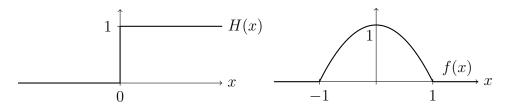
Corrigé du CC2 du 22.03.2019

Exercice 1 (6 pts.). Soient $f, H : \mathbb{R} \to \mathbb{R}$ les deux fonctions définies par :

$$f(x) = \begin{cases} 0 & \text{si } x^2 > 1\\ 1 - x^2 & \text{si } x^2 \le 1 \end{cases} \qquad H(x) = \begin{cases} 0 & \text{si } x < 0\\ 1 & \text{si } x \ge 0 \end{cases}$$

Tracer le graphe de f et le graphe de H. Déterminer $f \star H(x)$. Tracer le graphe de $f \star H$.

Corrigé. Commençons par tracer les graphes de f et H:



Soit $x \in \mathbb{R}$. Par définition,

$$f \star H(x) = \int_{\mathbb{R}} f(y)H(x-y)dy$$
, et $H(x-y) = \begin{cases} 0 & \text{lorsque } x-y < 0, \\ 1 & \text{lorsque } x-y \ge 0, \end{cases}$

donc l'intégrale se simplifie en

$$f \star H(x) = \int_{-\infty}^{x} f(y)dy.$$

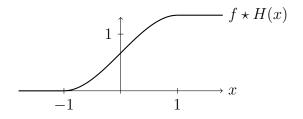
On distingue alors trois cas:

$$f \star H(x) = \int_{-1}^{x} (1 - y^2) dy = \left[y - \frac{y^3}{3} \right]_{-1}^{x} = x - \frac{x^3}{3} + \frac{2}{3},$$

— si x > 1, alors

$$f \star H(x) = \int_{-1}^{1} (1 - y^2) dy = \frac{4}{3}.$$

On peut maintenant tracer le graphe de $f \star H$:



Exercice 2 (3 pts.). Soient f(x) = x et $g(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. On rappelle que $\int_{-\infty}^{\infty} g(x)dx = 1$.

Déterminer $f \star q$.

Bonus [2 pts.] Soit g(x) une fonction continue paire qui satisfait g(x) = 0 dès que $|x| \ge b$ pour une valeur réelle b et $\int_{-\infty}^{+\infty} g(x)dx = 1$. Montrer que $f \star g = f$, où f est toujours la fonction définie par f(x) = x.

Corrigé. Calculons $f \star g$ directement. Soit $x \in \mathbb{R}$,

$$f \star g(x) = \int_{\mathbb{R}} f(x - y)g(y)dy = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (x - y)e^{-y^2/2}dy.$$

Or, $\int_{\mathbb{R}} x g(y) dy = x \int_{\mathbb{R}} g(y) dy = x$, il reste donc à calculer l'autre intégrale :

$$\int_{R} y e^{-y^{2}/2} dy = \left[-\frac{1}{2} e^{-y^{2}/2} \right]_{-\infty}^{+\infty} = 0,$$

et donc finalement, $f \star g(x) = x$, c'est-à-dire que $f \star g = f$.

Corrigé du bonus : Le calcul est similaire au précédent. Soit $x \in \mathbb{R}$,

$$f \star g(x) = \int_{\mathbb{R}} f(x - y)g(y)dy = \int_{-b}^{b} (x - y)g(y)dy.$$

Comme q est continue sur [-b, b], il n'y a pas de problème d'intégrabilité. Alors on peut écrire :

$$f \star g(x) = x \int_{-b}^{b} g(y)dy - \int_{-b}^{b} yg(y)dy = x - \int_{-b}^{b} yg(y)dy$$

 $\operatorname{car} \int_{\mathbb{R}} g(y) dy = 1$. Comme, de plus, g est paire, la fonction $y \mapsto yg(y)$ est impaire, et donc, en faisant le changement de variable donné par z = -y,

$$\int_{-b}^{b} yg(y)dy = \int_{0}^{b} yg(y)dy + \int_{-b}^{0} yg(y)dy$$
$$= \int_{0}^{b} yg(y)dy + \int_{b}^{0} zg(z)dz$$
$$= 0,$$

d'où finalement, $f \star g = f$.

