed to prove the automatic continuity property for both Homeo(2N) and Homeo(2N)N.
Drawing inspiration from their arguments, Sabok then introduced in [S1] a set of properties of
exactly ultrahomogeneous metric structures that imply the Steinhaus property for their (big)
automorphism groups. These conditions include the existence property, which is in some way
similar to the free amalgamation property, and the extension property. Later, Malicki proposed
in [M1] a slightly different set of properties, designed to imply not only the automatic continuity
property but also several other consequences of ample generics (see [KR]). In the light of
proposition 8.11, this set of properties that mimics ample generics is a reasonable condition to
consider for our problem.

Their results are the following, with the different properties to be specified and discussed
later on.

Theorem 8.12. (Sabok, Malicki) Let M be an exactly ultrahomogeneous metric structure.
Assume that M has the extension property, the existence property and an isolation property.
Then the automorphism group of M is Steinhaus and thus satisfies the automatic continuity
property.

Remark 8.13. Again, the question arises of exact ultrahomogeneity and of a possible fini-
tary characterization for it...

Corollary 8.14. The following groups have the automatic continuity property.
• Aut(µ) (Ben Yaacov-Berenstein-Melleray, [BBM, theorem 6.2]).
• U(`2) (Tsankov, [T3]).
• Iso(U) and Iso(U1) (Sabok, [S1, section 8]).

We would like to investigate these properties and study how they behave with respect to
products. In order to do that, given a metric structure and its automorphism group G, we need
to exhibit a structure of which GN is the automorphism group.

3This was proved later by Kwiatkowska in [K7].
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2. The juxtaposed structure

LetM be a metric structure of diameter smaller than 1 and letG be its automorphism group.
The juxtaposed structure M∗ of M consists of countably many copies of the structure M
that do not interact with one another, together with a distinguished element ? (that constitutes
the zeroth "copy"). We endow the space ({?} × {0}) ∪ (M× N \ {0}) with

• a unary predicate Cn for each copy M× {n},
• a unary predicate C? for the element (?, 0),
• the metric defined by

d((a, i), (b, j)) =





dM(x, y) if i = j 6= 0

0 if i = j = 0

1 if i 6= j,

• a predicate P ∗ for each predicate P in LM, defined by

P ∗((a1, i1), ..., (am, im)) =

{
P (a1, ..., am) if i1 = ... = im 6= 0

1 otherwise.

• a function F ∗ for each definable function F : Mm →M defined by

F ∗((a1, i1), ..., (am, im)) =

{
(F (a1, ..., am), i1) if i1 = ... = im 6= 0

(?, 0) otherwise.

Remark 8.15. The additional element ? is designed to define functions. If the structure is
relational, we can just take M∗ to be the product space M× N together with the appropriate
predicates.

Since there is a predicate for each copy of M, automorphisms of M∗ preserve copies. Hence,
as expected, the automorphism group of M∗ is isomorphic to GN. The action of GN is defined
as follows: if ϕ = (ϕn)n∈N is an element of GN and (x, i) is in M∗, then

ϕ(a, i) = (ϕi(a), i),

with the convention that for every g ∈ G, g(?) = ?.

Remark 8.16. It might seem more natural to consider the actual product structure of
M, whose universe is MN, and where predicates and functions work coordinatewise. There is
indeed no problem to define functions here. The automorphism group of the product structure
ofM is also the productGN. However, the extension property does not carry over to the product
structure unless it is in some sense uniform4. The homogeneity and the existence property do
carry over, though, and the proofs are similar to those for the juxtaposed structure.

Proposition 8.17. LetM be a metric structure of diameter smaller than 1. If the structure
M is exactly ultrahomogeneous, then so is M∗.

Proof. Let f be an isomorphism between two finite substructures of M∗. Since f preserves
the predicates Cn, we can write f as a sequence (fn)n∈N, where fn is an isomorphism between
finite substructures of M. We apply the ultrahomogeneity of M to each fn and extend it to an
automorphism ϕn of the whole structure M. Then the sequence (ϕn)n∈N is an automorphism
of M∗ which extends f . �

The following proposition gives a description of types in the juxtaposed structure: they are
"products" of types in each copy. To simplify the notation, we only state it for pairs, but it
works exactly the same for bigger tuples.

4The size of the bigger finite set needs to depend only on the size of the smaller one, see definition 8.19.
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Proposition 8.18. Let M be a metric structure of diameter smaller than 1 and let a and b
be elements of M. Let i and j be two distinct indices in N \ {0} and let p be the quantifier-free
type of the tuple ((a, i), (b, j)) in M∗. Let also pa and pb be the quantifier-free types of a and
b in M respectively. Then the set of realizations of p in M∗ is described as follows:

p(M∗) = {((a′, i), (b′, j)) : a′ ∈ pa(M) and b′ ∈ pb(M)}.

Proof. Let c̄ inM∗ have the same quantifier-free type as ((a, i), (b, j)). Since the predicates
Ci and Cj are in the language, we can write c̄ as ((a′, i), (b′, j)), with a′ and b′ in M. Now, if
θM is a quantifier-free formula on M, it induces a quantifier-free formula θ on M× {i}. Then
θ((a′, i)) = θ((a, i)) by assumption, so θM(a′) = θM(a). This implies that a and a′ have the
same quantifier-free type.

Conversely, let us show that any tuple of the form ((a′, i), (b′, j)), where a′ and b′ have
the same quantifier-free type as a and b respectively, has the same quantifier-free type as
((a, i), (b, j)). To do this, let θ be an atomic quantifier-free formula on (M∗)2. If θ depends
only on its first variable, say θ is a formula on M× {i}, then it is induced by a formula θM on
M. We thus have

θ(a′, i) = θM(a′) = θM(a) = θ(a, i).

If on the contrary, θ depends on its two variables inM∗, then θ is of the form P (t1(x, y), ..., tm(x, y)),
where P is a predicate and t1(x, y), ..., tm(x, y) are terms. Two cases can occur:

• all the terms ti(x, y) depend on only one variable (x or y). Then for all i, we have that
ti((a, i), (b, j)) = ti((a

′, i), (b′, j)), hence θ((a, i), (b, j)) = θ((a′, i), (b′, j)).
Actually, since θ depends on both its variables, there must be one term that depends

on x, say t1(x, y) = t1(x), and one term that depends on y, say t2(x, y) = t2(y). Thus,
t1((a, i)) = t1((a′, i)) ∈M × {i} and t2((b, j)) = t2((b′, j)) ∈M × {j}. It follows that
θ((a, i), (b, j)) = 1 = θ((a′, i), (b′, j)).
• there is one term, say t1(x, y), that depends on both its variables. Then, the term will
involve the value of a function symbol on elements from different copies ; it follows, by
induction on the complexity of the term t1, that there exists an L-term t̃1 such that
both t1((a, i), (b, j)) = t1((a′, i), (b′, j)) = (t̃1(?), 0).

Now, either all terms are of this form, and

θ((a′, i), (b′, j)) = θ((a, i), (b, j)) = P (t̃1(?), ..., t̃m(?)),

or there is a term that only depends on one variable, say t2(x, y) = t2(x). Then
t2((a, i), (b, j)) = t2((a′, i), (b′, j)) belongs to M × {i}. Put (e, i) = t2((a, i), (b, j)). It
follows that

θ((a, i), (b, j)) = P ((t̃1(?), 0), (e, i), ...) = 1 = θ((a′, i), (b′, j)).

Finally, θ((a′, i), (b′, j)) = θ((a, i), (b, j)) for all atomic formulas θ. This proves that ((a′, i), (b′, j))
has the same quantifier-free type as ((a, i), (b, j)). �

We now go over the assumptions of theorem 8.12 to see how they carry over to the juxtaposed
structure.

3. The extension property

Definition 8.19. Let M be a metric structure. We say that M has the extension prop-
erty (Sabok and Malicki say that M has locally finite automorphisms) if for every finitely
generated substructure A of M and every set P of partial automorphisms of A, there exists a
finitely generated substructure B of M that contains A such that every partial automorphism
in P extends to a global automorphism of B.

Examples 8.20. The following structures have the extension property.
• Finite ultrahomogeneous structures.
• The random graph (Hrushovski, [H2]).
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• The Urysohn space (Solecki, [S6]).
• The measure algebra of the standard probability space (Kechris-Rosendal, [KR, page
32], see also Sabok, [S1, lemma 9.1]).
• The (unit ball of the) separable Hilbert space (see Sabok, [S1, lemma 10.2]).

Proposition 8.21. Let M be a metric structure of diameter smaller than 1 which satisfies
the extension property. Then the juxtaposed structure M∗ also satisfies the extension property.

Proof. Let A be a finite substructure of M∗. Since A is finite, it only intersects finitely
many copies M× {n}. We then apply the extension property in each of those copies and take
the union of the obtained sets (together with the special element (?, 0)). �

4. The existence property

Definition 8.22. Let M be a metric structure and let A, B and C be finitely generated
substructures of M such that A ⊆ B ∩C. We say that B and C are independent over A if
for all automorphisms fB : B → B and fC : C → C that stabilize A and coincide on A, the
map fB ∪ fC extends to an automorphism of the substructure generated by B and C.

Definition 8.23. Let M be a metric structure. We say that M has the existence prop-
erty (Sabok and Malicki say that M has the extension property) if for all finitely generated
substructures A, B and C such that A ⊆ B ∩C, there exists an embedding f : C→M that
fixes A pointwise such that B and f(C) are independent over A.

Examples 8.24. Countable structures with the free amalgamation property (see remark
4.7) have the existence property. More generally, structures with a stationary independence
relation (in the sense of Tent and Ziegler, [TZ2]) have the existence property. In particular,
the following structures do.

• The pure infinite set.
• The random graph.
• The Urysohn space and sphere.

Non-example 8.25. Finite structures fail to have the existence property. Indeed, the whole
structure is not independent from itself, which is the only substructure isomorphic to it, over
the empty set. There is not enough space in the structure to get independence. In particular,
this is the case of our favorite non-example: the two-element structure.

Proposition 8.26. Let M be a metric structure of diameter smaller than 1 which satisfies
the existence property. Then the juxtaposed structure M∗ also satisfies the existence property.

Proof. Let A, B and C be finite substructures of M∗ such that A ⊆ B∩C. Since B and
C are finite, they only intersects finitely many copies M× {n}. As for the extension property,
we then apply the existence property in each of those copies and take the union of the obtained
sets (together with the special element (?, 0)). �

5. Isolation

Sabok and Malicki proposed different definitions for the isolation property in theorem 8.12.
However, it is unclear whether Sabok’s property carries to the juxtaposed structure. Thus, we
will only consider Malicki’s isolation conditions.

5.1. Relevant tuples. Malicki’s theorem only requires isolation for a sufficiently large
family of tuples from the structure. Such families he calls relevant.

Definition 8.27. A family R of tuples of M is called relevant if for every tuple a in M,
there exists a tuple b in R such that Gb 6 Ga.

Note that any relevant family of tuples naturally induces a relevant family of tuples of its
juxtaposed structure.
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Proposition 8.28. Let M be a metric structure of diameter smaller than 1 and let R be a
relevant family of tuples of M. Then the family R∗ of all those tuples in M∗ whose projection
to the every copy M× {n} belongs to R is relevant.

Proof. We only prove it for pairs, but the proof works exactly the same for bigger tuples.
Let i and j be two distinct indices in N and let c = ((a, i), (b, j)) be a tuple in M∗. The
stabilizer of this tuple in GN is

(GN)c = {(ϕn) ∈ GN : ϕi ∈ Ga and ϕj ∈ Gb}.

Now, if both i and j are nonzero, let a′ = (a′1, ..., a
′
m) and b

′
= (b′1, ..., b

′
l) be tuples in the

relevant family R such that Ga′ 6 Ga and G
b
′ 6 Gb. Consider the following tuple of R∗:

c′ = ((a′1, i), ..., (a
′
m, i), (b

′
1, j), ..., (b

′
l, j)). Then we have (GN)c′ 6 (GN)c.

If one of the indices is zero, say i = 0, then Ga = G? = G so GN
c = GN

(b,j). So if b′ = (b′1, ..., b
′
l)

is a tuple in the relevant family such that G
b
′ 6 Gb, the tuple ((b′1, j), ..., (b

′
l, j)) of R∗ satisfies

that (GN)
b
′ 6 (GN)b, proving that R∗ is relevant. �

5.2. Direct strong isolation. We first present one of Malicki’s versions of the isolation
property needed for theorem 8.12. In fact, we simplify the condition slightly by mentioning
only the local orbit in the following definition.

Definition 8.29. Let M be a metric structure and let G be the automorphism group of
M. Let a be a tuple in M and let p be the quantifier-free type of a. Let ε be a positive real.
We say that a is directly ε-strongly isolated if there exist

• a sequence (ak)k∈N of tuples of quantifier-free type p,
• a sequence (Gk)k∈N of subgroups of G, and
• a sequence (δk)k∈N of positive reals

such that
• Gk[ak] ⊆ B(a, ε),
• if a′ is a tuple of quantifier-free type p in the ball B(ak, δk), then the types qftp(a′/a)
and qftp(a′/ak) are realized in Gk[ak], and
• for every sequence (gk)k∈N of automorphisms with gk ∈ Gk for all k, there exists an
automorphism g in G such that for all k, we have g � Gk[ak] = gk � Gk[ak].

The last two conditions are conditions of local relative saturation and local relative homo-
geneity.

Definition 8.30. We say that a tuple in M is directly strongly isolated if it is directly
ε-strongly isolated for every positive ε.

Example 8.31. (Malicki) In the Urysohn space, every tuple is directly strongly isolated.

Remark 8.32. If the structure M is discrete, then the condition of being directly strongly
isolated is empty. Indeed, if ā is any tuple in M and ε is any positive real, then ā is directly ε-
strongly isolated by the constant sequences (ā)k∈N and ({idM})k∈N, with any sequence (δk)k∈N
of positive reals. In particular, every tuple in the two-element structure is directly strongly
isolated.

We are now ready to state Malicki’s theorem in a precise way.

Theorem 8.33. (Malicki) Let M be an exactly ultrahomogeneous metric structure. Let R
be a relevant family of tuples ofM. Assume thatM has the extension property and the existence
property, and that every tuple in R is directly strongly isolated. Then the automorphism group
of M is Steinhaus and thus satisfies the automatic continuity property.

Remark 8.34. If the structure M is discrete, the theorem extends the result that a Fraïssé
structure with both the extension property and the free amalgamation property has the auto-
matic continuity property.
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We prove that direct strong isolation carries over to the juxtaposed structure.
Proposition 8.35. Let M be a metric structure of diameter smaller than 1. Let ε be a

positive real. Let a and b be two directly ε-strongly isolated elements of M. Let i and j be
two distinct indices in N. Then the tuple c = ((a, i), (b, j)) is also directly ε-strongly isolated
in M∗.

Proof. Let (ak), (Gk), (δk) and (bk), (Hk), (εk) witness the direct ε-strong isolation of
a and b respectively. We prove that the tuple c̄ is then directly ε-strongly isolated by the
sequences (c̄k), (Kk) and (ηk), where

• c̄k = ((ak, i), (bk, j)),
• Kk = {(ϕn)n∈N ∈ GN : ϕi ∈ Gk and ϕj ∈ Hk} and
• ηk = min(δk, εk).

First note that Kk is indeed a subgroup of GN. Besides, any element of Kk[c̄k] is of the
form ((gk(ak), i), (hk(bk), j)), with gk ∈ Gk and hk ∈ Hk. The isolation of a and b gives that
gk(ak) ∈ B(a, ε) and hk(bk) ∈ B(b, ε), and since we take the supremum distance on tuples, we
have that Kk[ck] is contained in the ball B(c̄, ε).

By proposition 8.18, all the tuples c̄k have the same quantifier-free type as c̄. Let now
c̄′ be a tuple in the ball B(c̄k, ηk) that has the same quantifier-free type as c̄. We can write
it c̄′ = ((a′, i), (b′, i)) and, by proposition 8.18 again, the elements a′ and b′ have the same
quantifier-free type as a and b respectively. We can thus find realizations a1, a2 in Gk[ak]
and b1, b2 in Hk[bk] of qftp(a′/a), qftp(a′/ak) and qftp(b′/a), qftp(b′/bk). Now the tuples
c̄1 = ((a1, i), (b1, j)) and c̄2 = ((a2, i), (b2, j)) are realizations of qftp(c̄′/c̄) and qftp(c̄′/c̄k) in
Kk[c̄k] (we use proposition 8.18 once again).

Finally, let (ϕk)k∈N be a sequence of automorphisms of M∗, with ϕk ∈ Kk for all k. We can
write each ϕk as a sequence (ϕkn)n∈N, with ϕki ∈ Gk and ϕkj ∈ Hk. We apply the local relative
homogeneity conditions to the sequences (ϕki )k∈N and (ϕkj )k∈N to get automorphisms ϕi and ϕj
of M such that for all k, we have ϕi � Gk[ak] = ϕki � Gk[ak] and ϕj � Hk[bk] = ϕkj � Hk[ak].
Then the automorphism ϕ = (ϕn)n∈N of M∗ defined by ϕn = ϕi

ϕn =





ϕi if n = i

ϕj if n = j

idM otherwise

satisfies that ϕ � Kk[c̄k] = ϕk � Kk[c̄k], which completes the proof. �

The proof readily adapts to bigger tuples. As a consequence, we obtain that the isolation
condition in theorem 8.33 carries over to the product.

Corollary 8.36. Let M be a metric structure of diameter smaller than 1. Let R be a
relevant family of tuples of M and let R∗ be the relevant family of tuples of M∗ in proposition
8.28. If every tuple in R is directly strongly isolated, then so is every tuple in R∗.

This finally yields that this better set of reasons to have a Steinhaus automorphism group
carries over to the juxtaposed structure.

Theorem 8.37. LetM be an exactly ultrahomogeneous metric structure of diameter smaller
than 1 and let G be its automorphism group. Let R be a relevant family of tuples ofM. Assume
that M has the extension property and the existence property, and that every tuple in R is
directly strongly isolated. Then the group GN is Steinhaus and thus satisfies the automatic
continuity property.

Corollary 8.38. The group Iso(U1)N satisfies the automatic continuity property.
Remark 8.39. The metric on the Urysohn space is not bounded. However, it is equivalent

to the following metric

d′(x, y) =
d(x, y)

1 + d(x, y)
,
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which is bounded by 1. Moreover, the isometry groups of (U, d) and (U, d′) are the same.
Thus, we can apply the previous results to the Urysohn space too: we also get the automatic
continuity property for Iso(U)N.

5.3. Indirect strong isolation.

Definition 8.40. Let M be a metric structure and let G be the automorphism group of
M. Let ā be a tuple in M and let p be the quantifier-free type of ā. Let ε be a positive real.
We say that ā is indirectly ε-strongly isolated if there exist

• a sequence (āk)k∈N of tuples of quantifier-free type p,
• a sequence (Gk)k∈N of subgroups of G,
• a sequence (δk)k∈N of positive reals, and
• a sequence (Xk)k∈N of metric substructures of M

such that
• Xk is exactly ultrahomogeneous and satisfies the extension property and the existence
property,
• Xk is invariant under the action of Gl, for all l in N,
• Gk � Xk = Aut(Xk) and every element of Aut(Xk) extends uniquely to an element of
Gk,
• Gk[āk] ⊆ B(ā, ε),
• if a′ is a tuple of quantifier-free type p in the ball B(ak, δk), then the types qftp(a′/a)
and qftp(a′/ak) are realized in Gk[ak], and
• for every sequence (gk)k∈N of automorphisms with gk ∈ Gk for all k, there exists an
automorphism g in G such that for all k, we have g � Xk = gk � Xk.

Remark 8.41. In the definition of direct isolation, the role of Xk in the local relative homo-
geneity condition is played by the local orbit Gk[āk], although the local orbit is not necessarily
a substructure of M (let alone an ultrahomogeneous substructure with the extension property
and the existence property).

Definition 8.42. We say that a tuple in M is indirectly strongly isolated if it is
indirectly ε-strongly isolated for every positive ε.

Examples 8.43. (Malicki)
• In the measure algebra of a standard probability space X, every partition of X into
positive measure sets is indirectly strongly isolated.
• In the Hilbert space, every orthonormal tuple is indirectly strongly isolated.

Here is the indirect version of Malicki’s result.

Theorem 8.44. (Malicki) Let M be an exactly ultrahomogeneous metric structure. Let R
be a relevant family of tuples ofM. Assume thatM has the extension property and the existence
property, and that every tuple in R is indirectly strongly isolated. Then the automorphism
group of M is Steinhaus and thus satisfies the automatic continuity property.

We now prove that indirect strong isolation carries to the juxtaposed structure.

Proposition 8.45. Let M be a metric structure of diameter smaller than 1. Let ε be a
positive real. Let a and b be two indirectly ε-strongly isolated elements of M. Let i and j be
two distinct indices in N. Then the tuple c̄ = ((a, i), (b, j)) is also indirectly ε-strongly isolated
in M∗.

Proof. Let (ak), (Gk), (δk), (Xk) and (bk), (Hk), (εk), (Yk) witness the indirect ε-strong
isolation of a and b respectively. We prove that the tuple c̄ is then indirectly ε-strongly isolated
by the sequences (c̄k), (Kk), (ηk) and (Zk), where

• c̄k = ((ak, i), (bk, j)),
• Kk = {(ϕn)n∈N ∈ GN : ϕi ∈ Gk and ϕj ∈ Hk},
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• ηk = min(δk, εk), and
• Zk = (Xk × {i}) ∪ (Yk × {j}).

As in proposition 8.35, we have that Kk is a subgroup of GN, that Kk[c̄k] is contained
in B(c̄, ε), that the tuples c̄k have the same quantifier-free type as c̄ and the local relative
saturation property.

Note that Zk is indeed a substructure of M∗, whose automorphism group is Aut(Xk) ×
Aut(Yk).

The proofs of propositions 8.17, 8.21 and 8.26 show that the structure Zk is exactly ultra-
homogeneous and satisfies the extension property and the existence property.

Besides, the restriction ofKk to Zk is (Gk � Xk)×(Hk � Yk), which coincides with Aut(Xk)×
Aut(Yk) = Aut(Zk).

Moreover, Kl(Zk) = (Gl[Xk] × {i}) ∪ (Hl[Yk] × {j}). Thus, since Xk and Yk are invariant
under the actions of Gl and Hl respectively, the structure Zk is invariant under the action of
Kl.

Finally, let (ϕk)k∈N be a sequence of automorphisms of M∗, with ϕk ∈ Kk for all k. We can
write each ϕk as a sequence (ϕkn)n∈N, with ϕki ∈ Gk and ϕkj ∈ Hk. We apply the local relative
homogeneity conditions to the sequences (ϕki )k∈N and (ϕkj )k∈N to get automorphisms ϕi and
ϕj of M such that for all k, we have ϕi � Xk = ϕki � Xk and ϕj � Yk = ϕkj � Yk. Then the
automorphism ϕ = (ϕn)n∈N of M∗ defined by ϕn = ϕi

ϕn =





ϕi if n = i

ϕj if n = j

idM otherwise

satisfies that ϕ � Zk = ϕk � Zk, which completes the proof. �

The proof readily adapts to bigger tuples. As a consequence, we obtain that the isolation
condition in theorem 8.44 carries to the product.

Corollary 8.46. Let M be a metric structure of diameter smaller than 1. Let R be a
relevant family of tuples of M and let R∗ be the relevant family of tuples of M∗ in proposition
8.28. If every tuple in R is indirectly strongly isolated, then so is every tuple in R∗.

This finally yields that this indirect better set of reasons to have a Steinhaus automorphism
group also carries to the juxtaposed structure.

Theorem 8.47. LetM be an exactly ultrahomogeneous metric structure of diameter smaller
than 1 and let G be its automorphism group. Let R be a relevant family of tuples ofM. Assume
that M has the extension property and the existence property, and that every tuple in R is
indirectly strongly isolated. Then the group GN is Steinhaus and thus satisfies the automatic
continuity property.

Corollary 8.48. The groups Aut(µ)N and U(`2)N satisfy the automatic continuity prop-
erty.

6. Connected groups with ample generics

Recall that when G is a Polish group that has ample generics, then GN also has ample
generics (proposition 8.11). With Le Maître, we noticed that this could be generalized to the
group L0(X,µ;G) of G-valued random variables on a standard probability space5 (X,µ). In
fact, the group GN can be viewed as that of G-valued random variables on N. That is what led
us to an answer to Kechris and Rosendal’s question, asking whether there was a Polish group
with ample generics that is not a closed subgroup of S∞.

Let us first present the space L0(X,µ;Y ) and establish a few basic lemmas on its topology.
Let Y be a Polish space.

5Say, the unit interval together with its Lebesgue measure.
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Definition 8.49. Let Y be a Polish space. Then L0(X,µ;Y ) is the set of Lebesgue-
measurable maps from X to Y up to equality µ-almost everywhere.

We endow L0(X,µ;Y ) with the topology of convergence in measure, which says that
two maps are close in this topology if they are uniformly close on a set of large measure. To
be more precise, fix a compatible metric dY on Y . Then for ε > 0 and f ∈ L0(X,µ;Y ), let

Vε(f) := {g ∈ L0(X,µ;Y ) : µ({x ∈ X : dY (f(x), g(x)) < ε}) > 1− ε}.
The topology generated by the family (Vε(f))ε,f is the topology of convergence in measure.

This topology does not depend on the choice of a compatible metric dY on Y ([M11,
corollary of proposition 6]). Moreover, it is Polish ([M11, proposition 7]) and contractible (see
[K6, proposition 19.7]): assume X = [0, 1] and let y0 ∈ Y be an arbitrary point. Then an
explicit contraction path is given by

L0(X,µ;Y )× [0, 1] → L0(X,µ;Y )

(f, t) 7→ ft : x 7→
{

y0 if x > t,
f(x) otherwise.

The following lemma is an easy consequence of the definition of the topology of convergence
in measure.

Lemma 8.50. Let Y be a Polish space and let U be an open subset of Y . Then for every
ε > 0, the set

VU,ε := {f ∈ L0(X,µ;Y ) : µ({x ∈ X : f(x) ∈ U}) > 1− ε}
is open in L0(X,µ;Y ).

Proof. Let f ∈ VU,ε and let A = {x ∈ X : f(x) ∈ U}. Fix a compatible metric dY on
Y . Since U is open, the set A can be written as the increasing union of the sets An’s, where
An = {x ∈ A : dY (f(x), Y \U) > 1

n
}. By assumption, the set A has measure greater than 1− ε,

so we can find N ∈ N such that µ(AN) > 1 − ε. Now, if δ is a positive real such that δ < 1
N

and δ < µ(AN)− (1− ε), we see that Vδ(f) ⊆ VU,ε, hence VU,ε is open. �

Given a subset B of Y , let

L0(X,µ;B) := {f ∈ L0(X,µ;Y ) : ∀x ∈ X, f(x) ∈ B}.

Lemma 8.51. Let Y be a Polish space, and let B be a Gδ subset of Y . Then the set
L0(X,µ;B) is Gδ in L0(X,µ;Y ).

Proof. WriteB =
⋂
n∈N Un where each Un is open. Then clearly L0(X,µ;B) =

⋂
n∈N L

0(X,µ;Un).
Now, L0(X,µ;Un) =

⋂
k∈N VUn,2−k , so it is Gδ by the previous lemma, so L0(X,µ;B) itself is

Gδ. �

Lemma 8.52. Let Y be a Polish space, and let B be dense subset of Y , then L0(X,µ;B) is
dense in L0(X,µ;Y ).