Exercice 3 (3 pts.). Soit $f: \mathbb{R}^+ \to \mathbb{R}$ la fonction définie par :

$$f(x) = \begin{cases} 0 & \text{si } x > 1\\ 1 - x^2 & \text{si } x \le 1 \end{cases}$$

Calculer la transformation de Laplace $\mathcal{L}[f]$ de f.

Corrigé. Comme la fonction f est nulle en dehors de [0,1], sa transformée de Laplace est définie pour tout $s \in \mathbb{R}$, et est égale à

$$\mathcal{L}[f](s) = \int_0^{+\infty} f(x)e^{-sx}dx = \int_0^1 (1-x^2)e^{-sx}dx.$$

On peut calculer sa valeur directement. D'abord, en s=0,

$$\mathcal{L}[f](0) = \int_0^1 (1 - x^2) dx = \left[x - \frac{x^3}{3} \right]_0^1 = \frac{2}{3}.$$

Si $s \neq 0$, alors, par intégrations par parties,

$$\begin{split} \mathcal{L}[f](s) &= \int_0^1 e^{-sx} dx - \int_0^1 x^2 e^{-sx} dx \\ &= \left[-\frac{1}{s} e^{-sx} \right]_0^1 - \left(\left[-\frac{x^2}{s} e^{-sx} \right]_0^1 + \frac{1}{s} \int_0^1 2x e^{-sx} dx \right) \\ &= \frac{1 - e^{-s}}{s} + \frac{e^{-s}}{s} - \frac{2}{s} \left(\left[-\frac{x}{s} e^{-sx} \right]_0^1 + \frac{1}{s} \int_0^1 e^{-sx} dx \right) \\ &= \frac{1}{s} - \frac{2}{s} \left(-\frac{1}{s} - \frac{1}{s^2} \left[e^{-sx} \right]_0^1 \right) \\ &= \frac{1}{s} + \frac{2}{s^2} + \frac{e^{-s} - 1}{s^3}. \end{split}$$

Exercice 4 (8 pts.). On considère l'équation différentielle sur \mathbb{R}^+ avec conditions initiales

$$f''(t) + 2f'(t) + f(t) = e^{-t}$$
 $f(0) = 0, f'(0) = 2.$

À l'aide de la transformation de Laplace, trouver la solution de cette équation.

Corrigé. On souhaite appliquer la transformée de Laplace à l'équation différentielle. Dans ce but, notons que si f vérifie f(0) = 0 et f'(0) = 2, alors

$$\mathcal{L}[f'](s) = s\mathcal{L}[f](s) - f(0) = s\mathcal{L}[f](s),$$

$$\mathcal{L}[f''](s) = s\mathcal{L}[f'](s) - f'(0) = s^2\mathcal{L}[f](s) - 2.$$

De plus, $\mathcal{L}[t \mapsto e^{-t}](s) = \frac{1}{1+s}$, et donc on cherche une solution à

$$s^{2}\mathcal{L}[f](s) - 2 + 2s\mathcal{L}[f](s) + \mathcal{L}[f](s) = \frac{1}{s+1},$$

ou encore, en regroupant les termes en $\mathcal{L}[f](s)$,

$$(s^2 + 2s + 1)\mathcal{L}[f](s) = 2 + \frac{1}{s+1} = \frac{2s+3}{s+1}.$$

En remarquant que $s^2 + 2s + 1 = (s+1)^2$, on obtient

$$\mathcal{L}[f](s) = \frac{2s+3}{(s+1)^3}.$$

On peut maintenant réduire la fraction rationnelle du membre de droite en éléments simples. Pour cela, on peut appliquer la décomposition donnée dans le formulaire, ou bien simplement reconnaître que

$$\frac{2s+3}{(s+1)^3} = \frac{2(s+1)+1}{(s+1)^3} = 2\frac{1}{(s+1)^2} + \frac{1}{(s+1)^3},$$

et on peut alors inverser la transformée de Laplace pour trouver que

$$f(t) = 2te^{-t} + \frac{1}{2}t^2e^{-t}.$$

Ce n'est pas nécessaire, mais on peut s'assurer que f est bien une solution du problème. Le calcul nous donne raison.