Proof. Fix a compatible metric dY on Y . Since Y is separable, we can find a countable
subset of B which is still dense in Y : in other words, we may as well assume that B is countable.
Enumerate B as {yn}n∈N, and fix ε > 0 as well as a function f ∈ L0(X,µ;Y ). For every x ∈ X,
let n(x) be the smallest integer n ∈ N such that dY (f(x), yn) < ε. It is easily checked that the
map x 7→ n(x) is measurable, so that the function g : x 7→ yn(x) belongs to L0(X,µ;B). But by
construction, we actually have dY (f(x), g(x)) < ε for all x ∈ X, and in particular g ∈ Vε(f),
which completes the proof. �

What follows is an immediate consequence of the previous two lemmas.

Lemma 8.53. Let Y be a Polish space and let B be a comeager subset of Y . Then
L0(X,µ;B) is a comeager subset of L0(X,µ;Y ).
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Now, if G is a Polish group, L0(X,µ;G) is a connected group (we have seen that it is even
contractible), hence it cannot be a topological subgroup of the totally disconnected group S∞
(except if G is trivial). Together with the following theorem, this yields a family of examples
of connected Polish groups with ample generics.

Theorem 8.54. (with Le Maître) Let G be a Polish group with ample generics. Then the
group L0(X,µ;G) also has ample generics.

Proof. We wish to prove that for every n in N, the diagonal action of L0(X,µ;G) on
L0(X,µ;G)n admits a comeager orbit. Here too, there is a natural identification of L0(X,µ;G)n

with L0(X,µ;Gn).
Let ϕ̄ be an element of Gn whose orbit is comeager and consider the constant function

f̄ : x 7→ ϕ̄ in L0(X,µ;Gn). We show that the orbit of f̄ in L0(X,µ;Gn) is comeager.
First, let us remark that the orbit of f̄ is thus described:

L0(X,µ;G) · f̄ = {ḡ ∈ L0(X,µ;Gn) : ḡ(x) ∈ G · ϕ̄ for µ-almost every x}.
Indeed, if ḡ is in the orbit of f̄ , then ḡ is clearly in the set above. Conversely, assume that
ḡ(x) is in G · ϕ̄ almost everywhere. There is a Borel subset B of X with measure 1 such that
for every x in B, there exists an element hx in G such that ḡ(x) = hx · ϕ̄. We would like to
find those hx in a measurable way. For this, we apply the Jankov-von Neumann uniformization
theorem (see [K4, theorem 18.1]) to the following Borel6 set

S = {(x, hx) ∈ X ×G : [x ∈ B and ḡ(x) = hx · ϕ̄] or x 6∈ B},
which projects to the whole space X. We thus obtain a map h in L0(X,µ;G) whose graph is
contained in S, that is, ḡ = h · f̄ , hence ḡ belongs to orbit of f̄ .

Now the orbit of ϕ̄ is comeager in Gn so, by lemma 8.53, the set L0(X,µ;G · ϕ̄) is comea-
ger in L0(X,µ;Gn). The previous observation thus yields that the orbit of f̄ is comeager in
L0(X,µ;Gn), which completes the proof.

�

As a consequence, we notably obtain that every Polish group with ample generics embeds
in a connected (even contractible) one with ample generics.

Remark 8.55. We have obtained another example of a connected Polish group with ample
generics: the full group of a quasi-measure-preserving hyperfinite equivalence relation (see
[KLM]). It is interesting to note that it is also a subgroup of L0(X,µ;S∞). Malicki’s examples
([M1]) do not seem to be, though.

7. Perspectives

With theorem 8.54 at hand, it is natural to ask whether Malicki’s conditions for G carry over
to the group L0(X,µ;G). However, in this case, the construction of the juxtaposed structure
would not make much sense. Rather, the group L0([0, 1], G) is the automorphism group of a
randomization of the structure M, which is the counterpart of the product structure of M. This
randomization remains exactly ultrahomogeneous if the original is. As in the proof of theorem
8.54, in order to carry properties from the structure over to its randomization, our main tool is
the Jankov-van Neumann theorem. But again, we need some amount of uniformity to apply it.

6Since g is Lebesgue-measurable, it coincides with a Borel map almost everywhere, so we may assume that
g is actually Borel.
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CHAPTER 9

Amenability and convex Ramsey theory

La simplicité réside dans l’alcôve bleue et jaune et mauve et insoupçonnée
de nos rêveries mauves et bleues et jaunes et pourpres et paraboliques

et vice et versa.
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5. Concluding remarks 134

In this chapter, we take up the results from [K1], where we extend a result of Moore
([M12, theorem 7.1]) on the amenability of closed subgroups of S∞ to general Polish groups. A
topological group is said to be amenable if every continuous action of the group on a compact
Hausdorff space admits an invariant probability measure.

Moore’s result is the counterpart of a theorem of Kechris, Pestov and Todorčević ([KPT]) on
extreme amenability. A topological group is said to be extremely amenable if every continuous
action of the group on a compact Hausdorff space admits a fixed point. In the context of
closed subgroups of S∞, seen as automorphism groups of Fraïssé structures, Kechris, Pestov
and Todorčević characterize extreme amenability by a combinatorial property of the associated
Fraïssé classes (in the case where its objects are rigid), namely, the Ramsey property. A class
K of structures is said to have the Ramsey property if for all structures A and B in K, for all
integers k, there is a structure C in K such that for every coloring of the set of copies of A in
C with k colors, there exists a copy of B in C within which all copies of A have the same color
(see figure 9.1).

C

B̃

Figure 9.1. The Ramsey property

Thus, extreme amenability, which provides fixed points, corresponds to colorings having
a "fixed", meaning monochromatic, set. Amenability, on the other side, provides invariant
measures. Since a measure is not far from being a barycenter of point masses, the natural mirror
image of the Ramsey property in that setting should be for a coloring to have a "monochromatic

1Vice et versa

121
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convex combination of sets". Indeed, Tsankov (in an unpublished note) and Moore introduced
a convex Ramsey property and proved that a Fraïssé class has the convex Ramsey property if
and only if the automorphism group of its Fraïssé limit is amenable.

Besides, the Kechris-Pestov-Todorčević result was extended to general Polish groups by
Melleray and Tsankov in [MT1]. They use the framework of continuous logic (see [BBHU])
via the observation that every Polish group is the automorphism group of an approximately
homogeneous metric structure ([M5, theorem 6]), that is of a metric Fraïssé limit (in the sense
of [MT1]; these were built by Ben Yaacov in [B5]). They define an approximate Ramsey
property for classes of metric structures and then show that a metric Fraïssé class has the
approximate Ramsey property if and only if the automorphism group of its Fraïssé limit is
extremely amenable.

Here, we "close the diagram" by giving a metric version of Moore’s result. We replace
the classical notion of a coloring with the metric one (from [MT1]) to define a metric convex
Ramsey property, and we prove the exact analogue of Moore’s theorem (theorem 9.22):

Theorem 9.1. Let K be a metric Fraïssé class, K its Fraïssé limit and G the automorphism
group of K. Then G is amenable if and only if K satisfies the metric convex Ramsey property.

From this result, we deduce some interesting structural consequences about amenability.
First, we improve the previously known characterization of amenability mentioned below.

If G is a topological group, all minimal continuous actions of G on compact Hausdorff
spaces can be captured by a single one: the action of G by translation on its greatest ambit
S(G) (see [P3]). In particular, the topological group G is amenable if and only if the action
of G on S(G) admits an invariant Borel probability measure. The greatest ambit of G is
none other than the Samuel compactification, which is characterized by the property that every
right uniformly continuous bounded function on G extends to a continuous function on S(G)
and that, conversely, every continuous function on S(G) is the extension of a right uniformly
continuous bounded function on G. Thus, amenability can be characterized as follows.

Theorem 9.2. (see [P3, theorem 3.5.12]) Let G be a topological group. Then the following
are equivalent.

(1) G is amenable.
(2) There is an invariant mean2 on the space RUCB(G) of right uniformly continuous

bounded functions on G.
(3) For every positive integer N and for all f1, ..., fN in RUCB(G), there exists a mean Λ

on RUCB(G) that is invariant on the orbits of f1, ..., fN , i.e. for every j 6 N and for
every g in G, one has Λ(g−1 · fj) = Λ(fj).

(4) For every ε > 0, every finite subset F of G, every positive integer N and for all f1, ..., fN
in RUCB(G), there is a finitely supported probability measure µ on G such that for
every j 6 N and every h ∈ F , one has∣∣∣∣

∫

G

fjdµ−
∫

G

fjd(h · µ)

∣∣∣∣ < ε.

The implications (4)⇒ (3)⇒ (2) follow from the weak*-compactness of the space of means
on RUCB(G) (which is a consequence of the Banach-Alaoglu theorem), while the implication
(2) ⇒ (4) follows from an application of the Riesz representation theorem to the Samuel
compactification of G and the fact that every Borel probability measure on a compact space
can be approximated by finitely supported probability measures. Condition (4) is known as
Day’s weak*-asymptotic invariance condition.

In the course of the proof of theorem 9.1, we provide several reformulations of the metric
convex Ramsey property, among which the following (theorem 9.24).

Theorem 9.3. Let G be a Polish group. Then the following are equivalent.
2Positive linear form of norm 1.
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(1) G is amenable.
(2) For every ε > 0, every finite subset F of G, every left uniformly continuous map

f : G→ [0, 1], there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn
such that for all h, h′ ∈ F , one has∣∣∣∣∣

n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G, every f ∈ RUCB(G), there is a finitely
supported probability measure µ on G such that for every h in F , one has∣∣∣∣

∫

G

fdµ−
∫

G

fd(h · µ)

∣∣∣∣ < ε.

It constitutes a strengthening of Day’s weak*-asymptotic invariance condition for Polish
groups: to check that a Polish group is amenable, it suffices to verify Day’s condition for a single
function. This result was motivated by a similar result obtained by Moore for discrete groups
([M12, theorem 2.1]). Besides, the same is true for extreme amenability with multiplicative
means.

It is interesting that to make this reduction from multiple functions to only one function,
we need to express the Polish group as the automorphism group of a metric Fraïssé structure
(as per [M5]) and then combine multiple colorings into one coloring, whereas it is unclear how
to directly combine finitely many right uniformly continuous functions on the group together.

Applying the Riesz representation theorem to the Samuel compactification, as in theorem
9.2, we obtain the following as a corollary (corollary 9.25).

Corollary 9.4. Let G be a Polish group. Then the following are equivalent.
(1) G is amenable.
(2) For every right uniformly continuous bounded function f on G, there exists a mean on

RUCB(G) such that for all g ∈ G, one has Λ(g · f) = Λ(f).

Another advantage of theorems 9.1 and 9.3 is to express amenability in a finitary way, which
allows us to compute its Borel complexity. In [P3], it was shown that extreme amenability is
equivalent to a Ramsey-theoretic property called finite oscillation property, a slight reformula-
tion of which turns out to be a Gδ condition, as observed by Melleray and Tsankov in [MT2].
We prove that amenability also is a Gδ condition (corollary 9.27).

From this, a Baire category argument leads to the following sufficient condition for a Polish
group to be amenable (corollary 9.29).

Corollary 9.5. Let G be a Polish group such that for every positive n ∈ N, the set
Fn = {(g1, ..., gn) ∈ Gn : 〈g1, ..., gn〉 is amenable (as a subgroup of G)}

is dense in Gn. Then G is amenable.

This is a slight strengthening of the fact that a Polish group whose finitely generated sub-
groups are amenable is itself amenable (see [G5, theorem 1.2.7]), and also admits a direct proof
(see remark 9.30).

1. The metric convex Ramsey property

We use the notations of [MT1].

Definition 9.6. Let L be a relational continuous language, A and B two finite L-structures
and M an arbitrary L-structure.

• We denote by AM the set of all embeddings of A into M. We endow AM with the
metric ρA defined by

ρA(α, α′) = max
a∈A

d(α(a), α′(a)).
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• A coloring of AM is a 1-Lipschitz map from (AM, ρA) to the interval [0, 1].
• We denote by

〈
AM

〉
the set of all finitely supported probability measures on AM. We

will identify embeddings with their associated Dirac measures.
• If κ : AM→ [0, 1] is a coloring, we extend κ to

〈
AM

〉
linearly: if ν in

〈
AM

〉
is of the

form ν =
n∑

i=1

λiδαi
, we set

κ(ν) =
n∑

i=1

λiκ(αi).

• Moreover, we extend composition of embeddings to finitely supported measures bi-

linearly. Namely, if ν in
〈
AB
〉
and ν ′ in

〈
BM

〉
are of the form ν =

n∑

i=1

λiδαi
and

ν ′ =
m∑

j=1

λ′jδα′j , we define

ν ′ ◦ ν =
m∑

j=1

n∑

i=1

λ′jλiδα′j◦αi
.

• If ν is a measure in 〈BM〉, we denote by
〈
AM(ν)

〉
the set of all finitely supported

measures which factor through ν and by AM(ν) the set of those which factor through

ν via an embedding. More precisely, if ν ∈
〈
BM

〉
is of the form

n∑

i=1

λiδβi , we define

AM(ν) =
{
ν ◦ δα : α ∈ AB

}

and 〈
AM(ν)

〉
=
{
ν ◦ ν ′ : ν ′ ∈

〈
AB
〉}
.

Throughout the chapter, K will be a metric Fraïssé class in a relational continuous language
and K will be its Fraïssé limit.

Remark 9.7. We make the assumption that the language is relational to simplify the proofs,
but we could also allow functions in the language. In that case, we just need to replace "finite"
with "finitely generated" and the proofs are the same.

Definition 9.8. The class K is said to have the metric convex Ramsey property if
for every ε > 0, for all structures A and B in K, there exists a structure C in K such that
for every coloring κ : AC → [0, 1], there is ν in 〈BC〉 such that for all η, η′ ∈ AC(ν), one has
|κ(η)− κ(η′)| < ε.

Intuition 9.9. In the classical setting, the Ramsey property states that given two structures
A and B, we can find a bigger structure C such that whenever we color the copies of A in C,
we can find a copy of B in C wherein every copy of A has the same color. Here, the metric
convex Ramsey property basically says that we can find a convex combination of copies of B
in C wherein every compatible convex combination of copies of A has almost the same color
(see figure 9.2).

Remark 9.10. One can replace the assumption η, η′ ∈ AC(ν) with the seemingly stronger
one η, η′ ∈ 〈AC(ν)〉 in the above definition, as is done in [M12]. Indeed, the property is
preserved under convex combinations.

The following proposition states that the metric convex Ramsey property allows us to
stabilize any finite number of colorings at once.

Proposition 9.11. The following are equivalent.
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(
B̃1,

1
3

) (
B̃2,

2
3

) C

Figure 9.2. The orange disks are barycenters of the colors of two corresponding
copies of A in B̃1 and B̃2 with coefficients 1/3 and 2/3. The metric convex
Ramsey property says that all these disks have almost the same color.

(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, for all positive integers N ∈ N and all structures A and B in K,

there exists a structure C in K such that for all colorings κ1, ..., κN : AC → [0, 1],
there is µ in 〈BC〉 such that for all j in {1, ..., N} and all η, η′ in AC(µ), one has
|κj(η)− κj(η′)| < ε.

Remark. Condition (2) above is equivalent to the metric convex Ramsey property for
colorings into [0, 1]N , where [0, 1]N is endowed with the supremum metric. It follows that the
metric convex Ramsey property is equivalent to the same property for colorings taking values
in any convex compact metric space.

Proof. The second condition clearly implies the first. For simplicity, we prove the other
implication for N = 2; the same argument carries over for arbitrary N . Let A and B structures
in K and ε > 0. We apply the metric convex Ramsey property twice consecutively.

We find a structure C1 in K witnessing the metric convex Ramsey property for A, B and
ε, that is, if κ : AC1 → [0, 1] is a coloring, then there exists ν ∈

〈
BC1

〉
such that for all α, α′

in AB, we have |κ(ν ◦ δα) − κ(ν ◦ δα′)| < ε. Then we find a structure C in K witnessing the
metric convex Ramsey property for A, C1 and ε, that is, if κ : AC → [0, 1] is a coloring, then
there exists ν ∈

〈
C1C

〉
such that for all α, α′ in AC1, we have |κ(ν ◦ δα)− κ(ν ◦ δα′)| < ε.

We now show that C has the desired property. To this aim, let κ1, κ2 : AC→ [0, 1] be two
colorings. By definition of the structure of C, there exists ν ∈

〈
C1C

〉
such that for all α, α′ in

AC1, we have |κ1(ν ◦ δα)− κ1(ν ◦ δα′)| < ε.
We then lift the second coloring κ2 to κ̃2 : AC1 → [0, 1] by putting κ̃2(α) = κ2(ν ◦ δα). This

process corresponds to the classical going color-blind argument: here, instead of forgetting one
color, we forget all embeddings that are not channelled through C1 via ν. The map κ̃2 we
obtain is again a coloring. Therefore, we may apply our assumption on C1 to κ̃2: there exists
ν1 in

〈
BC1

〉
such that for all α, α′ in AC1, we have |κ̃2(ν1 ◦ δα)− κ̃2(ν1 ◦ δα′)| < ε.

Then µ = ν ◦ ν1 is as desired. Indeed, let η, η′ ∈ AC(µ). There exist α, α′ ∈ AB such that
η = µ ◦ δα and η′ = µ ◦ δα′ . Then

|κ2(η)− κ2(η′)| = |κ2(µ ◦ δα)− κ2(µ ◦ δα′)|
= |κ2(ν ◦ ν1 ◦ δα)− κ2(ν ◦ ν1 ◦ δα′)|
= |κ̃2(ν1 ◦ δα)− κ̃2(ν1 ◦ δα′)|
< ε.

Moreover, whenever η, η′ ∈ AC(µ), they are in AC(ν) too, hence the assumption on ν yields
that |κ1(η)− κ1(η′)| < ε. �
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Remark 9.12. For the sake of simplicity, we state the results for only one coloring at a
time; the previous proposition will imply that we can do the same with any finite number of
colorings.

We now give an infinitary reformulation of the metric convex Ramsey property, which is
what will be used in the proof of theorem 9.22 in showing that amenability implies the metric
convex Ramsey property.

Proposition 9.13. The following are equivalent.
(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, for all structures A and B in K and all colorings κ : AK → [0, 1],

there exists ν in 〈BK〉 such that for all η, η′ in AK(ν), one has |κ(η)− κ(η′)| < ε.

Proof. (1) ⇒ (2)] Fix ε > 0, A and B two structures in K and let C ∈ K witness the
metric convex Ramsey property for A, B and ε. We may assume that C is a substructure of
K. Now every coloring of AK restricts to a coloring of AC so, if ν is the measure given by C
for a coloring κ, then ν satisfies the desired property.

(2)⇒ (1)] We use a standard compactness argument. Suppose that K does not satisfy the
metric convex Ramsey property. We can then find structures A, B in K and ε > 0 such that
for every C ∈ K, there exists a bad coloring κC of AC, that is, for all ν ∈

〈
BC
〉
, the oscillation

of κC on AC(ν) is greater than ε.
We fix an ultrafilter U on the collection of finite subsets of K such that for every finite

D ⊆ K, the set {E ⊆ K finite : D ⊆ E} belongs to U . We consider the map κ = lim
U
κC on

AK defined by

κ(α) = t⇔ ∀r > 0, {C ⊆ K finite : κC(α) ∈ [t− r, t+ r]} ∈ U .
Note that the assumption on U implies that for all α ∈ AK, the set {C ⊆ K finite : α(A) ⊆ C}
is in U so κC(α) is defined U -everywhere and the above definition makes sense. Besides, since
all the κC are 1-Lipschitz, κ is too and is thus a coloring of AK. We prove that κ contradicts
property (2).

Let ν ∈
〈
BK
〉
and write ν =

n∑

i=1

λiδβi , with the βi’s in BK. Then, for all i ∈ {1, ..., n}, the

sets {C ⊆ K finite : βi(B) ⊆ C} belong to U and so does their intersection Uν . Furthermore,
the set AK(ν), which is the same as AC(ν) for any C in Uν , is finite — note that this is not
true of

〈
AK(ν)

〉
(so choosing the definition of remark 9.10 for the Ramsey property would

require an additional appeal to the compactness of
〈
AK(ν)

〉
). For every C in Uν , there exist

η, η′ in AC(ν) such that |κC(η) − κC(η′)| > ε. So there exist η, η′ in AK(ν) such that the
set {C ⊆ K finite : |κC(η) − κC(η′)| > ε} belongs to U . By definition of κ, this implies that
|κ(η) − κ(η′)| > ε, which shows that (2) fails for ν. As ν was arbitrary, this completes the
proof. �

2. The metric convex Ramsey property for the automorphism group

Let G be the automorphism group of K.
In this section, we reformulate the metric convex Ramsey property in terms of properties

of G.

Definition 9.14. Let A be a finite substructure of K. We define a pseudometric dA on G
by

dA(g, h) = max
a∈A

d(g(a), h(a)).

We will denote by (G, dA) the induced metric quotient space.

Remark 9.15. The pseudometrics dA, for finite substructuresA ofK, generate the topology
on G, and hence also the left uniformity.
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The pseudometric dA is the counterpart of the metric ρA on AK for the group side. More
specifically, as pointed out in [MT1, lemma 3.8], the restriction map ΦA : (G, dA)→ (AK, ρA)
defined by g 7→ g�A is distance-preserving and its image ΦA(G) is dense in AK. As a conse-
quence, every 1-Lipschitz map f : (G, dA) → [0, 1] extends uniquely, via ΦA, to a coloring κf
of AK, while every coloring κ of AK restricts to a 1-Lipschitz map fκ : (G, dA)→ [0, 1].

We will need the following lemma to approximate uniformly continuous functions by Lips-
chitz ones.

Lemma 9.16. Let (X, E) be a uniform space whose uniformity is generated by a directed
family (dp)p∈P of pseudometrics. Let f : (X, E) → [0, 1] be a bounded uniformly continuous
map. Then for every positive ε, there exists p ∈ P and a Lipschitz map f ′ : (X, dp)→ R such
that for all x in X, we have |f(x)− f ′(x)| < ε.

Proof. Since f is uniformly continuous, there exists an entourage V in the uniformity E
on X such that for all x, y in X, if (x, y) ∈ V , then |f(x) − f(y)| < ε. Moreover, as the
pseudometrics (dp)p∈P generate E , there exist p in P and r > 0 such that for all x, y in X, if
dp(x, y) < r, then (x, y) ∈ V .

Now, for a positive integer k, we can define a map fk : (X, dp)→ R by

fk(x) = inf
y∈X

f(y) + kdp(x, y).

It is k-Lipschitz as the infimum of k-Lipschitz functions. Note also that fk is smaller than f .

Take k large enough, so that
1

k
+
ε

k
< r and let x be any element of X. By definition of fk,

there exists an element y of X such that f(y) + kdp(x, y) 6 fk(x) + ε. Since both f and fk are

bounded by 1, this implies that for small enough ε, we have dp(x, y) 6
1

k
+
ε

k
< r. Thus, the

left uniform continuity of f gives that |f(x)− f(y)| < ε. But then, we have

|f(x)− fk(x)| = f(x)− fk(x) 6 f(x)− f(y)− kdp(x, y) + ε

6 f(x)− f(y) + ε

< 2ε.

Thus, the map fk is the desired Lipschitz approximation of f . �

Proposition 9.17. The following are equivalent.
(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, every finite substructure A of K, every finite subset F of G and every

1-Lipschitz map f : (G, dA)→ [0, 1], there exist elements g1, ..., gn of G and barycentric
coefficients λ1, ..., λn such that for all h, h′ in F , one has

∣∣∣∣∣
n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G, every left uniformly continuous map
f : G→ [0, 1], there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn
such that for all h, h′ in F , one has

∣∣∣∣∣
n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < ε.

Remark 9.18. The finite subset F of G in condition (2) is the counterpart of the structure
B in the Ramsey property: by approximate ultrahomogeneity of the limit K, it corresponds,
up to a certain error, to the set of all embeddings of A into B.
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Proof. (1) ⇒ (2)] We set B = A ∪
⋃

h∈F

h(A). Let κf be the unique coloring of AK that

extends f . We then apply proposition 9.13 to A, B, ε and κf : there is ν in
〈
BK
〉
such that for

all α, α′ in AB(ν), we have |κf (ν ◦ δα)− κf (ν ◦ δα′)| <
ε

3
.

Write ν =
n∑

i=1

λiδβi , with the βi’s in BK. Since the structure K is a Fraïssé limit, it is

approximately ultrahomogeneous. This implies that for each i in {1, ..., n}, there exists an
element gi of its automorphism group G such that ρB(gi, βi) <

ε

3
. It is straightforward to

check, using the triangle inequality and the fact that the coloring κf is 1-Lipschitz, that these
gi’s and λi’s have the desired property.

(2) ⇒ (3)] Let f : (G, EL) → [0, 1] be a left uniformly continuous map and let ε > 0. We
apply lemma 9.16 to f , ε and the family (dA) of pseudometrics which generate EL (see remark
9.15). We get a finite substructure A of K and a k-Lipschitz map fk : (G, dA) → [0, 1] such
that for all x in G, we have |f(x)− fk(x)| < ε.

We then apply (2) to
fk
k
, which is 1-Lipschitz, and to

ε

k
: for every finite subset F of G, there

exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for all h, h′ ∈ F ,
we have ∣∣∣∣∣

n∑

i=1

λi
1

k
fk(gih)−

n∑

i=1

λi
1

k
fk(gih

′)

∣∣∣∣∣ <
ε

k

hence ∣∣∣∣∣
n∑

i=1

λifk(gih)−
n∑

i=1

λifk(gih
′)

∣∣∣∣∣ < ε.

Then, for all h, h′ ∈ F , the triangle inequality gives∣∣∣∣∣
n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < 3ε.

(3) ⇒ (1)] Let A and B be two structures in K, let ε > 0 and let κ : AK → [0, 1] be a
coloring. Since K is approximately ultrahomogeneous, for every α in AB, we may choose hα in
G such that ρA(hα, α) < ε. Let F be the (finite) set of all such hα’s.

Now consider the restriction fκ of the coloring κ to (G, dA). It is left uniformly continuous
from G to [0, 1]. We apply condition (3) to fκ, F and ε: there exist elements g1, ..., gn of G and
barycentric coefficients λ1, ..., λn such that for all hα, hα′ in F , one has∣∣∣∣∣

n∑

i=1

λifκ(gihα)−
n∑

i=1

λifκ(gihα′)

∣∣∣∣∣ < ε.

Set ν =
n∑

i=1

λiδgi ∈
〈
BK
〉
. Using the triangle inequality and the Lipschitzness of κ, it is now

straightforward to check that ν witnesses the metric convex Ramsey property for A, B and
3ε. �

Notice that condition (3) does not depend on the Fraïssé class but only on its automorphism
group.

By virtue of remark 9.12, the metric convex Ramsey property is equivalent to condition (3)
for any finite number of colorings at once. It is that condition which will imply amenability in
theorem 9.22.

Moreover, if G is endowed with a compatible left-invariant metric, Lipschitz functions are
uniformly dense in left uniformly continuous bounded ones (by lemma 9.16), so we can replace
left uniformly continuous maps by 1-Lipschitz maps in condition (3): we obtain the following.
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Corollary 9.19. Let d be any compatible left-invariant metric on G. Then the following
are equivalent.

• The class K has the metric convex Ramsey property.
• For every ε > 0, every finite subset F of G, every 1-Lipschitz map f : (G, d) → [0, 1],
there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for
all h, h′ in F , one has

∣∣∣∣∣
n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < ε.

3. A criterion for amenability

Given a compact space X, we denote by P (X) the set of all Borel probability measures on
X. It is a subset of the dual space of continuous maps on X. Indeed, if µ is in P (X) and f

is a continuous function on X, we put µ(f) =

∫

X

fdµ. Moreover, if we endow P (X) with the

induced weak* topology, it is compact.
If G is a group that acts on X, then one can define an action of G on P (X) by

(g · µ)(f) =

∫

X

f(g−1 · x)dµ(x).

Definition 9.20. A topological group G is said to be amenable if every continuous action
of G on a compact Hausdorff space X admits a measure in P (X) which is invariant under the
action of G.

Although amenability is not preserved under subgroups (not even closed subgroups), it is
preserved when taking dense subgroups.

Proposition 9.21. A subgroup of a topological group is amenable (with respect to the
induced topology) if and only if its closure is.

Proof. LetH be a dense subgroup ofG. It is straightforward to show that every continuous
action of H on a compact Hausdorff space extends to a continuous action of G. Thus, if G is
amenable, then so is H. �

We are now ready to prove the main theorem.

Theorem 9.22. Let K be a metric Fraïssé class, K its Fraïssé limit andG the automorphism
group of K. Then the following are equivalent.

(1) The topological group G is amenable.
(2) The class K has the metric convex Ramsey property.

Proof. (1) ⇒ (2)] Suppose G is amenable and let A, B be structures in the class K,
ε > 0 and κ0 : AK → [0, 1] a coloring. We show that there exists ν ∈

〈
BK
〉
such that for all

α, α′ ∈ AB, we have |κ0(ν ◦ δα)− κ0(ν ◦ δα′)| < ε, which will imply the metric convex Ramsey
property (by proposition 9.13). We adapt Moore’s proof ([M12, (6)⇒ (1) in theorem 7.1]) to
the metric setting.

The group G acts on the compact Hausdorff space [0, 1]
AK by g ·κ(α) = κ(g−1 ◦α). Denote

by Y the orbit of the coloring κ0 under this action and by X its closure, which is compact
Hausdorff. Note that all the functions in X are colorings as well. We consider the restriction
of the action to X: the action is continuous. Thus, since G is amenable, there is an invariant
probability measure µ on X.

The map α 7→
∫

X

κ(α)dµ(κ) is constant on AK. Indeed, the invariance of µ implies that it

is constant on every orbit of the action of G on AK. But, by the approximate ultrahomogeneity
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of K, every such orbit is dense in AK, so our map is constant on the whole of AK because it
is continuous (even 1-Lipschitz). Let r denote this constant value.

Besides, Y being dense in X, the collection of finitely supported probability measures on
Y is dense in P (X). In particular, there exist barycentric coefficients λ1, ..., λn and elements

g1, ..., gn of G such that for all α in AB, we have

∣∣∣∣∣
n∑

i=1

λiκ0(g−1
i ◦ α)− r

∣∣∣∣∣ < ε.

Finally, we may assume that B is a substructure of K, and set βi = g−1
i � B, for i in

{1, ..., n}, and ν =
∑n

i=1 λiδβi ∈
〈
BK
〉
. Then ν as is desired. Indeed, if α, α′ are in AB, and

thus in AK, we have

|κ0(ν ◦ δα)− κ0(ν ◦ δα′)| =

∣∣∣∣∣
n∑

i=1

λiκ0(βi ◦ α)−
n∑

i=1

λiκ0(βi ◦ α′)

∣∣∣∣∣

6

∣∣∣∣∣
n∑

i=1

λiκ0(βi ◦ α)− r

∣∣∣∣∣+

∣∣∣∣∣r −
n∑

i=1

λiκ0(βi ◦ α′)

∣∣∣∣∣

=

∣∣∣∣∣
n∑

i=1

λiκ0(g−1
i ◦ α)− r

∣∣∣∣∣+

∣∣∣∣∣r −
n∑

i=1

λiκ0(g−1
i ◦ α′)

∣∣∣∣∣
< 2ε.

(2) ⇒ (1)] Conversely, suppose that K has the metric convex Ramsey property and let
G act continuously on a compact Hausdorff space X. We show that X admits an invariant
probability measure. Since P (X) is compact, it suffices to show that if f1, ..., fN : X → [0, 1]
are uniformly continuous with respect to the unique (see [P3, exercise 1.1.3]) uniformity on X,
ε > 0 and F is a finite subset of G, there exists µ in P (X) such that for all j in {1, ..., N} and
all h in F , |h · µ(fj)− µ(fj)| < ε.

Fix x inX. For j in {1, ..., N}, we lift fj to a map f̃j : G→ [0, 1] by setting f̃j(g) = fj(g
−1·x).

Since the action of G on X is continuous and X is compact, for all x in X, the map g 7→ g−1 ·x
is left uniformly continuous (see [P3, lemma 2.1.5]). It follows that the map f̃j is left uniformly
continuous.

We then apply proposition 9.17 to F ∪{1}, ε and f̃1, ..., f̃N to obtain barycentric coefficients
λ1, ..., λn and elements g1, ..., gn of G such that for all j in {1, ..., N}, for all h in F (and h′ = 1),
we have ∣∣∣∣∣

n∑

i=1

λif̃j(gih)−
n∑

i=1

λif̃j(gi)

∣∣∣∣∣ < ε.

Then µ =
∑n

i=1 λiδg−1
i ·x

is as desired. Indeed, let j ∈ {1, ..., N} and h ∈ F . We have

µ(fj) =
n∑

i=1

λifj(g
−1
i · x) =

n∑

i=1

λif̃j(gi)

and

h · µ(fj) =
n∑

i=1

λi(h · fj)(g−1
i · x)

=
n∑

i=1

λifj(h
−1g−1

i · x)

=
n∑

i=1

λif̃j(gih)
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so finally

|h · µ(fj)− µ(fj)| =

∣∣∣∣∣
n∑

i=1

λif̃j(gih)−
n∑

i=1

λif̃j(gi)

∣∣∣∣∣ < ε,

which completes the proof. �

Example 9.23. Let K be the class of finite sets with no additional structure. The Fraïssé
limit of K is the countable set N. It is well known that its automorphism group, S∞, is
amenable, as the union of the finite (hence amenable) symmetric groups is dense in S∞ (see
e.g. [BdlHV, proposition G.2.2.(iii)]), but not extremely amenable ([P4, theorem 6.5]). This
class is one of the only examples for which the convex Ramsey property can be shown directly.

Let A and B be two finite structures. We prove that the structure C = B itself witnesses
the convex Ramsey property for A and B (with ε = 0). Indeed, let κ : AB → [0, 1] be a
coloring. We show that if α is an embedding of A into B, then the convex combination

1

Card(B)!

∑

β∈Aut(B)

κ(β ◦ α)

does not depend on α. This proves the convex Ramsey property, with all embeddings of B in

itself and coefficients
1

Card(B)!
.

To do this, we use the very strong property of finite sets that B is ultrahomogeneous with
respect to copies of A inside B, that is, every embedding between two copies of A in B extends
to an automorphism (here, a bijection) of B. Thus, for every α in AB, we can rewrite the above
convex combination as follows:

1

Card(B)!

∑

β∈Aut(B)

κ(β ◦ α) =
1

Card(B)!

∑

Ã⊆B
Ã∼=A

∑

α′∈AB
α′(A)=Ã

κ(α′),

which is independent of α.

4. Structural consequences

As a consequence of theorem 9.22, of proposition 9.17 and of the fact that every Polish group
is the automorphism group of some metric Fraïssé structure ([M5, theorem 6]), we obtain the
following intrinsic characterization of amenability (and its reformulation in terms of finitely
supported measures).

Theorem 9.24. Let G be a Polish group. Then the following are equivalent.
(1) G is amenable.
(2) For every ε > 0, every finite subset F of G, every left uniformly continuous map

f : G→ [0, 1], there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn
such that for all h, h′ ∈ F , one has∣∣∣∣∣

n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G, every f ∈ RUCB(G), there is a finitely
supported probability measure µ on G such that for every h in F , one has

|µ(f)− (h · µ)(f)| < ε.

The equivalence of (2) and (3) follows from the fact that inversion exchanges left and right
uniformly continuous functions.

We recognize Day’s weak*-asymptotic invariance condition with only one function from
RUCB(G) needed to check the amenability of G.

Corollary 9.25. Let G be a Polish group. Then the following are equivalent.
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(1) G is amenable.
(2) For every right uniformly continuous bounded function on G, there exists a mean on

RUCB(G) such that for all g ∈ G, one has Λ(g · f) = Λ(f).

Proof. (1) ⇒ (2)] If G is amenable, then the action of G on its Samuel compactification
S(G) admits an invariant Borel probability measure µ. The integral against µ gives rise to an
invariant mean on the space of all continuous functions on S(G). But continuous functions on
the Samuel compactification of G are exactly right uniformly continuous bounded ones, hence
condition (2) is satisfied.

(2) ⇒ (1)] Since RUCB(G) is exactly the space of all continuous functions on the Samuel
compactification S(G), we can apply the Riesz representation theorem: for each f in RUCB(G),
there exists a Borel probability measure on S(G) such that for all g in G, we have µ(g·f) = µ(f).

But since G is dense in S(G), every Borel probability measure on S(G) can be approximated
by finitely supported measures on G. Thus, for every ε > 0, every finite subset F of G, every
f ∈ RUCB(G), there is a finitely supported probability measure µ on G such that for every h
in F , one has

|µ(f)− (h · µ)(f)| < ε.

Theorem 9.24 then yields that G is amenable. �

Similarly, corollary 9.19 gives the Lipschitz counterpart of theorem 9.24.

Theorem 9.26. Let G be a Polish group and d a left-invariant metric on G which induces
the topology. Then the following are equivalent.

(1) The topological group G is amenable.
(2) For every ε > 0, every finite subset F of G, every 1-Lipschitz map f : (G, d) → [0, 1],

there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for
all h, h′ ∈ F , one has ∣∣∣∣∣

n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < ε.

It follows that amenability is a Gδ condition in the following sense (see [MT2, theorem
3.1]).

Corollary 9.27. Let Γ be a countable group and G a Polish group. Then the set of
homomorphisms from Γ to G whose image is an amenable subgroup of G is Gδ in the space of
representations of Γ in G, endowed with the topology of pointwise convergence inherited from
GΓ.

Proof. Let π be a homomorphism from Γ to G and let d be a compatible left-invariant
metric on G. By proposition 9.21, the image π(Γ) is amenable if and only if such is its closure,
and its closure is Polish (as a closed subset of a Polish space). Then, by virtue of theorem 9.26,
π(Γ) is amenable if and only if for every ε > 0, every finite subset F of π(Γ), every 1-Lipschitz
function f : (π(Γ), d)→ [0, 1], there exist elements g1, ..., gn of π(Γ) and barycentric coefficients
λ1, ..., λn such that for all h, h′ in F , one has∣∣∣∣∣

n∑

i=1

λif(gih)−
n∑

i=1

λif(gih
′)

∣∣∣∣∣ < ε.

Using the same compactness argument as in proposition 9.13, one can show that the condition
is equivalent to the following.

∀ε > 0, ∀F ⊆ π(Γ) finite ,∃K ⊆ π(Γ) finite ,∀f : (KF, d)→ [0, 1] 1-Lipschitz,

∃k1, ..., kn ∈ K, ∃λ1, ..., λn,∀h, h′ ∈ F,

∣∣∣∣∣
n∑

i=1

λif(kih)−
n∑

i=1

λif(kih
′)

∣∣∣∣∣ < ε.
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It is easily seen that this is again equivalent to the following.

∀ε > 0,∀F ⊆ Γ finite,∃K ⊆ Γ finite,

(∗)





∀f : KF → [0, 1] such that ∀γ, γ′ ∈ KF, |f(γ)− f(γ′)| 6 d(π(γ), π(γ′)),

∃k1, ..., kn ∈ K, ∃λ1, ..., λn,∀h, h′ ∈ F,

∣∣∣∣∣
n∑

i=1

λif(kih)−
n∑

i=1

λif(kih
′)

∣∣∣∣∣ < ε.

We now prove that, if ε, F and K are fixed, the set of representations π satisfying condi-
tion (∗) above is open, which will imply that the condition is indeed Gδ. We prove that its
complement is closed. To that aim, take a sequence (πk) of representations that do not satisfy
condition (∗) and assume that (πk) converges to some representation π. Let fk : KF → [0, 1]
witness that πk is in the complement. Since KF is finite, maps from KF to [0, 1] form a com-
pact set so we may assume that (fk) converges to some f . Since being 1-Lipschitz is a closed
condition, f also satisfies that for all γ, γ′ in KF , |f(γ)− f(γ′)| 6 d(π(γ), π(γ′)).

By the choice of fk, for all k1, ..., kn in K and all λ1, ..., λn, there exist hk, h′k in F such that
∣∣∣∣∣
n∑

i=1

λifk(kihk)−
n∑

i=1

λifk(kih
′
k)

∣∣∣∣∣ > ε.

Since F is finite, we may again assume that there are h and h′ in F such that for all k, we have
hk = h and h′k = h′. We then take the limit of the above inequality to get that

∣∣∣∣∣
n∑

i=1

λif(kih)−
n∑

i=1

λif(kih
′)

∣∣∣∣∣ > ε,

which implies that π does not satisfy condition (∗) either, and thus completes the proof. �

Remark 9.28. The same argument works if, instead of condition (2) of theorem 9.26, we use
a version of Day’s weak*-asymptotic invariance condition with Lipschitz maps. Thus, corollary
9.27 holds more generally for all topological groups.

This yields the following criterion for amenability, which can however be obtained without
the use of Ramsey theory.

Corollary 9.29. Let G be a Polish group such that for every positive n in N, the set

Fn = {(g1, ..., gn) ∈ Gn : 〈g1, ..., gn〉 is amenable}
is dense in Gn. Then G is amenable.

Proof. We use a Baire category argument. By virtue of the above corollary applied to the
free group Fn on n generators (identifying Hom(Fn, G) with Gn), for all n, the set Fn is dense
Gδ in Gn. By the Baire category theorem, the set

F = {(gk) ∈ GN : ∀n, (g1, ..., gn) ∈ Fn}
is dense and Gδ too. Besides, the set of sequences which are dense in G is also dense and Gδ.
Then the Baire category theorem gives a sequence (gk) in their intersection. Thus, the group
generated by the gk’s is dense and amenable, hence so is G. �

Note that since compact Hausdorff groups are amenable, it follows in particular that a group
in which the tuples that generate a compact subgroup are dense is amenable.

Remark 9.30. The criterion of corollary 9.29 can also be proven directly using the following
compactness argument. Let G act continuously on a compact Hausdorff space X. Since the
space P (X) is compact, every element of G acts uniformly continuously on P (X). Let F be a
finite subset of G and let V be an entourage in the uniformity on P (X). Then there exists a
positive ε such that for every h in F and every µ in P (X), for all g in G, if d(g, h) < ε, then
we have that (g · µ, h · µ) ∈ V .
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Now, if F = {h1, ..., hn}, we approximate (h1, ..., hn) by some tuple (f1, ..., fn) in Fn with
d(fi, hi) < ε. Since the group generated by the fi’s is amenable, there exists a measure µF,V in
P (X) which is invariant under the action of every fi. It follows that for every hi in F , the pair
(hi · µ, µ) = (hi · µ, fi · µ) belongs to V . Finally, since P (X) is compact, the net {µF,V } admits
a limit point, which is invariant under the action of G.

The same argument works with extreme amenability as well and it allows to slightly simplify
the arguments of [MT2]: to show that the groups Iso(U), U(H) and Aut(X,µ) are extremely
amenable, Melleray and Tsankov use their theorem 7.1 along with the facts that extreme
amenability is a Gδ property and that Polish groups are generically ℵ0-generated. This is
not necessary, as the core of their proof is basically the above criterion: in each case, they prove
that the set of tuples which generate a subgroup that is contained in an extremely amenable
group (some L0(U(m)), as it happens) is dense.

5. Concluding remarks

One would expect the characterization of theorem 9.22 to yield new examples of amenable
groups or at least simpler proofs of the amenability of known groups. However, proving the
convex Ramsey property for a concrete Fraïssé class is quite technical and difficult.

Then, maybe our characterization can be used the other way around, that is, to find new
Ramsey-type results. There is also hope that the criterion of corollary 9.29 may lead to (new)
examples of amenable groups.



Branch 4

Homogeneity





CHAPTER 10

Homogeneity
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The Urysohn space is ultrahomogeneous, meaning that every isometry between finite subsets
extends to a global isometry of U. Even better, Huhunaišvili showed in [H3] that it also works
with compact subsets. Studying the separability of the Katětov space (see subsection 1.2 of
chapter 2), Melleray proved that relatively compact subspaces are actually the only subspaces
satisfying this property ([M3, théorème 18]). It is natural to ask whether the same is true in
other Fraïssé classes (where compact could mean finite). We only study the case of classical
Fraïssé classes, which is rich enough to already come unstuck with. In this setting, we give
a characterization of this property. This is joint work (in progress) with Isabel Müller and
Aristotelis Panagiotopoulos.

Let K be a classical Fraïssé class in a relational language and let M be its Fraïssé limit.
Let also G be the automorphism group of M.

By Kω, we denote the class of all countable structures that embed in M. Equivalently, Kω
is the class of all countable structures whose age is contained in K.

Definition 10.1. Let N be a structure in Kω. We say that N has the homogeneity
property (HoP) if every isomorphism between any two copies of N in M extends to an
automorphism of M.

The ultrahomogeneity of M says that all finite sets have the homogeneity property.

Question 10.2. Which structures in Kω satisfy the homogeneity property?

Remark 10.3. Recently, Panagiotopoulos ([P1]) studied the following related question: for
which Fraïssé structures does the generic substructure satisfy HoP? Our approach is somewhat
dual to his: here, the Fraïssé structure is fixed in advance and we are interested in characterizing
the homogeneity property inside this particular structure.

Compact sets are the metric counterpart of finite sets so in the light of Melleray’s result, a
first guess as to question 10.2 would be that only finite structures will satisfy HoP. Unfortunately

1Le Roi

137
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(or rather fortunately; this uncovers some interesting phenomenons), this is not the case. For
instance, in the infinitely splitting tree, any infinite branch has the homogeneity property.

Example 10.4. Let T∞ be the infinitely splitting tree in the language {dn : n ∈ N} which
consists of binary relational symbols to be interpreted as distances between vertices of the tree.

• In T∞, infinite branches have the homogeneity property.
• On the other hand, if a is any vertex in T∞ and X = {b ∈ T∞ : d(a, b) 6 1}, then X
does not have the homogeneity property.
• More precisely a subset X of T∞ has the homogeneity property if and only if the
algebraic closure of X is a finitely splitting subtree of T∞. Indeed, as soon as X
contains a vertex of infinite degree, we may find isomorphic copies of X where the
neighbors of this vertex are either all its neighbors in T∞ or only a proper subset. But
two such copies can never be sent to each other by an automorphism.

Note that in regular finitely splitting trees, all subsets have the homogeneity property.

For the moment, we lack examples of structures where infinite structures satisfy HoP. In
fact, trees constitute our leading examples.

We begin with the special case of an ℵ0-categorical Fraïssé limit, where the only substruc-
tures that satisfy HoP are finite.

1. Countably categorical case

As explained in section 3 of chapter 6, when the structure M is countably categorical, the
homogeneity property can be expressed more intrinsically: the structure M needs to remain
countably categorical after the elements of the substructure have been named. Therefore, only
finite structures will satisfy the homogeneity property in this case.

Proposition 10.5. Assume that the structure M is ℵ0-categorical and let X be a subset
of M. Then the following are equivalent.

(1) The set X has the HoP.
(2) The structure (M, X) is again ℵ0-categorical.
(3) The set X is finite.

Proof. (1) ⇒ (2)] See proposition 6.21.
(2) ⇒ (3)] The Ryll-Nardzewski theorem implies that there are only finitely many 1-types

over X. But that only happens when X is finite: otherwise, all types "v = x", for x in X, are
different.

(3) ⇒ (1)] The structure M is ultrahomogeneous, so finite sets satisfy the homogeneity
property. �

Examples 10.6. As a consequence, in the following Fraïssé structures, only finite sets have
the homogeneity property.

• The pure set N. In that case, it was easier to get the result directly. Indeed, any infinite
set is isomorphic to the whole of N, and we certainly cannot extend an isomorphism
from the whole structure to a proper subset!
• The rationals.
• The random graph.

2. Somewhere realized types

To extend an isomorphism, the first method that comes to mind is to carry a back-and-
forth argument. An obvious obstacle to the extension would be that at some point during
the back-and-forth process, we find an element on one side, the image of whose type by the
isomorphism-in-progress is not realized on the other side.
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Definition 10.7. Let X be a subset of M and let p be a type over X. Let f be an
embedding of X into M. The image type p under f is the type f(p) over f(X) defined by

ϕ(v̄, f(x̄)) ∈ f(p)⇔ ϕ(v̄, x̄) ∈ p,
for every LX-formula ϕ(v̄, x̄) with parameters x̄.

We easily obtain the following.

Proposition 10.8. Let N be a structure in Kω. Let X and X ′ be two copies of N in M
and f be an isomorphism between X and X ′. Assume that for all finite subsets F and F ′ of
M such that f extends to an isomorphism f̃ between X ∪ F and X ′ ∪ F ′, the sets X ∪ F and
X ′ ∪F ′ have the same realized quantifier-free 1-types: if p is a quantifier-free type over X ∪F ,
then p is realized if and only if f̃(p) is realized too. Then we can extend f to an automorphism
of M.

This incites us to only consider types that are somewhere realized, that is, realized over
some copy of the parameter structure in M. They are exactly the types in n variables over N
that correspond to a structure of Kω, which we obtain by adding at most n elements to the
structure N. Thus, other types we do not care about. Moreover, the only types we will consider
will be quantifier-free types, for they are the ones that witness isomorphism. Throughout the
section, the word "type" will mean "quantifier-free type".

Definition 10.9. LetN be a structure inKω and p be a type overN. We call p somewhere
realized in M, if there is an embedding f : N→M such that f(p) has a realization in M.

Conversely, if a substructure of M has the homogeneity property, then, as soon as a type
over this substructure is realized somewhere, it is realized everywhere.

Proposition 10.10. Let X be a subset of M. If X has the homogeneity property, then
the set of realized types over X coincides with the set of somewhere realized types over X.

Proof. Let p be a somewhere realized type over X. There exists an embedding f : X →M
such that f(p) is realized, say, by some a in M. By the homogeneity property, f extends to an
automorphism g of M, so that g−1(a) realizes p. �

In particular, when X has the HoP, the set of somewhere realized types over X must be
countable. The analogous observation for the Urysohn space, namely that the space of Katětov
maps over X has to be separable, explains how, in Melleray’s work, separability considerations
came in.

3. When types are finitely determined

The example we gave of an infinite structure with the homogeneity property, an infinite
branch, is not finite, but is not far off, to the extent that all types over it are determined by a
finite set. We will call such structures typically finite.

Definition 10.11. Let N be a structure in Kω and let p be a somewhere realized type over
N. We say that p is finitely determined if there exists a finite subset F of N such that every
somewhere realized type over N whose restriction to F coincides with p�F is in fact equal to p.

Any such set F is called a support2 for the type p.

Remark 10.12. The condition of finite determination looks tremendously like a notion of
being an isolated type, for the adequate topology on the space of types that are somewhere
realized in M. If p is a somewhere realized type over N, then a basis of neighborhoods of p for
this topology is given by all sets of the form

{q ∈ S(N) : q is somewhere realized and q�A = p�A},
2This "support" has nothing to do with the "support" of a Katětov map that we defined in 2.7.
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for a finite subset A of N. Exactly how we can turn this topological characterization to our
advantage, though, is not clear yet.

Example 10.13. Let p be a somewhere (hence everywhere) realized 1-type over an infinite
branch in T∞. The type p specifies the distances to all vertices of the branch. Then a support
for p consists in the (unique) closest vertex, together with its two neighbors, which witness the
minimality of the distance (see figure 10.13).

23 34 456 5 6

p

Figure 10.1. The type p is determined by three vertices in the infinite branch.

Finite determination is a direct translation of a notion introduced by Melleray for Katětov
maps ([M3, section 6.2]), that corresponds to compact determination: he calls a Katětov map
f ∈ E(X) saturated3 if for every positive ε, there exists a compact subset K of X such that
for every g in E(X), if g�K = f�K , then d(g, f) 6 ε.

Melleray shows that when X has the collinearity property, that is when E(X) is separable, it
is possible to build an isometric copy of X inside the Urysohn space over which all realized types
(that is, Katětov maps) are saturated. It follows that the only spaces with the homogeneity
property are those over which all Katětov maps are saturated. Together with the observation
that non-compact spaces always admit non-saturated Katětov maps, this yields that the only
such spaces are compact.

As we have seen, it can happen in our setting that infinite structures have the homogeneity
property. However, the first equivalence is still true all the same. We call a structure N in Kω
typically finite if all somewhere realized types in finitely many variables over N are finitely
determined. We prove the following theorem (corollary 10.24).

Theorem 10.14. A structure inKω has the homogeneity property if and only if it is typically
finite.

In this section, we prove the easier direction, that is, typical finiteness always implies the
homogeneity property.

Remark 10.15. If F is a support for a finitely determined type p over N and f is an
embedding of N into M, then the set f(F ) is a support for the type f(p).

Exactly as types over finite sets and as expected, finitely determined types are realized
everywhere.

Proposition 10.16. Let N be a structure in Kω and let p be a somewhere realized type
over N. If the type p is finitely determined, then p is realized over every copy of N.

Proof. Let F ⊆ N be a support for p. As p is somewhere realized, we find a partial
isomorphism f : N →M and a realization ā′ of f(p). By ultrahomogeneity of M, the partial
isomorphism f−1

�f(F ) extends to an automorphism of M which sends ā′ to some tuple ā. Now,
tp(ā/F ) = p�F and p is determined by its restriction to F , hence tp(ā/N) = p and p is realized
over N. �

3Since there is a certain amount of model theory involved in this thesis, the term "saturated" may be
confusing. We therefore opted for the (hopefully) less ambiguous "finitely determined".
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Now, we simplify the criterion of proposition 10.8 in the context of finitely determined types.

Proposition 10.17. Let X be a subset of M. Then the following are equivalent.

(1) For every finite subset F of M, all somewhere realized types over X ∪ F in finitely
many variables are finitely determined.

(2) All somewhere realized types over X in finitely many variables are finitely determined.

Proof. The direction (1)⇒ (2) is clear. For the other direction, let F be a finite subset of
M and let p be a somewhere realized n-type over X ∪ F . If F has cardinality m, then p gives
rise to an n+m-type p′ over X by replacing the elements of F with variables. By assumption,
this type p′ is finitely determined, say by A. We show that A ∪ F is a support for p.

To do this, let ā be an arbitrary realization of p�A∪F . We have to show ā realizes p. If not,
then there is a finite subset B of X ∪F containing A∪F such that ā does not realize p�B. Now,
the type p�B has a realization, say ā′. But then, we have

tp(ā′F/A) = tp(āF/A) = p′�A

while

tp(āF/X) 6= p′,

a contradiction. �

The following proposition shows that finite determination carries over to subtuples.

Proposition 10.18. Let X be a subset of M. Let ā be a tuple in M and ā′ be a subtuple
of ā. If the type of ā over X is finitely determined, then the type of ā′ over X is finitely
determined.

Proof. Call p the type of ā over X and p′ the type of ā′ over X. Let F be a finite support
for p. We show that F is a finite support for p′ as well. To this aim, let p∗ be a somewhere
realized type over X that coincides with p′ on F . Assume, towards a contradiction, that p∗
is not equal to p′. Then this is witnessed by a finite subset B of X, with B containing F :
p∗�B 6= p′�B.

Let b̄∗ be a realization of the finite type p∗�B in M (such a realization exists because p∗ is
somewhere realized and M is ultrahomogeneous). Then b̄∗ and ā′ have the same type over F ,
so by ultrahomogeneity of M, there exists an automorphism g of M that fixes F pointwise and
that sends ā′ to b̄∗.

Now, consider the image b̄ of ā by g. Then the type of b̄ over F is equal to the type of ā
over F , that is, to p�F . But tp(b̄/X) is not equal to p, for the types of the subtuples b̄∗ and
ā′ already differ. This contradicts the assumption that F is a support for p and completes the
proof. �

Theorem 10.19. Let N be a structure in Kω. If N is typically finite, then N has the
homogeneity property.

Proof. Let X and X ′ be two copies of N in M and let f be an isomorphism between
X and X ′. All somewhere realized types over X and over X ′ are finitely determined, hence
realized. Thus, X and X ′ have the same realized types, so, by proposition 10.17, we can apply
our back-and-forth criterion (proposition 10.8): we obtain that f extends to an automorphism
of M, and thus, N has the homogeneity property. �

Note that the previous theorem, combined with proposition 10.5, yields that in countably
categorical structures, the homogeneity property is equivalent to typical finiteness, and even
finiteness.
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4. When they are not

We are interested in the converse direction: suppose, towards a contradiction, that a struc-
ture N in Kω satisfies the homogeneity property but is not typically finite. Then pick a type p
over N that is somewhere realized but not finitely determined. The idea is to build a copy of
M around N in which p is not realized, preventing N from having the homogeneity property.
Actually, our construction will give a better result still. We will build a copy of M that omits
every non-finitely determined type over N. This is some kind of an atomic model, with respect
to the topology defined in remark 10.12.

4.1. Extending types over finite sets. The homogeneity property allows us to extend
types over finite sets to finitely determined types, which may not be possible in general. For
instance, in the random graph, the type over an infinite complete graph saying "I am not related
to any element of A" cannot extend to a finitely determined type.

The following proposition will be used extensively in the proof of theorem 10.22.

Proposition 10.20. Let N be an infinite structure in Kω that satisfies HoP and let p be a
somewhere realized type over a finite subset A of N. Then p extends to a finitely determined
type over N.

This is not to say, however, that the finite set A will be a support for the extension.

Proof. Suppose not: every extension of p to N is non-finitely determined. First note that
there exists an extension of p to N that is somewhere realized. To see this, embed A in M
in such a way that p is realized, say by ā. Since N is in Kω, it embeds into M as well. Now
the ultrahomogeneity of M enables us to amalgamate N and A ∪ {ā} over A. Pick one such
extension, say q0.

The finite set A is not a support for q0 so there exists another somewhere realized extension
q1 of p to N such that q0 6= q1. Now since the two types q0 and q1 differ, they must differ on
a finite set A1. We may assume that A1 contains A. We now apply the same argument to
each of q0 and q1: the finite set A1 is not a support for q0 nor q1 so there exist two somewhere
realized extensions q00 and q01 of q0 � A1 and two somewhere realized extensions q10 and q11 of
q1 such that q00 6= q01 and q10 6= q11. We can then find a finite subset A2 of N witnessing these
differences, and so on.

This process gives a tree of types that are all different (at each level) and somewhere realized
in M. Each of the limit type is somewhere realized in M. Indeed, a type is somewhere realized
in M if and only if it defines a structure in Kω. Since every finite substructure defined by
our limit types appears in one of the (somewhere realized) types in the sequence, the limit
types are somewhere realized. This yields continuum many somewhere realized types over N,
contradicting proposition 10.10. �

Remark 10.21. When the Fraïssé limitM is ω-stable, then the conclusion of the proposition
is true for every structure in Kω, regardless of the homogeneity property. Recall that a countable
structure N is said to be ω-stable if the set S(N) of types over N is countable. In particular,
this is the case of the infinitely splitting tree.

4.2. Omitting non-finitely determined types. We proceed as in the proof of the usual
omitting types theorem (see for example [H1, theorem 7.2.1]). Since the proof of the following
theorem involves both types and quantifier-free types, we will drop our convention that "type"
means "quantifier-free type" and we will specify this for each type along the proof.

Theorem 10.22. Let N in Kω have the homogeneity property. Then there exists an em-
bedding of N into M over which all realized quantifier-free types are finitely determined.

Proof. We fix an embedding of N into M and we consider the LN-theory T of (M,N).
Note that T does not depend on the chosen embedding, because the structure N satisfies the
homogeneity property.
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Let C be a countable collection of new constant symbols — they will be our witnesses —
and set L+ = LN ∪C. We want to build a complete L+-theory T+ containing T in such a way
that in any model of T+, the structure generated by the constants in C is isomorphic to M
and contains a copy of N over which all realized quantifier-free types are finitely determined.
Following [H1], we call this structure the canonical model of T+. Let us introduce a useful
item of notation: if c̄ is a tuple in C and B is a subset of N, we will denote

tp T+(c̄/B) = {ϕ(x̄) LB-formula : T+ contains ϕ(c̄)},

and we will call this the type of c̄ over B in T+.
We will enforce the following properties.
(1) (Witness property) For every L+-formula ϕ(x), there exists an element c in C such

that T+ contains the formula (∃x, ϕ(x))→ ϕ(c).
By the Tarski-Vaught test (see for example [H1, theorem 2. 5.1]), this will guar-

antee that for any model M+ of T+, the substructure CM+ is an elementary L+-
substructure of M+.

(2) The canonical model of T+, seen as an L-structure, is isomorphic to M, that is, it is
the Fraïssé limit of K. To guarantee this, we require the following conditions.
(a) The age (with respect to the language L) of the canonical model of T+ is contained

in K: for every c̄ in C, there exists ā in M such that

qftp T+(c̄) = qftp(ā),

that is, for every quantifier-free L-formula ϕ(x̄), the theory T+ contains ϕ(c̄) if
and only if the structure M satisfies ϕ(ā).

(b) The age (with respect to the language L) of the canonical model of T+ contains
K: for every tuple ā in M, there exists c̄ in C such that

qftp T+(c̄) = qftp(ā),

that is, for every quantifier-free L-formula ϕ(x̄), the theory T+ contains ϕ(c̄) if
and only if M satisfies ϕ(ā).

(c) The canonical model of T+ is K-rich: for every tuple c̄ in C and for every tuple
(ā, ā′) in M such that

qftp(ā) = qftp T+(c̄),

there exists a tuple c̄′ in C such that

qftp T+(c̄, c̄′) = qftp(ā, ā′).

We proceed inductively, by building a chain of L+-theories (Ti)i∈N and set T+ to be the
union of all the theories T ∪ Ti. We will ensure that the conditions above are satisfied at the
end of the construction. Moreover, in order to get typical finiteness, our induction hypotheses
will be the following.

(3) T ∪ Ti admits a model.
(4) The set of all parameters from N and from C that appear in formulas of Ti is finite.

Call Bi and Ci the corresponding subsets of N and C. We will sometimes consider
those sets as tuples, in which case we denote them by b̄i and c̄i.

(5) There exists a tuple āi in M such that

tp T∪Ti(c̄i/Bi) = tp(āi/Bi)

and such that the finite set Bi is a support for qftp(āi/N).
This condition ensures in particular that the theory T+ will be complete.

Moreover, we will also ensure that
⋃

i∈N

Ci = C (for this, we enumerate C and whenever we

pick new constant symbols, we take the least ones that are outside of Ci).
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Observe that since the set of L+-formulas is countable, condition (1) can be split into
countably many subconditions which require countably many steps each. Condition (2a) will
be ensured at each step, thanks to item (5) above. As for conditions (2b) and (2c), since the
structure M is countable (up to isomorphism), we also need countably many steps for each one
of them. Thus, for every ϕ ∈ L+, we pick an infinite set I1,ϕ in N, for all c̄ in C and ā, ā′ in
M, we pick an infinite set I(2c),(c̄,ā,ā′) in N and we pick an infinite set I(2b) in N that is indexed
by finite tuples in M, and we make all these sets disjoint. At each step contained in those sets,
we work towards enforcing the corresponding condition.

First, set T0 to be the empty theory, so that B0 and C0 are empty.
Now assume that Ti has been built. We explain how to build Ti+1.
Steps i in I1,ϕ: witness property
If the formula ϕ has parameters outside Bi and Ci, or if the formula ∃x, ϕ(x) is not in T ∪Ti,

then do nothing (if the formula ∃x, ϕ(x) is false in T+, then the implication (∃x, ϕ(x))→ ϕ(c1)
is always true). Otherwise, pick a new constant symbol c in C \Ci. We will add ϕ(c) = ψ(c, b̄i)
to the theory Ti. But in order to preserve item (5) above, we will add more than this.

We consider the two cases separately: either the formula ∃x, ϕ(x) is in T or it is in Ti.
• If it is in T , then write ϕ(x) as ψ(x, b̄i), for an L-formula ψ. Since the formula
∃x, ψ(x, b̄i) is in T , there exists a in M such that M satisfies ψ(a, b̄i). Moreover, by
item (5) of our induction hypotheses, there exists a tuple āi in M such that

tp T∪Ti(c̄i/b̄i) = tp(āi/b̄i).

Now, sinceN has the homogeneity property, proposition 10.20 implies that the quantifier-
free type of (a, āi) over b̄i extends to a finitely determined quantifier-free type q over N,
say of support F , with Bi ⊆ F . Besides, since the structure M is ultrahomogeneous,
any two realizations of the quantifier-free type q�F in M have the same complete type
(with quantifiers) q̃ over F .

Thus, it is consistent to add all the formulas that say that

tp T∪Ti+1
((c, c̄i)/F ) = q̃

to the theory Ti. Thus, we set Ti+1 to be the union of Ti with the set of all those
formulas.

All these formulas have their parameters in the finite set F ∪ Ci ∪ {c}. Thus, we
set Bi+1 to be F and Ci+1 to be Ci ∪ {c}.

This way, ψ(c, b̄i) will be in Ti+1, hence the formula (∃x, ϕ(x)) → ϕ(c) will be in
Ti+1 too.
• If the formula ∃x, ϕ(x) is in Ti. Then we write ϕ(x) as ψ(x, b̄i, c̄i), for some L-formula
ψ. By item (5), there exists āi in M such that

tp T∪Ti(c̄i/b̄i) = tp(āi/b̄i).

Thus, M satisfies ∃x, ψ(x, b̄i, āi) so there exists a in M such that M satisfies ψ(a, b̄i, āi).
Again, the quantifier-free type of (a, āi) over b̄i extends to a finitely determined

type q over N, say of support F , with Bi ⊆ F . Again, by ultrahomogeneity of M, any
two realizations of the quantifier-free type q�F in M have the same complete type q̃
over F . As before, we add all the formulas that say that

tp T∪Ti+1
((c, c̄i)/F ) = q̃.

It follows that the formula (∃x, ϕ(x))→ ϕ(c) will indeed be in Ti+1.
Steps i in I2b: realizing all structures of K
Each step i in I2b corresponds to a tuple ā in M. Pick a tuple of new constant symbols c̄ in

C \ Ci. By the induction hypotheses, there exists a tuple āi in M such that

tp T∪Ti(c̄i/Bi) = tp(āi/Bi).
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Again by proposition 10.20, the quantifier-free type of (ā, āi) over Bi extends to a finitely
determined type q over N, say of support F , with Bi ⊆ F . By ultrahomogeneity, any two
realizations of the quantifier-free type q�F in M have the same complete type q̃ over F .

Then we add all the formulas that say that

tp T∪Ti+1
((c̄, c̄i)/F ) = q̃.

Steps i in I2c,(c̄,ā,ā′): K-richness
Let c̄ be a tuple in C and ā, ā′ be two tuples in M. If at step i, the tuple c̄ is not included

in Ci or if qftp T∪Ti(c̄) 6= qftp(ā), then do nothing.
Otherwise, for the sake of simplicity, write c̄i as (c̄, d̄i).
By the induction hypothesis, there exists a tuple āi = (ē, ēi) in M such that

qftp((ē, ēi)/Bi) = qftp T∪Ti((c̄, d̄i)/Bi).

Now, since the structure M is K-rich, there exists a tuple d̄′ in M such that

qftp((ē, d̄′)/Bi) = qftp((ā, ā′)/Bi).

Besides, by proposition 10.20 again, the quantifier-free type of (ē, d̄′, ēi) over Bi in M extends
to a finitely determined type q, say of support F . Moreover, by ultrahomogeneity of M, any
two realizations of the quantifier-free type q�F have the same complete type q̃ over F .

Pick a tuple c̄′ of new constant symbols from C \Ci. Then we add all the formulas that say
that

tp T∪Ti+1
((c̄, c̄′, d̄i)/F ) = q̃.

Conclusion
When the theory T+ has been built, we choose a model M+ of T+ (such a model exists

by item (3) and the compactness theorem). Consider the L+-substructure C generated by the
(interpretations of the) constants from C in M+. Condition (1) ensures that C satisfies the
Tarski-Vaught test in M+, so that C is an L+-elementary substructure of M+. In particular,
C is a model of T so the structure C contains N as an L-substructure.

Moreover, condition (2) ensures that C is the Fraïssé limit of the class K, so the structure
C is isomorphic, as an L-structure, to M.

Take an isomorphism f from C to M. We prove that M realizes only finitely determined
quantifier-free types over f(N). To this aim, let ā be an arbitrary tuple in M and let c̄ in C
be a tuple such that f(c̄) = ā. Denote by p the quantifier-free type of ā over f(N). Since c̄
is finite, there exists an i in N such that c̄ is contained in Ci. By proposition 10.18, we may
actually assume that c̄ = c̄i.

By item (5) of our induction hypotheses, there exists āi in M such that

tp T+(c̄i/Bi) = tp(āi/Bi)

and such that the quantifier-free type of āi over N is finitely determined, of support Bi. Now
since N has the homogeneity property, there exists an automorphism g of M such that g�N =
f�N. In particular, we have g(Bi) = f(Bi).

Now the quantifier-free type g(qftp(āi/N)) is finitely determined, of support f(Bi). More-
over, we have

g(qftp(āi/Bi)) = g(qftp(c̄i/Bi)) = g ◦ f−1(qftp(ā/f(Bi))) = g ◦ f−1(p�f(Bi)).

Thus, we obtain that g◦f−1(p) = g(qftp(āi/N)). Besides, since g�N = f�bN , we have g◦f−1(p) =
p, so p is finitely determined. Finally, f is the desired embedding of N into M. �

Theorem 10.23. Let N be an infinite structure in Kω. If N is not typically finite, then N
does not have the homogeneity property.

Proof. Assume N has the homogeneity property. Then, by proposition 10.22, there exists
a copy of N in M over which all realized types are finitely determined. Moreover, since N
is not typically finite, there is a somewhere realized type that is not finitely determined, so
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there exists a copy of N in M which does not have this property. Consequently, these two
copies cannot be mapped one onto the other by an automorphism of M, contradicting the
homogeneity property. �

Together with theorem 10.19, this yields the desired equivalence.

Corollary 10.24. Let N be a structure in Kω. Then N satisfies the homogeneity property
if and only if N is typically finite.

Let us conclude this section by the study of typically finite sets in the rational Urysohn
space.

Proposition 10.25. Let X be a subset of QU. If X is typically finite, then X is finite.
Therefore, the only subsets of QU that satisfy the homogeneity property are finite.

Proof. Choose a0 ∈ X and r > 0 arbitrary. Consider the type p in variable v over X that
says

• v is at distance r from a0 and;
• for all x in X, d(v, x) = d(v, a0) + d(a0, x) (in other words — those of Tent and Ziegler
[TZ2] — v is independent from X over a0).

This type is well-defined and somewhere realized. Thus, by assumption, p is finitely determined.
Let A be a finite support for p. We may assume that a0 is in A. Note that any type over X that
coincides with p on A will be independent from A over a0. Moreover, by finite determination,
p is realized over X, say by y.

Claim. For all b in X \ A, there are a1, a2 in A such that

|d(y, a1)− d(a1, b)| = d(y, b) = d(y, a2) + d(a2, b).

Otherwise, take b ∈ X \ A for which that fails. For a in A, consider the sets Ia := {t > 0 :
|d(y, a) − d(a, b)| 6 t 6 d(y, a) + d(a, b)} and note that they form non-trivial closed intervals,
as b fails the claim. Denote by I their intersection

I =
⋂

a∈A

Ia = {t > 0 : |d(y, a1)− d(a1, b)| 6 t 6 d(y, a2) + d(a2, b) for all a1, a2 ∈ A}.

By the assumption on b, the interval I is non-trivial. Now, whenever t ∈ I, we can extend
p�A to A∪{b} by d(v, b) = t. This gives infinitely many extensions of p to A∪{b} (and thus to
X), which contradicts the fact that p is finitely determined by A. Hence, we proved the claim.

Let us now take a closer look at the equation in the claim. First note that we can choose
a2 = a0, as

d(y, b) = d(y, a2) + d(a2, b)

= d(y, a0) + d(a0, a2) + d(a2, b)

> d(y, a0) + d(a0, b)

> d(y, b).

Furthermore, if we had d(a1, b) > d(y, a1), then we would have

d(a1, b) = d(y, b) + d(y, a1)

= d(y, a0) + d(a0, b) + d(y, a0) + d(a0, a1)

> d(a1, b) + 2d(y, a0)

> d(a1, b),

a contradiction. Thus, d(y, b) = d(y, a1)−d(a1, b) which implies that for any b ∈ X \A we have
d(y, b) 6 maxa∈A d(y, a) and X is bounded.

Finally, if X is bounded, say by R > 0, consider the type q over X, saying ”v has distance
R to all points in X“. By assumption, this type is finitely determined by some B ⊆ X. Now
consider a second type that agrees with q on B and says in addition ”v is independent from X



5. PERSPECTIVES 147

over B, that is, for all x in X, d(v, x) = infb∈B d(v, b) + d(b, x)". Finite determination yields
that those two types must be equal, which holds only if X = B, in which case X is finite. �

Note that we actually showed something stronger than just the finiteness of typically finite
sets: for any typically finite set X, there is a type over X that does not admit any proper
subset of X as a support.

5. Perspectives

Our characterization of the homogeneity property leaves some questions open and provides
several research directions.

5.1. Beyond typical finiteness. With corollary 10.24, it remains to understand typical
finiteness in concrete examples. We have succeeded in finding all the substructures with the
homogeneity property in a handful of Fraïssé limits which are mentioned. However, it would be
nice to find a systematic way to do so. For this, as mentioned before, we lack relevant examples,
in particular Fraïssé structures in which typically finite structures may be infinite.

Maybe, then, the right answer to this question lies in a different characterization altogether.
Melleray’s result for the Urysohn space, as well as our beloved infinitely splitting tree, suggests
the idea of compactness. It is not clear which topology to put on structures though4; in all
likelihood, the right topology should involve the algebraic closure. We are still looking for our
kindred topology!

5.2. Acting only transitively. Another question of interest is the study of the following
relaxing of the homogeneity property.

Definition 10.26. LetN be a structure in Kω. We say thatN has theweak homogeneity
property (wHoP) if G acts transitively on isomorphic copies of N in M.

The following proposition gives a sufficient condition for the two properties to coincide; it
is essentially contained in [M3, théorème 18].

Proposition 10.27. Let N be a structure in Kω. Assume that there exists a copy X of N
inside M such that all automorphisms of X extend to global automorphisms of M. Then N
has the wHoP if and only if it has the HoP.

Proof. Assume that N has the weak homogeneity property. Let X ′ be another copy of
N in M and let f : X → X ′ be an isomorphism. As N has the weak HoP, there exists an
automorphism g of M that sends X ′ to X setwise. Then the map g ◦ f is an automorphism of
X and thereby extends to an automorphism h in Aut(M). Now, the automorphism g−1 ◦ h is
an extension of f to M, hence N satisfies the homogeneity property. �

In particular, if it is possible to build Katětov-like towers around structures in Kω (at each
step of which automorphisms extend), then the weak homogeneity property and the homo-
geneity property coincide. This is for instance the case in structures whose age has the free
amalgamation property, or more generally in structures that admit a stationary independence
relation, as is proved in [BM2] and [M13].

Actually, we do not know of any example of a structure that has only the weak homogeneity
property but not the full one, so that the following questions remain open.

Questions 10.28. • Are wHoP and HoP equivalent?
• Which structures satisfy the weak homogeneity property?

4I thank Todor Tsankov for suggesting one in the course of a very inspiring discussion!
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5.3. Back to metric structures. Going from a metric result to a problem about classical
Fraïssé structures may not seem very much in tune with the rest of this thesis; and the question
arises as to what happens for metric Fraïssé structures? Once again, we encounter the recurring
question of characterizing the exact ultrahomogeneity of a structure. Indeed, in the general
metric Fraïssé theory, even finite sets need not satisfy the homogeneity property, and outside
the separably categorical case, there is no known way to see exact ultrahomogeneity on the
Fraïssé class.

So be it, let us restrict ourselves to structures we already know to be exactly ultrahomo-
geneous. But even then, we come across the same obstacles as in the classical case. Is typical
compactness the relevant condition? How should it even be defined? Besides, although com-
pactness seems much more relevant for metric spaces, it is still unclear how to define a topology
that accounts for the structure and the homogeneity property. Moreover, here, we lack examples
even more critically.

Examples 10.29. Here is how our two other favorite metric structures behave with regards
to the homogeneity property.

• The separable Hilbert space `2. Substructures are separable Hilbert subspaces. Either
they are finite-dimensional, in which case they satisfy HoP, or infinite-dimensional
and isomorphic to the whole of `2, in which case they cannot have the homogeneity
property.
• The separable probability measure algebra MALG([0, 1]). Substructures are measure
subalgebras, that have a continuous part and an atomic part.

As soon as there is a continuous part, HoP is compromised: the continuous part
will contain a proper copy of itself. Indeed, since the separable probability measure
algebra is unique, MALG([0, 1]× [0, 1]) is isomorphic to MALG([0, 1]). It is then easy
to find a (proper) copy of MALG([0, 1]) inside MALG([0, 1]× [0, 1]), which prevents the
homogeneity property. The same reasoning applies to a continuous part of arbitrary
finite measure.

On the other hand, when the substructure is entirely atomic, it has countably many
atoms, which form a partition of the interval [0, 1]. Now any two such partitions in
sets of equal measures can be sent one to the other by an automorphism, so atomic
substructures satisfy the homogeneity property.
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Metric structures and their automorphism groups:
reconstruction, homogeneity, amenability and automatic
continuity

Abstract: This thesis focuses on the study of Polish groups seen as automor-
phism groups of metric structures. The observation that every non-archimedean
Polish group is the automorphism group of an ultrahomogeneous countable struc-
ture has indeed led to fruitful interactions between group theory and model the-
ory. In the framework of metric model theory, introduced by Ben Yaacov, Henson
and Usvyastov, this correspondence has been extended to all Polish groups by
Melleray. In this thesis, we study various facets of this correspondence.
The relationship between a structure and its automorphism group is particularly
close in the setting of ℵ0-categorical structures. Indeed, the Ahlbrandt-Ziegler
reconstruction theorem allows one to recover an ℵ0-categorical structure, up to
bi-interpretability, from its automorphism group. In a joint work with Itaï Ben
Yaacov, we generalize this result to separably categorical metric structures.
Besides, ultrahomogeneous countable structures have the advantage of being com-
pletely determined by their finitely generated substructures. In particular, this
enabled Moore to give a combinatorial characterization of amenability for non-
archimedean Polish groups. We extend this characterization to all Polish groups
and we deduce that amenability is a Gδ condition.
Still in a reconstruction perspective, we are interested in the automatic conti-
nuity property for Polish groups. Sabok and Malicki introduced conditions of a
combinatorial nature on an ultrahomogeneous metric structure that imply the
automatic continuity property for its automorphism group. We show that these
conditions carry to countable powers, which leads to the groups Aut(µ)N, U(`2)N

and Iso(U)N satisfying the automatic continuity property.
Those conditions are a weakening of the property of having ample generics. In
a joint work with François Le Maître, we exhibit the first examples of connected
groups with ample generics, which answers a question of Kechris and Rosendal.
Finally, in a joint work with Isabel Müller and Aristotelis Panagiotopoulos, we
study the relative homogeneity of substructures in an ultrahomogeneous countable
structure. We characterize it completely by a property of the types over the
substructures: being determined by a finite set.



Structures métriques et leurs groupes d’automorphismes :
reconstruction, homogénéité, moyennabilité et continuité automatique

Résumé: Cette thèse porte sur l’étude des groupes polonais vus comme groupes
d’automorphismes de structures métriques. L’observation que tout groupe polonais non
archimédien est le groupe d’automorphismes d’une structure dénombrable ultrahomogène
a en effet mené à des interactions fructueuses entre la théorie des groupes et la théorie des
modèles. Dans le cadre de la théorie des modèles métriques, introduite par Ben Yaacov,
Henson et Usvyatsov, cette correspondance a été étendue par Melleray à tous les groupes
polonais. Dans cette thèse, nous étudions diverses facettes de cette correspondance.
Le lien entre une structure et son groupe d’automorphismes est particulièrement étroit
dans le cadre des structures ℵ0-catégoriques. En effet, le théorème de reconstruction
d’Ahlbrandt-Ziegler permet de retrouver une structure ℵ0-catégorique, à bi-interprétabilité
près, à partir de son groupe d’automorphismes. Dans un travail en commun avec Itaï Ben
Yaacov, nous généralisons ce résultat aux structures métriques séparablement catégoriques.
Les structures dénombrables ultrahomogènes ont de plus l’avantage d’être complètement
déterminées par leurs sous-structures finiment engendrées. Cela a notamment permis à
Moore de donner une caractérisation combinatoire de la moyennabilité des groupes polonais
non archimédiens. Nous étendons cette caractérisation à tous les groupes polonais et nous
en déduisons que la moyennabilité est une condition Gδ.
Toujours dans une optique de reconstruction, nous nous intéressons à la propriété de conti-
nuité automatique pour les groupes polonais. Sabok et Malicki ont introduit des conditions
de nature combinatoire sur une structure métrique ultrahomogène qui impliquent la pro-
priété de continuité automatique pour son groupe d’automorphismes. Nous montrons que
ces conditions passent à la puissance dénombrable, ce qui a pour conséquence que les
groupes Aut(µ)N, U(`2)N et Iso(U)N satisfont la propriété de continuité automatique.
Ces conditions sont un affaiblissement du fait d’avoir des amples génériques. Dans un
travail en commun avec François Le Maître, nous exhibons les premiers exemples de
groupes connexes qui ont des amples génériques, ce qui répond à une question de Kechris
et Rosendal.
Enfin, dans un travail en commun avec Isabel Müller et Aristotelis Panagiotopoulos, nous
étudions l’homogénéité relative des sous-structures dans une structure dénombrable ultra-
homogène. Nous caractérisons complètement celle-ci à l’aide d’une propriété sur les types
au-dessus des sous-structures : le fait d’être déterminés par un sous-ensemble fini.

Image en couverture : Illustration de la propriété de Ramsey convexe (métrique).
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